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Abstract 
This report aims to explain and experiment with the Growing Neural Gas 
algorithm, some problems are discussed and some modifications are 
suggested for future work. The GNG-U, which is a version of GNG that 
handles moving distributions is explained and experimented with as well. The 
SGNG or supervised-GNG algorithm for constructing Radial Basis Function 
Networks is explained and experimented with. A minor comparison between 
SGNG and GNG+RBF is performed and the result suggests that GNG+RBF 
performs equally well. A long-term problem with the SGNG algorithm is 
discussed and some improvements to SGNG are suggested. 
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1 Introduction 
Clustering can be described as the process of organizing a collection of k-
dimensional vectors into groups whose members share similar features in some 
way. Each such group is represented by a k-dimensional vector called a code-
vector (other names used are centre and node). The goal of clustering is to reduce 
large amounts of raw data by categorizing in smaller sets of similar items. The 
most common clustering algorithm is the K-means clustering algorithm by 
MacQueen [1], another algorithm widely used for vector quantization is 
Kohonen’s Self Organizing Map (SOM) [2] and the Neural Gas algorithm 
described by Martinetz and Shulten [3]. 
 
In some cases little or no information is available about the input distribution or 
the size of the input data set, in these cases it is hard to determine a priori the 
number of nodes to use, such is the case in Kohonen’s Self Organising Map and in 
the Neural Gas algorithm and also in classical K-means clustering. 
 
This report describes in detail and explains an incremental clustering algorithm 
called Growing Neural Gas (GNG) by Bernd Fritzke. Numerous experiments are 
conducted on the GNG algorithm and later analysed. The GNG algorithm only 
has parameters that are constant in time and since it is incremental, there is no 
need to determine the number of nodes a priori. The issue of when GNG should 
stop is discussed shortly. Also described, discussed and experimented with are 
two derivatives of the GNG algorithm, the GNG-U and SGNG algorithms by the 
same author. GNG-U is a variation of GNG that is able to track non-stationary 
distributions by relocating less useful nodes, this is done by maintaining a local 
utility measure in each node, and performing relocations based on this measure. 
The final algorithm, SGNG, is presented in detail together with a short description 
of a Radial Basis Function network. SGNG can be described as a supervised 
variation of the GNG algorithm, a fusion of a slightly modified GNG with a 
Radial Basis Function (RBF) network. It is a method for building RBF networks 
in an on-line fashion, using the network squared-error to guide node insertions. 
 
Finally, a short design overview of a C++ implementation of the three algorithms 
is presented together with a short user manual. 
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2 Growing Neural Gas 

2.1 Introduction to Growing Neural Gas 
In order to facilitate the understanding of the GNG algorithm, some basic 
concepts will first be introduced briefly. Firstly, clustering, the goal of which is to 
locate groups of similar data-items, and sometimes finding the number of groups 
or to cluster data-items into a predefined number of groups in the best possible 
way. Vector Quantization (VQ) is the process of quantizing n-dimensional input 
vectors to a limited set of n-dimensional output vectors referred to as code-
vectors. The set of possible code-vectors is called the codebook. The codebook is 
usually generated by clustering a given set of training vectors (called training set), 
the codebook is then used to quantize input vectors. 
 
The second and third concept is Voronoi diagrams and the Delaunay triangulation 
illustrated in figure 2.1. 
 

    
 (i)  (ii) (iii)  (iv) 
Figure 2.1 (i)6 Nodes in R2. (ii)The Voronoi diagram. (iii) The Delaunay triangulation. (iv) both 
the Delaunay triangulation and the Voronoi diagram. 
 
For the sake of argument, assume there exists five vectors in R2 as depicted in 
figure 2.1(i) and that we refer to these vectors as nodes. The Voronoi diagram has 
the property that for each node every point in the region around that node is closer 
to that node than to any of the other nodes. The Delaunay triangulation is the 
graph where nodes with a common Voronoi edge are connected by an edge (see 
Fig. 2.1 (iii). Alternately, it can be defined as a triangulation of the nodes with the 
additional property that for each triangle of the triangulation, the circumcircle of 
that triangle does not contain any other nodes. These two closely related data 
structures have been found to be among the most useful data structures of the field 
of Computational Geometry.  
 
