
Introduction to Computer Science
Algorithms and data structures

Piotr Fulmański

Faculty of Mathematics and Computer Science,
University of Łódź, Poland

November 19, 2008

Table of Contents

1 Algorithm

2 Data processing

3 A data structure

4 Methods of algorithm description

Algorithm

Name
Term algorithm comes from the name of Persian astronomer and
mathematician lived between VIII and IX AD. In 825 AD Muhammad ibn
Musa al-Chorezmi (al-Khawarizmy) wrote treatise On Calculation with
Hindu Numerals, where he precisely described many mathematical rules
(e.g. addition or multiplication of decimal numbers). It was translated
into Latin in the 12th century as Algoritmi de numero Indorum, which
title was likely intended to mean Algoritmi on the numbers of the
Indians, where Algoritmi was the translator’s rendition of the author’s
name; but people misunderstanding the title treated Algoritmi as a Latin
plural and this led to the word algorithm (Latin algorismus) coming to
mean calculation method.

Algorithm

An informal definition
No generally accepted formal definition of algorithm exists yet. As the
term is popularly understood, algorithm mean the way of doing sth,
recipe for sth or formula for sth.

More formal definition
In mathematic and computer science, algorithm mean finite, ordered
sequence of clearly defined actions, needed to perform some task.
Algorithm should meet the following conditions:

explicitness or uniqueness (jednoznaczność)
standed out the beginning and the end
discreteness
versatility
effectiveness

Algorithm

An informal definition
No generally accepted formal definition of algorithm exists yet. As the
term is popularly understood, algorithm mean the way of doing sth,
recipe for sth or formula for sth.

More formal definition
In mathematic and computer science, algorithm mean finite, ordered
sequence of clearly defined actions, needed to perform some task.
Algorithm should meet the following conditions:

explicitness or uniqueness (jednoznaczność)
standed out the beginning and the end
discreteness
versatility
effectiveness

Algorithm

An informal definition
No generally accepted formal definition of algorithm exists yet. As the
term is popularly understood, algorithm mean the way of doing sth,
recipe for sth or formula for sth.

More formal definition
In mathematic and computer science, algorithm mean finite, ordered
sequence of clearly defined actions, needed to perform some task.
Algorithm should meet the following conditions:

explicitness or uniqueness (jednoznaczność)
standed out the beginning and the end
discreteness
versatility
effectiveness

Algorithm

An informal definition
No generally accepted formal definition of algorithm exists yet. As the
term is popularly understood, algorithm mean the way of doing sth,
recipe for sth or formula for sth.

More formal definition
In mathematic and computer science, algorithm mean finite, ordered
sequence of clearly defined actions, needed to perform some task.
Algorithm should meet the following conditions:

explicitness or uniqueness (jednoznaczność)
standed out the beginning and the end
discreteness
versatility
effectiveness

Algorithm

An informal definition
No generally accepted formal definition of algorithm exists yet. As the
term is popularly understood, algorithm mean the way of doing sth,
recipe for sth or formula for sth.

More formal definition
In mathematic and computer science, algorithm mean finite, ordered
sequence of clearly defined actions, needed to perform some task.
Algorithm should meet the following conditions:

explicitness or uniqueness (jednoznaczność)
standed out the beginning and the end
discreteness
versatility
effectiveness

Algorithm

An informal definition
No generally accepted formal definition of algorithm exists yet. As the
term is popularly understood, algorithm mean the way of doing sth,
recipe for sth or formula for sth.

More formal definition
In mathematic and computer science, algorithm mean finite, ordered
sequence of clearly defined actions, needed to perform some task.
Algorithm should meet the following conditions:

explicitness or uniqueness (jednoznaczność)
standed out the beginning and the end
discreteness
versatility
effectiveness

Algorithm

An informal definition
No generally accepted formal definition of algorithm exists yet. As the
term is popularly understood, algorithm mean the way of doing sth,
recipe for sth or formula for sth.

