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Abstract
Conventional clustering techniques provide a static snapshot of

each vector’s commitment to every group. With additive datasets,
however, existing methods may not be sufficient for adapting to the
presence of new clusters or even the merging of existing data-dense
regions. To overcome this deficit, we explore the use of growing neu-
ral gas for temporal clustering and provide evidence that this new
algorithm is capable of detecting cluster structures that incremen-
tally emerge.

1. Introduction

Humans have the distinct advantage of efficiently differentiat-
ing between unlike objects while simultaneously categorizing simi-
lar ones. Computers, too, can be endowed with similar capabilities
in the form of unsupervised clustering methods. During exploratory
data analysis, a set of objects, X = {~x1, ..., ~xn}T ⊂ Rs, is orga-
nized into c self-similar subsets based upon an underlying similarity
measure. Though there are a myriad of different measures, the most
developed of these involves optimizing the relationship between the
spatial location of a prototype set, V = {~v1, ..., ~vc} ⊂ Rs, and the
set of objects, such that each ~vj captures a compact representation of
a clusters structure. Due to its prevalence, many well-known meth-
ods fall into this model, with some that extend the prototypical set
to include linear varieties and hyperspherical shells [1]. However,
many of these techniques have two critical shortcomings: they are
reliant on a specified cluster count and the produced c-partition is
localized in time.

Given an unlabeled, temporally growing dataset, Xt =
{~xt

1, ...} ⊂ Rs, are there any mechanisms that can automatically
determine the number of clusters while succinctly evolving a mem-
bership partition, U(Xt) = [uj,i]ct×nt , j ∈ Rct , i ∈ Rnt , as
new data is introduced? Without a priori knowledge of the data dis-
tribution, various tendency assessment algorithms, such as cluster
validity metrics [1] or any the recently emerged batch of visually-
based measures [2], can be executed to return an estimate, cest, of
the number of coherent groups. In addition, at least one determin-
istic approach, the unsupervised fuzzy partition optimum number of
classes, is capable of learning the value of cest, in an online fashion,
by coalescing a fuzzy maximum likelihood estimate with the fuzzy
c-means algorithm [1]. But, none of these methods are sufficient
for temporal applications, as the results are static and cannot adapt
to new data without re-executing the algorithm. To satisfy these
dynamic needs, concepts from the realms of competitive Hebbian
learning, adaptive resonance theory (ART) [3], and computational
geometry can be married to form a new algorithm capable of explor-
ing hyperspace and autonomously segmenting groupings of objects.
We, henceforth, refer to this neurally-inspired scheme as growing
neural gas clustering (GNGC), since the spirit of the approach stems
from growing neural gas [4].

To understand how these neuronal forces can be harnessed to
automatically cluster incrementally added data, a brief canvass of
growing neural gas (GNG) is presented in Sec. II. This leads into
the formulation of a GNG framework for temporal exploratory data
analysis of hyperspherical, hypershellular and hyperplanar struc-
tures. To empirically verify that the new method functions appropri-
ately, Sec. III introduces the list of conducted experiments, discusses
the results, and summarizes the findings. This segues into Sec. IV,
which concludes the construction of this new tool.

2. Neuronal Clustering

As an excellent tool for topological learning, growing neural gas
parallels earlier, biologically influenced, methods for signal approxi-
mation. The modus operandi of this approximation, or vector quanti-
zation (VQ), is to encode each manifold,M ⊆ Rs, of signals using a
set, W = {~w1, ..., ~wm} ⊂ Rs, of reference vectors. For GNG, this
is facilitated by adapting the best-matching ~wk, and its connected
neighbors on a dynamic lattice structure, for each presented input
stimulus. Since there are no explicit constraints on the neural nets
topological arrangement, new connections can be forged, between
arbitrary, non-connected ~wk’s, based upon the induced magnitude
response of each ~wk’s receptive fields. In addition, obsolete connec-
tions are allowed to die out, due to an ‘aging’ factor. Combined with
the lack of any parameter decay and the ability to iteratively add new
neuronal reference vectors to the network, these algorithmic facets
enable GNG to locate and approximate a gamut of data structures.