Now that these concepts have been introduced, we proceed with the introduction 
of the Growing Neural Gas (GNG) algorithm [4]. The GNG algorithm, published 
by Bernd Fritzke, is an unsupervised incremental clustering algorithm. Given 
some input distribution in Rn, GNG incrementally creates a graph, or network of 
nodes, where each node in the graph has a position in Rn. GNG can be used for 
vector quantization by finding the code-vectors in clusters. In GNG these code-
vectors are represented by the reference vectors (the position) of the GNG-nodes. 
It can also be used for finding topological structures that closely reflects the 
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structure of the input distribution. GNG is an adaptive algorithm in the sense that 
if the input distribution slowly changes over time, GNG is able to adapt, that is to 
move the nodes so as to cover the new distribution.  
 
Starting with two nodes the algorithm constructs a graph in which nodes are 
considered neighbours if they are connected by an edge. The neighbour 
information is maintained throughout execution by a variant of competitive 
Hebbian learning (CHL) [5], that is,  

 
For each input signal x  an edge is inserted between 
the two closest nodes, measured in Euclidian distance. 

 
The graph generated by CHL is called the “induced Delaunay triangulation” and 
is a sub-graph of the Delaunay triangulation corresponding to the set of nodes. 
The induced Delaunay triangulation optimally preserves topology in a very 
general sense [5]. CHL is an essential component of the GNG algorithm since it is 
used to direct the local adaptation of nodes and insertion of new nodes. 
 
GNG only uses parameters that are constant in time. Further, it is not necessary to 
decide on the number of nodes to use a priori since nodes are added incrementally 
during execution. Insertion of new nodes ceases when a user defined performance 
criteria is met or alternatively if a maximum network size has been reached. 

2.2 Growing Neural Gas  
The GNG algorithm assumes that each node k consists of the following: 
 

• kw  - a reference vector, in Rn. 

• errork - a local accumulated error variable. 
• A set of edges defining the topological neighbours of node k. 
 

The reference vector may be interpreted as the position of a node in input space. 
The local accumulated error is a statistical measure that is used for determining 
appropriate insertion points for new nodes. Further, each edge has an age variable 
used to decide when to remove old edges in order to keep the topology updated. 
This is necessary since the nodes are moved; an action that might affect how CHL 
would generate the topology. 
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 (i) 2 nodes, 500 iterations  (ii) 3 nodes, 1000 iterations (iii) 50 nodes, 50000 iterations 
 
Figure 2.2. An illustration of the GNG algorithm. (i) The state of the GNG algorithm after 500 
iterations, one node is located in the left most data cluster, the other node is oscillating between 
the top most and bottom most data clusters. (ii) After 1000 iterations, a third node has been 
inserted and the nodes now cover the three data clusters. (iii) After 50000 iterations, 50 nodes are 
spread out over the three data clusters matching the topology. 

2.2.1 GNG Pseudo-Code 
INIT: Create two randomly positioned nodes, connect them with a zero age edge 
and set their errors to 0. 

• Generate an input vector x  conforming to some distribution. 
 

• Locate the two nodes s and t nearest to x , that is, the two nodes with 

reference vectors sw  and tw  such that 
2

xws −  is the smallest value and 
2

xwt −  is the second smallest, for all nodes k. 