More formal definition
In mathematic and computer science, algorithm mean finite, ordered
sequence of clearly defined actions, needed to perform some task.
Algorithm should meet the following conditions:

explicitness or uniqueness (jednoznaczność)
standed out the beginning and the end
discreteness
versatility
effectiveness

Algorithm

The place
The place of algorithm in a process of creating program solving stated
problem.

problem
computer (time, internal data representation, software)
programming language (available construction and data types)
algorithm
program

Algorithm

The place
The place of algorithm in a process of creating program solving stated
problem.

problem
computer (time, internal data representation, software)
programming language (available construction and data types)
algorithm
program

Algorithm

The place
The place of algorithm in a process of creating program solving stated
problem.

problem
computer (time, internal data representation, software)
programming language (available construction and data types)
algorithm
program

Algorithm

The place
The place of algorithm in a process of creating program solving stated
problem.

problem
computer (time, internal data representation, software)
programming language (available construction and data types)
algorithm
program

Algorithm

The place
The place of algorithm in a process of creating program solving stated
problem.

problem
computer (time, internal data representation, software)
programming language (available construction and data types)
algorithm
program

Algorithm

The place
The place of algorithm in a process of creating program solving stated
problem.

problem
computer (time, internal data representation, software)
programming language (available construction and data types)
algorithm
program

Data processing

Limited information
Information stored and processed by computer is a small fragment of
reality containing essential data to solve stated problem.
We have to think which informations are essential, which can help us
and which are completely useless.
We have to think how we will represent choosen informations.

The last point lead us to notion of data type (data structure).

Data processing

Limited information
Information stored and processed by computer is a small fragment of
reality containing essential data to solve stated problem.
We have to think which informations are essential, which can help us
and which are completely useless.
We have to think how we will represent choosen informations.

The last point lead us to notion of data type (data structure).

Data processing

Limited information
Information stored and processed by computer is a small fragment of
reality containing essential data to solve stated problem.
We have to think which informations are essential, which can help us
and which are completely useless.
We have to think how we will represent choosen informations.

The last point lead us to notion of data type (data structure).

Data processing

Limited information
Information stored and processed by computer is a small fragment of
reality containing essential data to solve stated problem.
We have to think which informations are essential, which can help us
and which are completely useless.
We have to think how we will represent choosen informations.

The last point lead us to notion of data type (data structure).

Data processing

Limited information
Information stored and processed by computer is a small fragment of
reality containing essential data to solve stated problem.
We have to think which informations are essential, which can help us
and which are completely useless.
We have to think how we will represent choosen informations.

The last point lead us to notion of data type (data structure).

A data structure

A data structure
A data structure is a way of storing data in a computer so that it can be
used efficiently. Often a carefully chosen data structure will allow the
most efficient algorithm to be used.

Data type
The most popular division distinguish primitive types, also known as
built-in types or basic types and composite types — types composed of
basic types.
As a primitive types we consider:

numerical type (e.g. integer, floating-point number, fixed-point
number)
character type (alphanumeric symbols)
boolean type

As a composite types (also known as data structures) we consider:
array
dictionary
set
record
file
queue
stack
tree

Data type
The most popular division distinguish primitive types, also known as
built-in types or basic types and composite types — types composed of
basic types.
As a primitive types we consider:

numerical type (e.g. integer, floating-point number, fixed-point
number)
character type (alphanumeric symbols)
boolean type

As a composite types (also known as data structures) we consider:
array
dictionary
set
record
file
queue
stack
tree

Data type
The most popular division distinguish primitive types, also known as
built-in types or basic types and composite types — types composed of
basic types.
As a primitive types we consider:

numerical type (e.g. integer, floating-point number, fixed-point
number)
character type (alphanumeric symbols)
boolean type

As a composite types (also known as data structures) we consider:
array
dictionary
set
record
file
queue
stack
tree

Data type
The most popular division distinguish primitive types, also known as
built-in types or basic types and composite types — types composed of
basic types.
As a primitive types we consider:

numerical type (e.g. integer, floating-point number, fixed-point
number)
character type (alphanumeric symbols)
boolean type

As a composite types (also known as data structures) we consider:
array
dictionary
set
record
file
queue
stack
tree

Data type
The most popular division distinguish primitive types, also known as
built-in types or basic types and composite types — types composed of
basic types.
As a primitive types we consider:

numerical type (e.g. integer, floating-point number, fixed-point
number)
character type (alphanumeric symbols)
boolean type

As a composite types (also known as data structures) we consider:
array
dictionary
set
record
file
queue
stack
tree

Data type
The most popular division distinguish primitive types, also known as
built-in types or basic types and composite types — types composed of
basic types.
As a primitive types we consider:

numerical type (e.g. integer, floating-point number, fixed-point
number)
character type (alphanumeric symbols)
boolean type