While primarily founded as a method for VQ, the applications
of GNG are not bound solely to this domain and can instead flow
over into analogous areas. Consequently, the algorithm is particu-
larly attractive for temporal clustering, due to its incremental style
of learning, which can be extended to handle additive data and adapt
U(Xt) accordingly. Many additional benefits can also be unearthed
and reaped from this approach, such as the capability to determine
ct, in an online fashion, without the need for a minimal representa-
tion of the class distribution at initialization or the concurrent exe-
cution of any cluster validity techniques. This contrasts with earlier
attempts to address the clustering of temporal inputs in the form of
data streams [5-6] and speech signals [7-8]. Furthermore, GNG can
be tweaked to function even when the entire dataset grows beyond
the limits of physical memory, as unnecessary data vectors can be
pruned and partially accounted for via VQ. Embodying these as-
pects, among others, into GNGC, requires only a few novel exten-
sions of the base GNG algorithm, which we elucidate in Alg. 1.

Similar to the standard GNG algorithm in [4], GNGC begins by
randomly initializing two reference vectors, ~w1, ~w2 ⊂ Rs, which
are connected together via an undirected graph edge with an age of
zero. After generating the references, a random datum, ~xt

i , is se-
lected from the temporally added dataset, Xt, and compared to the

978-1-4244-2175-6/08/$25.00 ©2008 IEEE



Algorithm 1: Growing Neural Gas Clustering

Input: Xt ⊂ Rs: temporally growing dataset; wmax ∈ N∗: max.
number of reference vectors; amax ∈ N∗: max. arc age; εb,
εn ∈ R+: distance scalars; α, β ∈ R+: error scalars; λ ∈ N∗:
iteration counter; σ ∈ N∗: reference increment counter, γ ∈ R+:
distance threshold

Data: U(Xt): partition matrix; W: a list of references; wcur ∈ N∗:
current number of reference vectors; wcon: a list of reference
connections, connection ages and connection errors

Initialize W with two references, at random locations bounded by
Xt, with an error of zero; Create an arc between the two references, in
wcon, and set its age to zero; Set wcur = 2

while new data available or waiting for new data do
if σ new data vectors have been appended to Xt then

Increment wmax

Randomly select an input data vector, ~xt
i ∈ Xt

Find the two closest reference vectors, ~wk1 , ~wk2 ∈W, w.r.t. ~xt
i

if ||~xt
i − ~wk1 ||2 ≥ γ and wcur < wmax then
Spawn new reference, ~wr , at ~xt

i
Create arc, with age zero, between ~wr and ~wk1
Initialize error of ~wr , in wcon, with the new error of ~wk1

else
Increment the age, in wcon, of all arcs emanating from ~wk1
Increase the error, in wcon, of ~wk1 by ||~wk1 − ~xt

i||2
Move ~wk1 and its topological neighbors, ~wkn , towards ~xt

i :
∆~wk1 = εb

(
~xt

i − ~wk1

)
, ∆~wkn = εn

(
~xt

i − ~wk1

)
if ~wk1 and ~wk2 are connected by an arc then

Set age of arc, in wcon, between ~wk1 and ~wk2 to 0
else

Create arc between ~wk1 and ~wk2 , in wcon, with age 0

Remove any arcs, in wcon, with age greater than amax

if exists, in wcon, any ~wk with no emanating arcs then
Remove ~wk from W and its entry in wcon; Decrement wcur

if λ iterations have executed and wcur < wmax then
Determine the reference vector, ~wq , with the max. error
Increment wcur; Insert a new reference vector, ~wr , into W,

halfway between ~wq and its neighbor, ~wf , with the largest
error: ~wr = 0.5(~wq + ~wf )

Insert arcs, in wcon, connecting ~wq to ~wr and ~wr to ~wf

Scale the errors of ~wq and ~wf , in wcon, by α
Initialize error of ~wr , in wcon, with the new error of ~wq