 
• The winner-node s must update it’s local error variable so we add the 

squared distance between sw  and x , to errors 

  

 
2

xwerrorerror sss −+←  (1) 

 
• Move s and it’s topological neighbours (i.e. all nodes connected to s by an 

edge) towards x  by fractions e
w
 and e

n
 of the distance. [ ]1,0, ∈nw ee  

 
 )( swss wxeww −+←  (2.1) 

 )(),( sNeighbournwxeww nnnn ∈∀−+←  (2.2) 
 

• Increment the age of all edges from node s to its topological 
neighbours.  (3.1) 

 
• If  s and t are connected by an edge, then set the age of that 

edge to 0. If they are not connected then create an edge 
between them.  (3.2) 
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• If there are any edges with an age larger than a

max then remove 

them. If, after this, there are nodes with no edges then remove 
these nodes.  (3.3) 

 
• If the current iteration is an integer multiple of λ and the maximum node-

count has not been reached, then insert a new node. Insertion of a new 
node r is done as follows: 

o Find the node u with largest error. 
o Among the neighbours of u, find the node v with the largest error. 
o Insert the new node r between u and v as follows: 

 

 
2

)( vu
r

ww
w

+
←  (4) 

o Create edges between u and r, and v and r, and then remove the 
edge between u and v. 

o Decrease the error-variables of u and v and set the error of node r. 
 

 uu errorerror ×← α  (5.1) 

 vv errorerror ×← α  (5.2) 

 ur errorerror ←  (5.3) 
 

• Decrease all error-variables of all nodes j by a factor β.  
 

 jjj errorerrorerror ×−← β  (6) 

 
• If the stopping criterion is not met then repeat. The criterion might be for 

example the performance on a test set is good enough, or a maximum 
number of nodes has been reached, etc. 

 

2.3 GNG Explained 

2.3.1 The Local Accumulated Error 
In (1) the local error is updated. Updating the error with the squared distance to 
the input is a way of detecting nodes that cover a larger portion of the input 
distribution. The local error is a statistical measure and nodes that cover a larger 
portion of the input distribution will have a faster growing error than other nodes, 
statistically. Large coverage is equivalent to larger updates of the local error, since 
inputs at greater distances will be mapped to the node. Since we want to minimize 
the errors, knowing where the error is large is useful when inserting new nodes. In 
(6) a global decrease of all local errors is performed, the reason for this is to give 
recent errors greater influence and to keep the local errors from growing out of 
proportion. 
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2.3.2 Node Movements 
Equations (2.1) and (2.2) deal with node movements, or the adaptation of centres. 
The principle is the same for both the winner node and its neighbours. Figure 2.3 
shows the idea behind the movement of the winner-node.  

 
 Figure. 2.3, Winner node movement 
 
The winner-node s is translated along the scaled difference vector ( )swx − . The 

scaling amount is denoted ew and is a value between 0 and 1. The movement is 
linear, and the further the node is from the input the greater distance it will be 
translated. This is also true for the neighbour movement. However, the neighbour 
translation vector is normally scaled with a constant (en) much smaller than ew, 
which results in a smoother behaviour. The ew and en parameters should not be set 
too high as this will result in a very unstable graph where the nodes move around 
too much. Setting them too low will make the adaptation slow and ineffective. 
Experimenting with these values has lead to the following boundary-values, 
values greater than ew = 0.3 are considered big and ew = 0.05 is a normal value, 
meaning it performs well under most conditions. A normal value for en is 0.0006 
or at preferably one to two orders of magnitude smaller than ew. However, these 
values vary with the input distribution and the other parameters, see the 
experiments in section 2.4. 

2.3.3 Edges and the Induced Delaunay Triangulation 
Since the nodes are slowly being moved around, they may cause the current 
construction of the Delaunay triangulation to become invalid. The Delaunay 
triangulation is a slowly moving target as a direct result of the nodes being 
moved. A local aging process is used to invalidate edges that are not part of the 
Delaunay triangulation. This is done in (3.1). In (3.2) we create or update the 
edges in a CHL fashion. Edges that are updated have their age reset to 0, this is 
done to indicate that those edges still belong the current Delaunay triangulation 
and thus preventing them from being removed for now. In (3.2) we remove edges 
that should not be included in the Delaunay triangulation. They are identified by 
the fact that they are too old, which means CHL have not detected any correlated 
activity in amax steps. If the removal of an edge results in a node with no edges, 
then it is a so-called dead node and it is safe to remove it. 