As a composite types (also known as data structures) we consider:
array
dictionary
set
record
file
queue
stack
tree

Data type
The most popular division distinguish primitive types, also known as
built-in types or basic types and composite types — types composed of
basic types.
As a primitive types we consider:

numerical type (e.g. integer, floating-point number, fixed-point
number)
character type (alphanumeric symbols)
boolean type

As a composite types (also known as data structures) we consider:
array
dictionary
set
record
file
queue
stack
tree

Data type
The most popular division distinguish primitive types, also known as
built-in types or basic types and composite types — types composed of
basic types.
As a primitive types we consider:

numerical type (e.g. integer, floating-point number, fixed-point
number)
character type (alphanumeric symbols)
boolean type

As a composite types (also known as data structures) we consider:
array
dictionary
set
record
file
queue
stack
tree

Data type
The most popular division distinguish primitive types, also known as
built-in types or basic types and composite types — types composed of
basic types.
As a primitive types we consider:

numerical type (e.g. integer, floating-point number, fixed-point
number)
character type (alphanumeric symbols)
boolean type

As a composite types (also known as data structures) we consider:
array
dictionary
set
record
file
queue
stack
tree

Data type
The most popular division distinguish primitive types, also known as
built-in types or basic types and composite types — types composed of
basic types.
As a primitive types we consider:

numerical type (e.g. integer, floating-point number, fixed-point
number)
character type (alphanumeric symbols)
boolean type

As a composite types (also known as data structures) we consider:
array
dictionary
set
record
file
queue
stack
tree

Data type
The most popular division distinguish primitive types, also known as
built-in types or basic types and composite types — types composed of
basic types.
As a primitive types we consider:

numerical type (e.g. integer, floating-point number, fixed-point
number)
character type (alphanumeric symbols)
boolean type

As a composite types (also known as data structures) we consider:
array
dictionary
set
record
file
queue
stack
tree

Data type
The most popular division distinguish primitive types, also known as
built-in types or basic types and composite types — types composed of
basic types.
As a primitive types we consider:

numerical type (e.g. integer, floating-point number, fixed-point
number)
character type (alphanumeric symbols)
boolean type

As a composite types (also known as data structures) we consider:
array
dictionary
set
record
file
queue
stack
tree

Data type
The most popular division distinguish primitive types, also known as
built-in types or basic types and composite types — types composed of
basic types.
As a primitive types we consider:

numerical type (e.g. integer, floating-point number, fixed-point
number)
character type (alphanumeric symbols)
boolean type

As a composite types (also known as data structures) we consider:
array
dictionary
set
record
file
queue
stack
tree

Examples of array usage
Ada:
-- definition of array type
type TableType is array(1 .. 100) of Integer;
-- variable definition of specyfic array type
MyTable : TableType;

Visual Basic:
Dim a(1 to 5,1 to 5) As Double
Dim MyIntArray(10) As Integer
Dim MySingleArray(3 to 5) As Single

Examples of array usage
C:
char my_string[40];
int my_array[] = {1,23,17,4,-5,100};

Java:
int [] counts;
counts = new int[5];

PHP:
$first_quarter = array(1 =>’January’,’February’,’March’);

Python:
mylist = ["List item 1", 2, 3.14]

Example of dictionary usage
Python:
d = {"key1":"val1", "key2":"val2"}
x = d["key2"]
d["key3"] = 122
d[42] = "val4"

Methods of algorithm description

Natural language
(theoretically) easy to write (enumerate actions)
problems with implementation

block diagram or flowchart (also spelled flow-chart and flow chart)
high clarity
reflect structure of algorithm pointing out all branches (decisions
points)
problems with implementation

pseudocode
facilitate implementation
not so clear as natural language or flowchart

Methods of algorithm description

Natural language
(theoretically) easy to write (enumerate actions)
problems with implementation

block diagram or flowchart (also spelled flow-chart and flow chart)
high clarity
reflect structure of algorithm pointing out all branches (decisions
points)
problems with implementation

pseudocode
facilitate implementation
not so clear as natural language or flowchart

Methods of algorithm description

Natural language
(theoretically) easy to write (enumerate actions)
problems with implementation

block diagram or flowchart (also spelled flow-chart and flow chart)
high clarity
reflect structure of algorithm pointing out all branches (decisions
points)
problems with implementation

pseudocode
facilitate implementation
not so clear as natural language or flowchart

Methods of algorithm description

Natural language
(theoretically) easy to write (enumerate actions)
problems with implementation

block diagram or flowchart (also spelled flow-chart and flow chart)
high clarity
reflect structure of algorithm pointing out all branches (decisions
points)
problems with implementation

pseudocode
facilitate implementation
not so clear as natural language or flowchart

Methods of algorithm description
Natural language

Euclidean algorithm

Consider the Euclidean algorithm (also called Euclid’s algorithm) which is
an algorithm to determine the greatest common divisor (GCD) of two
positive integers.