Scale the errors of all references, in wcon, by β
Compute non-Hamiltonian path of all arcs, in wcon, via a

depth-first search; Increment the number of clusters, c, for each
path

for j = 1 to c do
if number of ~wk’s in path j less than s+ 1 then

Find ~vj as mean of ~wk’s in path j; Produce a fuzzy
(1) or possibilistic (2) U(Xt) with dj,i in (5)

else
Calculate the convex hull of the ~wk’s [9]
Determine the shape of the jth cluster; Estimate the

mean, ~vj ; Produce a fuzzy (1) or possibilistic (2)
U(Xt) with dj,i from (3)-(5)

Increment iteration counter

current set of reference vectors in W. The two nearest references,
~wk1 , ~wk2 , with respect to ~xt

i , are then found using a specified dis-
tance metric. To adapt the topology of the dynamic reference graph,
so that it better matches M , a check is performed to ascertain if
the distance between ~wk1 and ~xt

i is greater than some user-specified
threshold, γ. If the conditional evaluates to true, then ART is in-
voked and a new reference, ~wr , is spawned at ~xt

i and connected to
~wk1 via an undirected graph edge with an age of zero. This approach

not only helps to increase the stability of previously learned clusters
but also promotes plasticity for exploring forming structures. How-
ever, if the distance is less than γ, then the regular GNG reference
update is performed.

While spatial reference adaptation is important for incrementally
learning M , it is also critical that new reference nodes are succes-
sively introduced and connected to the existing network. Provided
that the number of iterations is an integer multiple of some user-
selected λ, and that the current number of ~wk’s,wcur, is less than the
maximum number of references, wmax, a new node is inserted. This
is facilitated by finding the ~wk with the highest amount of accumu-
lated error, ~wq , and creating a new reference, ~wr , halfway between
it and its connected neighbor with the highest accumulated error. To
aid in learning new topologies, the maximum number of references
is allowed to grow as a function of Xt.

The largest difference, however, in comparison to the GNG al-
gorithm, is from the latter part of Alg. 1, whereby the cluster type
recognition and partition generation are fully automated, provided
the number of ~wk’s in path j is greater than the dataset dimensional-
ity. A depth-first search (DFS) is performed, up front, to isolate non-
connected neural topologies. This subsequently triggers the convex
hull computation, of the DFS path, which yields a convex polytope,
Pj ∈ Rs. At this point, if there is a priori knowledge concerning
the structure types, a decision can be made by the user as to whether
clustering should be carried out for hyperspheres, hypershells or hy-
perplanes. If this knowledge is not available, then the eigenvalues
of the covariance matrix for Pj are found. Using this piece of in-
formation, it is easy to discern a measure of “flatness” for Pj , as
hyperlinear, and approximately hyperlinear, structures will have at
least one eigenvalue that is centered closely about zero. A simple
threshold check can be carried out, and if any eigenvalue is less than
a small, user selected threshold, then Pj is assumed to be hyper-
linear; otherwise, it is assumed to span all dimensions in s and thus
should be considered a non-linear manifold. Density testing can then
be performed to distinguish between shellular and spherical groups.
This check, for hyperspherical clusters, depends on the veracity of:
nP
aP

> ψ, where nP is the number of data vectors inside Pj , which
is found by using an extension of the Jordan-Brouwer theorem [9],
aP the surface area of Pj , and ψ a user-specified threshold. Simi-
larly, if nP

aP
≤ ψ, the cluster is assumed to be hypershellular.

After the shape of the cluster has been determined, and the cluster
prototypes found, the memberships of the points are calculated. For
the hyperspherical case, the mean of the points in the polytope is
calculated, and a fuzzy or possibilistic partition is computed via:

uj,i =
(∑c

q=1 (dj,i/dq,j)
2

m−1

)−1

, ∀j, i

uj,i ∈ [0, 1] ∀j, i,
∑c

j=1 uj,i = 1 ∀i
(1)

uj,i =
(
1 +

(
d2

j,i/ηj

) 1
m−1

)−1

, ∀j, i

uj,i ∈ [0, 1] ∀j, i,
∑n

i=1 uj,i ≤ n ∀i,maxi uj,i > 0

(2)