2.3.4 Node Insertion 
In GNG, nodes are inserted in a fixed interval manner. Every λth iteration a new 
node is inserted between the node with the largest error and its neighbour with the 
largest error. Having a fixed insertion rate policy might not always be desirable, 

sw  

x

)( sws wxew −+ sw  
x



7 

since it may lead to unnecessary or untimely insertions. A desirable insertion 
policy might perhaps be based directly on the local errors or a global mean error. 
For instance, a threshold constant could be used such that when the mean squared 
error is larger than the threshold, a new node is inserted. Another alternative is a 
combination of fixed insertion and error based insertion. 
  
In the case of fixed insertion rate, the λ parameter has significant impact on the 
performance of the algorithm. Setting it too low will result in poor initial 
distribution of nodes, since the statistical local error will be badly approximated 
and since the nodes have not had a chance to distribute themselves over the input 
space. One consequence of using a very low λ is that the mean error will decrease 
rapidly in the beginning. But, in the long run it will take many more iterations to 
reach the same low mean error we would reach with a “normal” λ value. The 
reason is that the nodes must adapt for a longer period to allow them to cover the 
input distribution better, since they were placed without the proper statistics. 
A too low value of λ also increases the risk of nodes becoming inactive nodes, 
meaning nodes that will not adapt any more since they are not close enough to the 
inputs. Inactive nodes are a waste of resources, which also implies that in the 
above scenario we might never reach the same low mean error since we do not 
have enough active nodes. Setting the λ parameter too high, on the other hand, 
will result in slow growth and requires the algorithm to run for many iterations, 
however nodes will be well distributed. 
 
When inserting a new node, (4) specifies that it should receive the interpolated 
position of the node u with the largest accumulated error and the neighbouring 
node v with the largest accumulated error. Since we want to minimize the error, 
placing the new node at the median position will naturally decrease the Voronoi 
regions (the coverage) of both u and v and thus contribute to the minimisation of 
their future errors.  
 
The subsequent decrease of the error variables of nodes u and v, (5.1) and (5.2), is 
motivated by the argument that when the new node has been inserted the current 
local errors of u and v are invalidated. This makes sense as the new node has 
assumed some of the coverage of the input distribution from both u and v and 
since the error in essence represents the coverage of the node (see 2.3.1), it is now 
invalid. Another reason for decreasing the errors is to prevent the next node 
insertion from occurring in the same region. If more nodes need to be inserted in 
this region, the errors will reflect this eventually. However, to what extent it 
should be decreased is not easy to say and most likely depends on the other 
parameters as well as the input distribution.  
 
The particular initialisation-value of the error of the new node in (5.3) is not easy 
to motivate mathematically. It is given the newly decreased error of node u [4], 
 
  uu errorerror ×← α .  
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Initialising the error in this fashion is a way of approximating the error of the new 
node, had it been present as long as its “parent”. Further, it seems the importance 
of the details regarding the initialisation of the new error are not to be over-
emphasized. In the DemoGNG v1.5 implementation [6] and in SGNG [7] the new 
error is initialised as the mean of erroru and errorv. 

2.4 Experiments with GNG 
Experiments will be conducted with the purpose is of illustrating some of the 
aspects of the GNG algorithm. All experiments are performed using the 
implementation described in section 6, and specifically the (5.3) error 
initialisation was chosen to be the same as in DemoGNG v1.5 [6]. In the 
following experiments all GNG mean-errors are computed every 500th iteration, 
as the mean of the 500 latest errors (squared distances) between inputs and 
winner-nodes. 
 
A Discrete Distribution 
Figure 2.4.1, illustrates how GNG successfully finds the topological structure of a 
discrete stationary input distribution. As can be observed the mean error 
decreases, as the nodes are adapted to the input distribution. The mean error, 
displayed in figure 2.4.2 reached a minimum that was approximately 0.0022. 
 

   
 (i) iteration 1 (ii) iteration 10000 (iii) iteration 40000 
 
Figure 2.4.1. Three states of GNG using a discrete input distribution of 613 two-dimensional 
points between (–1,-1)...(1,1) (i) is GNG at the start state, (ii) is after 10000 iterations, with 35 
nodes and (iii) is after 40000 iterations, with a total of 100 nodes. 
 