1. Consider two positive integer numbers: a i b.
2. If b = 0 then go to step 3., else:

2.1. If a > b then a := a− b.
2.2. else b := b − a.
2.3. Go to step 2.

3. Return a as result.
4. The end

Methods of algorithm description
Natural language

Euclidean algorithm

Consider the Euclidean algorithm (also called Euclid’s algorithm) which is
an algorithm to determine the greatest common divisor (GCD) of two
positive integers.

1. Consider two positive integer numbers: a i b.
2. If b = 0 then go to step 3., else:

2.1. If a > b then a := a− b.
2.2. else b := b − a.
2.3. Go to step 2.

3. Return a as result.
4. The end

Methods of algorithm description
Natural language

Euclidean algorithm

Consider the Euclidean algorithm (also called Euclid’s algorithm) which is
an algorithm to determine the greatest common divisor (GCD) of two
positive integers.

1. Consider two positive integer numbers: a i b.
2. If b = 0 then go to step 3., else:

2.1. If a > b then a := a− b.
2.2. else b := b − a.
2.3. Go to step 2.

3. Return a as result.
4. The end

Methods of algorithm description
Natural language

Euclidean algorithm

Consider the Euclidean algorithm (also called Euclid’s algorithm) which is
an algorithm to determine the greatest common divisor (GCD) of two
positive integers.

1. Consider two positive integer numbers: a i b.
2. If b = 0 then go to step 3., else:

2.1. If a > b then a := a− b.
2.2. else b := b − a.
2.3. Go to step 2.

3. Return a as result.
4. The end

Methods of algorithm description
Natural language

Euclidean algorithm

Consider the Euclidean algorithm (also called Euclid’s algorithm) which is
an algorithm to determine the greatest common divisor (GCD) of two
positive integers.

1. Consider two positive integer numbers: a i b.
2. If b = 0 then go to step 3., else:

2.1. If a > b then a := a− b.
2.2. else b := b − a.
2.3. Go to step 2.

3. Return a as result.
4. The end

Methods of algorithm description
Natural language

Euclidean algorithm

Consider the Euclidean algorithm (also called Euclid’s algorithm) which is
an algorithm to determine the greatest common divisor (GCD) of two
positive integers.

1. Consider two positive integer numbers: a i b.
2. If b = 0 then go to step 3., else:

2.1. If a > b then a := a− b.
2.2. else b := b − a.
2.3. Go to step 2.

3. Return a as result.
4. The end

Methods of algorithm description
Natural language

Euclidean algorithm

Consider the Euclidean algorithm (also called Euclid’s algorithm) which is
an algorithm to determine the greatest common divisor (GCD) of two
positive integers.

1. Consider two positive integer numbers: a i b.
2. If b = 0 then go to step 3., else:

2.1. If a > b then a := a− b.
2.2. else b := b − a.
2.3. Go to step 2.

3. Return a as result.
4. The end

Methods of algorithm description
Flowchart — symbols

Symbols
beginning and the end
block of instructions
decision/condition
link
read/write

Methods of algorithm description
Flowchart — symbols

Symbols
beginning and the end
block of instructions
decision/condition
link
read/write

Methods of algorithm description
Flowchart — symbols

Symbols
beginning and the end
block of instructions
decision/condition
link
read/write

Methods of algorithm description
Flowchart — symbols

Symbols
beginning and the end
block of instructions
decision/condition
link
read/write

Methods of algorithm description
Flowchart — symbols

Symbols
beginning and the end
block of instructions
decision/condition
link
read/write

Methods of algorithm description
Flowchart — symbols

Symbols
beginning and the end
block of instructions
decision/condition
link
read/write