where dj,i is the distance from ~xt
i to the jth prototype, m ≥ 1 a

degree of fuzzification and ηj ≥ 0 the distance at which the mem-
bership of a point becomes 0.5 [1]. For hypershellular clusters, the
cluster centroid, ~vj , is estimated as the barycenter of Pj and U(Xt)
is formed using either (1) or (2), with radial distance measure:

d2
j,i =

(
||~xt

i − ~vj ||Aj − 1
)2 ||~xt

i − ~vj ||2

||~xt
i − ~vj ||2Aj

(3)



whereAj is a positive, definite, symmetric matrix accounting for the
eccentricity and orientation of the hypershell [3]. The value of Aj ,
for this equation, is approximated by finding the Löwner hyperel-
lipsoid, of the convex polytope Pj , using the Khachiyan algorithm
[10]. Likewise, points in hyperplanar structures are assigned mem-
bership using (1)-(2), where:

d2
j,i = ||~xt

i − ~vj ||2A −
s∑

k=1

〈~xt
i − ~vj ,~bj,k〉2A (4)

is the orthogonal distance from xt
i to the jth variety, in Rs, and A

is an arbitrarily defined positive, definite, symmetric weight matrix
[1]. In (4), ~vj is approximated as the barycenter of Pj , while~bj,k is
estimated by finding the eigenvectors of the neuronal references that
model the linear variety. Finally, for point-cloud (hyperspherical)
clusters, dj,i is found as:

d2
j,i = ||~xt

i − ~vj ||2 (5)

where ~vj is either the mean of the data enclosed by Pj , if the convex
hull can be computed, or the mean of the reference vectors in the jth

path.

2.1. High Dimensional Visualization

When working with low dimensional data, say X ⊂ R3, it is
easy to display intermittent GNGC results, such as those in Fig. 1(a).
However, if the dimensionality of the dataset grows beyond R3,
capturing the same spatial information and visualizing the learned
distributions is problematic. To rectify this issue, several conven-
tions were borrowed from the visual assessment of [cluster] ten-
dency (VAT) algorithm [13]. In VAT, a matrix, R = [rj,i]n×n, of
normalized, pair-wise dissimilarity values, are ordered using a mod-
ified variant of Prim’s algorithm for finding a minimal spanning tree
(MST). After the sorting process, if the matrix is displayed as an in-
tensity image then cluster structure is indicated by the presence of
dark blocks along the main diagonal.

By modifying the VAT approach, to instead use information ob-
tained from GNGC, we can create images like those in Fig. 1(b)
and 1(c). These plots, which we call neuronal dissimilarity images
(NerDI) [12], are generated by first computing the normalized, pair-
wise dissimilarity of the neurons in each isolated graph. Utilizing
Prim’s modified MST process, the dissimilarities are rearranged, for
each path, which aids in looking for dense, intra-cluster distribu-
tions of neurons. Each of these sub-matrices are then colored and
placed along the main diagonal of the NerDI. Inter-cluster spatial
relationships are also incorporated in the image by finding the mini-
mal distance between the neurons in each path; these values are then
normalized so that white denotes the largest distance between two
clusters, in Rs, and black the smallest. Finally, volume or cluster-
ness [13] information can be added, as a third dimension, to provide
additional insight about the approximated manifolds.

3. Experiments and Results

To test the effectiveness of growing neural gas clustering, and
its ability to temporally cluster a variety of cluster types, a com-
plex synthetic dataset was generated. Applications with real-world,
high dimensional data can be found in Sledge et. al [12] and Sledge,
Keller and Alexander [14].

(a) Synthetic data with learned ~wk’s and colored convex hulls

(b) Corresponding neuronal dis-
similarity image for (a)

(c) NerDI with normalized poly-
tope volume information

Figure 1: GNGC results showing four clusters, along the main diagonal of (b)
and (c), and the spatial similarities between the learned distributions, using
gray-scale values. In (b) and (c), the purple cluster is near the green cluster,
somewhat close to the blue planar cluster, and far from the red spherical
cluster. In (c), the purple cluster has the smallest convex polytope volume.