 
Parameters used: 
max-nodes = 100 
λ = 300 
α = 0.5 
amax = 100 
e

w
 = 0.05 

e
n
 = 0.0006 

β =  0.0005 
 

Figure 2.4.2. The mean local-error. 
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A Jumping Distribution 
Figure 2.4.3 illustrates the inactive-node scenario that occurs with rapidly moving 
distributions. Most of the nodes are positioned during the first 19999 iterations. 
When the distribution jumps (at 20000 iterations) almost all nodes are left behind 
and become a inactive nodes. A few nodes are inserted after that point but most of 
the resources of the network are wasted, given the distribution does not revisit any 
region close to these nodes in the future. The lowest mean reached was 
approximately 0.00247, and after the jump approximately 0.0143. Figure 2.4.4 
represents the mean error. 
 

   
 (i) iteration15000 (ii) iteration 25000 (iii) iteration 35000 
 
Figure 2.4.3 Three states of GNG using a non-stationary input distribution of two-dimensional 
points equally distributed, first in the ranges (-1,0.65)…(-0.65,1) and after 20000 iterations  
(0.65,-1)…(1,-0.65). (i), The state after 15000 iterations, with 27 nodes. (ii), The state after 25000 
iterations, with 40 nodes. (iii), The state after 35000 iterations, with 40 nodes. 

 
 
Parameters used: 
max-nodes = 40 
λ = 600 
α = 0.5 
amax = 100 
e

w
 = 0.05 

e
n
 = 0.0006 

β =  0.0005 
 
 
 
 

Figure 2.4.4 The mean local-error. Notice how the error spikes at iteration 20000, which is where 
the distribution jumped. The following new minimum is due to the 34 inactive nodes not 
contributing anything, and 6 nodes is not enough to lower the error to the same level as before. 
 
A Slowly Moving Distribution 
Figure 2.4.5 illustrates the ability of GNG to track a slowly moving distribution. 
Due to the slow change in the distribution, all 30 nodes can be adapted 
sufficiently to avoid being left behind. The net achieves a lowest mean oscillating 
slightly around 0.00155, figure 2.4.6 is the mean error. 
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 (i) iteration 80000 (ii) iteration 190000 (iii) iteration 320000 
 
Figure 2.4.5 Three states of GNG tracking a non-stationary, slowly moving, input distribution of 
two-dimensional points equally distributed in the range (-0.25, -0.25)…(0.25, 0.25) and then 
translated so as to move slowly along the inside of the edges of the square (-1,-1) to (1,1). The 
centre of the distribution is moved by 0.00000,8 in the described manner, each iteration. (i), The 
state after 80000 iterations, with 30 nodes. (ii), The state after 190000 iterations, with 30 nodes. 
(iii), The state after 320000 iterations, with 30 nodes.  

 
Parameters used: 
max-nodes = 30 
λ = 600 
α = 0.5 
amax = 100 
e

w
 = 0.05 

e
n
 = 0.002 

β =  0.0005 
 
 
 
 
 

Figure 2.4.6 The mean local-error, notice that although the error oscillates slightly it is still quite 
low. The net reached its max node-count at iteration 16800, and after that, the mean error is 
oscillating slightly around 0.00155. 
 
 
Fixed Insertion-Rate Problems 
Figure 2.4.7 illustrates the problem caused by using too low a value for the λ 
parameter. The discrete distribution from figure 2.4.1 (λ=300) was chosen and the 
same parameters used, except for the λ parameter, which was set λ=5. It can be 
seen how the error decreased rapidly at first, but how it fails to reach the same low 
values as in 2.4.2. We can also see some inactive nodes that are unable to 
contribute anything since they are cut-off from the rest of the net and will never 
receive any inputs. These are the main problems that may occur when using a too 
low a value of λ. On the other hand, if we accept a slightly higher mean error, 
using a low λ, has the advantage of dropping quite fast to quite a low level, but 
the disadvantage of utilising unnecessarily many nodes for that error-level. 2.4.8 
is the mean error graph. It reaches 0.0038 at about 12500 iterations using the 
maximum allowed 100 nodes, whereas 2.4.2 reaches that same error-level at about 
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21000 iterations using only 70 nodes. After that point however, the roles change, 
2.4.8 reaches 0.0035 at about 25000 iterations using 100 nodes whereas 2.4.2 
reaches the same level at about 22500 iterations using just 75 nodes. 
 