Methods of algorithm description
Flowchart — rules

Rules
1 blocks are linked by oriented lines (ended by arrow)
2 always we performe either all instructions in block or none
3 subsequent operations not depend on previous unless the

dependence are transmited with the use of data
4 the order of performing operation is strictly determine by oriented

lines
5 into each blocks leads only one line
6 lines can be joined into one in point called meeting point

Methods of algorithm description
Flowchart — rules

Rules
1 blocks are linked by oriented lines (ended by arrow)
2 always we performe either all instructions in block or none
3 subsequent operations not depend on previous unless the

dependence are transmited with the use of data
4 the order of performing operation is strictly determine by oriented

lines
5 into each blocks leads only one line
6 lines can be joined into one in point called meeting point

Methods of algorithm description
Flowchart — rules

Rules
1 blocks are linked by oriented lines (ended by arrow)
2 always we performe either all instructions in block or none
3 subsequent operations not depend on previous unless the

dependence are transmited with the use of data
4 the order of performing operation is strictly determine by oriented

lines
5 into each blocks leads only one line
6 lines can be joined into one in point called meeting point

Methods of algorithm description
Flowchart — rules

Rules
1 blocks are linked by oriented lines (ended by arrow)
2 always we performe either all instructions in block or none
3 subsequent operations not depend on previous unless the

dependence are transmited with the use of data
4 the order of performing operation is strictly determine by oriented

lines
5 into each blocks leads only one line
6 lines can be joined into one in point called meeting point

Methods of algorithm description
Flowchart — rules

Rules
1 blocks are linked by oriented lines (ended by arrow)
2 always we performe either all instructions in block or none
3 subsequent operations not depend on previous unless the

dependence are transmited with the use of data
4 the order of performing operation is strictly determine by oriented

lines
5 into each blocks leads only one line
6 lines can be joined into one in point called meeting point

Methods of algorithm description
Flowchart — rules

Rules
1 blocks are linked by oriented lines (ended by arrow)
2 always we performe either all instructions in block or none
3 subsequent operations not depend on previous unless the

dependence are transmited with the use of data
4 the order of performing operation is strictly determine by oriented

lines
5 into each blocks leads only one line
6 lines can be joined into one in point called meeting point

Methods of algorithm description
Flowchart — rules

Rules
1 blocks are linked by oriented lines (ended by arrow)
2 always we performe either all instructions in block or none
3 subsequent operations not depend on previous unless the

dependence are transmited with the use of data
4 the order of performing operation is strictly determine by oriented

lines
5 into each blocks leads only one line
6 lines can be joined into one in point called meeting point

Methods of algorithm description
Flowchart — the Euclidean algorithm

Flowchart of the Euclidean algorithm

Statements
Pseudocode does not actually obey the syntax rules of any particular
language. There is no systematic standard form, although any particular
writer will generally borrow the appearance of a particular language.
Popular sources include C, Java, PHP, Python etc. Details not relevant
to the algorithm (such as memory management code) are usually
omitted. Blocks of code, for example code contained within a loop, may
be described in a one-line natural language sentence.
We will use the following notation

assignment statement
x:=y;
age:=12.6;
name:="Piotr";

Statements
Pseudocode does not actually obey the syntax rules of any particular
language. There is no systematic standard form, although any particular
writer will generally borrow the appearance of a particular language.
Popular sources include C, Java, PHP, Python etc. Details not relevant
to the algorithm (such as memory management code) are usually
omitted. Blocks of code, for example code contained within a loop, may
be described in a one-line natural language sentence.
We will use the following notation

assignment statement
x:=y;
age:=12.6;
name:="Piotr";

Statements
block (block of statements)
begin

block consist of
instructions/statements

end

Statements
if statement (condition)
if (CONDITION) then if (CONDITION) then
begin begin

TRUE TRUE
end end

else
begin

FALSE
end

CONDITION — expression which is true or false, e.g.
x=7
x>12
x>12 and y<3
x=5 and (y=1 or z=2)

TRUE (FALSE) — block performed when condition is true (false)

Statements
do-while and while statement (loop)
do while (CONDITION)
begin begin

instructions instructions
end end
while (CONDITION);

Statements
for statement (loop)
for i:=1 to 10 step 1 do
begin

instructions
end

for i in NAME do
begin

instructions
end

NAME — variable represented list, dictionary, queue, set etc.