3.1. Synthetic Dataset Experiment

In the preceding section, a claim was made that GNGC could
not only detect incrementally emerging object-data clusters, but also
determine the structures overall shape. For validating this assertion,
a 1050-point dataset, Xt

1 ⊂ R3, was created to contain all three
cluster structure types. Over a span of 5000 iterations, 75% of the
data was incrementally fed to the GNGC algorithm, with the remain-
ing 25% later introduced to illustrate cluster merging. To drive the
clustering process, the following parameters are used: wmax = 30,
amax = 15, εb = 10−1, εn = 10−4, α = 10−2, β = 10−4,
λ = 50, σ = 10, γ = 2, m = 1.5, and ηj as twice the average
distance from the cluster center to each vertex of Pj .

Once a small fraction of the 756 data points were introduced
to the system, the neuronal reference vectors began to adapt to the
forming distributions, as shown in Fig. 2(a). After a total of 7500 it-
erations, the average neuronal error planed, denoting that the struc-
tures were sufficiently approximated by the ~wk’s, and a confident
measure of the memberships, U(Xt

1), was computed. Comparing
the color-coded values of U(Xt

1), shown in Fig. 2(b), with its cor-
responding data distribution plot, it is apparent that the GNGC al-
gorithm noted the presence of three spatially dense regions. Addi-
tional evidence was also provided, by the algorithm, that the shel-
lular (red), spherical (green), and planar (blue) regions in Fig. 2(b)
were properly classified via the autonomous shape detection scheme.

While GNGC appears to be working, one disconcerting phe-
nomenon was the moderately high memberships, in the planar clus-
ter, for the points in the spherical distribution. Since the orthogo-
nal distance metric should bias against non-collinear structures, the
overall membership for these points should be significantly damp-
ened. But, upon delving into the problem, it was determined that
the combination of a high value for ηj , the nature of the possibilistic
function, and the close proximity of the two clusters produced the



(a) Temporal plots, and the corresponding NerDIs, of the GNGC clustering results for the first part of the three shapes dataset. As more data is
added to Xt

1, the ~wk’s, shown using green spheres, adapt their location and connectivity to better model the data. Note that the third and fourth
NerDI plots highlight a high dissimilarity between the ~wk’s in the red colored convex hull.

(b) Partial data plot with convex hulls (c) Emergence of a new cluster (shown in purple) (d) Amalgamation of two clusters (shown in green)

Figure 2: Growing neural gas clustering results and cluster memberships for the synthetic shapes dataset.

effect. Had fuzzy memberships instead been found and displayed,
these erratic fluctuations would have been far less pronounced.

Knowing that all of the algorithms components were function-
ing properly, a set of 150 new vectors was injected, randomly, into
Xt

1. This resulted in the formation of a new spherical class, which
is denoted in Fig. 2(c) using a magenta color. Despite the spatial
propinquity of the green and magenta regions, the GNGC algorithm
noted the increase in the cluster count and adapted U(Xt

1) accord-
ingly. At this point, the remaining 120 object data were iteratively
interposed, between the green and magenta clusters, to bridge the
two regions. GNGC subsequently updated both the dynamic net-
work, to reflect the topological change illustrated in Fig. 2(d), and
U(Xt

1), as the overall cluster count decreased. As with the previous
results, those in Fig. 2(c)-(d) met our expectation.

4. Conclusions

In this paper, we introduced a method for temporal clustering
of additive datasets using a modified GNG approach. Unlike pre-
vious research, GNGC requires no a priori information about the
data, such as an estimate of the number of clusters or cluster shape.
Instead, our autonomous implementation will discern this pertinent
information during execution.

Although the results, thus far, have been favorable, there are sev-
eral extensions that can be considered to improve the usability of
our algorithm. Foremost, temporal information can be fused with
the approach to provide a different style of learning. As well, the
automatic cluster shape classification scheme can be generalized to
recognize norm induced shells [1]. To increase the stability of previ-
ously learned clusters, an ART-centric scheme could be adopted and
the reference position updating portion of the algorithm removed.
Finally, we are currently expanding the work to include temporal
labels and heuristics.
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