Function
Function as a black box for doing defined task.

function call:
FunctionName(arguments);
x:=Function(arg1,arg2,arg3);

definition of a function (body of a function):
function FunctionName(arguments)
begin

statements/instructions
return returnedValue;

end

Function
Function as a black box for doing defined task.

function call:
FunctionName(arguments);
x:=Function(arg1,arg2,arg3);

definition of a function (body of a function):
function FunctionName(arguments)
begin

statements/instructions
return returnedValue;

end

Function
Function as a black box for doing defined task.

function call:
FunctionName(arguments);
x:=Function(arg1,arg2,arg3);

definition of a function (body of a function):
function FunctionName(arguments)
begin

statements/instructions
return returnedValue;

end

Iteration and recursion

Iteration
Iteration (lat. iteratio) is an action of repeting (often many times) the
same instruction or block of instructions.

Recursion
Recursion (lat. recurrere, going back) means a function or definition
calling itself.

Iteration and recursion

Iteration
Iteration (lat. iteratio) is an action of repeting (often many times) the
same instruction or block of instructions.

Recursion
Recursion (lat. recurrere, going back) means a function or definition
calling itself.

The iteration method of factorial
n! = 1 * 2 * 3 * ... * n

The recursive method of factorial
n! = n * (n-1)!

The factorial
function SilniaI(n) function SilniaR(n)
begin begin

i:=0; if (n=0) then
s:=1; begin
while (i<n) do return 1;
begin end

i:=i+1; else
s:=s*i; begin

end return n*SilniaR(n-1);
return s; end

end end

The iteration method of factorial
n! = 1 * 2 * 3 * ... * n

The recursive method of factorial
n! = n * (n-1)!

The factorial
function SilniaI(n) function SilniaR(n)
begin begin

i:=0; if (n=0) then
s:=1; begin
while (i<n) do return 1;
begin end

i:=i+1; else
s:=s*i; begin

end return n*SilniaR(n-1);
return s; end

end end

The iteration method of factorial
n! = 1 * 2 * 3 * ... * n

The recursive method of factorial
n! = n * (n-1)!

The factorial
function SilniaI(n) function SilniaR(n)
begin begin

i:=0; if (n=0) then
s:=1; begin
while (i<n) do return 1;
begin end

i:=i+1; else
s:=s*i; begin

end return n*SilniaR(n-1);
return s; end

end end

Tree of recursion calls for 4!
5*SilniaR(4)
. |
. 4*SilniaR(3)
. . |
. . 3*SilniaR(2)
. . . |
. . . 2*SilniaR(1)
. . . . |
. . . . 1*SilniaR(0)
. |
. <-------1
. |
. . . . <-------1*1
. . . . |
. . . <-------2*1
. . . |
. . <-------3*2
. . |
<---------4*6
|
24

Definition of Fibonacci numbers
For any n > 1 we define

fibn = fibn−1 + fibn−2.

Term 1. and 0. takes 1 as its value.

The recursive method of computing Fibonacci sequence
function FibR(n)
begin

if (n=0 or n=1) then
begin

return 1;
end

return FibR(n-1)+FibR(n-2);
end

Definition of Fibonacci numbers
For any n > 1 we define

fibn = fibn−1 + fibn−2.

Term 1. and 0. takes 1 as its value.

The recursive method of computing Fibonacci sequence
function FibR(n)
begin

if (n=0 or n=1) then
begin

return 1;
end

return FibR(n-1)+FibR(n-2);
end

Time

Tree of recursion calls for 5th term of Fibonacci sequence
FibR(5)

|
+--FibR(4)
| |
| +--FibR(3)
| | |
| | +--FibR(2)
| | | |
| | | +--FibR(1)
| | | +--FibR(0)
| | |
| | +--Fib(1)
| |
| +--FibR(2)
| |
| +--FibR(1)
| +--FibR(0)
+--FibR(3)

|
+--FibR(2)

...

Number of calls
0 1 12
1 1 14
2 3 16
3 5 18
4 9 20 21891
5 15 22
6 25 24
7 41 26
8 67 28
9 109 30 2692537

10 177 32
34
36
38
40

The iteration method of computing Fibonacci sequence
function FibI(n)
begin

i:=1;
x:=1;
y:=1;

while (i<n)
begin

z:=x;
i:=i+1;
x:=x+y;
y:=z;

end

return x;
end

	Algorithm
	Data processing
	A data structure
	Methods of algorithm description