   
 (i) iteration 20000 (ii) iteration 100000 (iii) iteration 300000 
 
Figure 2.4.7, illustrates the insertion-rate problem. The same parameters and distribution as in 
figure 2.4.1 were used except for λ=5. (i), after 20000 iterations, we can se clearly that the nodes 
are distributed poorly, some are nodes are not covering the input distribution very well. (ii), after 
100000 iterations, some nodes still have not adapted sufficiently. (iii), finally after 300000 
iterations, all active nodes have adapted to the input distribution, unfortunately 6 inactive nodes 
exist as a result of the low λ. 
 

 
Figure 2.4.8, The mean error, although it decreases rapidly at first, it takes quite many iterations 
before it reached the similar low-level as in 2.4.2. After 10000 iterations the error is at 
approximately 0.00439, and in 2.4.2 it is 0.01066. After 40000 iterations it is approximately 
0.00309, and in 2.4.2 it is 0.00212. After 100000 iterations the error is approximately 0.00277, 
and as can be seen on the graph the error does not decrease much after that, in fact it never 
decreases below 0.00245, and remains between 0.00245 and 0.00288. Parameters used: 
max-nodes = 100, λ = 5, α = 0.5, amax = 100, e

w
 = 0.05, e

n
 = 0.0006, β =  0.0005. 
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2.5 Summary and Discussion 
GNG only uses parameters that are constant in time. Further, because of the 
incremental nature of GNG, it is not necessary to decide on the number of nodes 
to use a priori. This is an important feature compared to, for example, the k-means 
clustering algorithm, since several trials may be required to determine an 
appropriate number of centres to use. With GNG, insertion of new nodes 
continues until some user defined performance criteria are met or alternatively if a 
maximum network size has been reached. 
 
The properties mentioned above make GNG an attractive candidate for problems 
where we know nothing or little about the input distribution, cases where deciding 
on network size and decaying parameters is very difficult or impossible. 
 
The GNG algorithm is best suited to handle stationary distributions or slowly 
moving distributions. Applying GNG to a rapidly changing distribution with no 
repetition is very wasteful, in the sense of number of nodes needed, since most 
nodes will be left behind and will rarely or never contribute. 
 
There are variations to the GNG algorithm not covered in this report that might be 
interesting to try. For example, standard GNG is based on linear movements of 
nodes, but one might try using non-linear movements, even gravity-inspired 
movements. In the latter scenario, inputs would be analogous to gravity wells, 
pulling the nodes closer in accordance with the laws of gravity. 
  
Another minor variation is to draw the positions of the first two nodes directly 
from the input distribution instead of randomising them. This probably has little 
effect in the long run, since the nodes will adapt. However it might affect the very 
early results. 
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3 GNG with Utility Factor 

3.1 Introduction to GNG with Utility Factor 
The desire for tracking non-stationary distributions has given rise to GNG with 
Utility factor (GNG-U), published by Bernd Fritzke [8].  As you can tell by the 
name, it is a derivative of the GNG algorithm, published by the same author, 
which we discussed in section two. 
 
The greatest weakness of the GNG algorithm is its inability to adapt to rapidly 
changing distributions. The GNG-U algorithm on the other hand, is designed to 
handle these scenarios by relocating less useful nodes. In essence, what GNG-U 
does is remove nodes that contribute little to the reduction of error, in favour of 
inserting them where they would contribute more to the reduction of the error. 
However, a carelessly set utility-factor affects the behaviour of the algorithm. 

3.2 GNG with Utility Factor 
The difference between the GNG and the GNG-U algorithm is not great but its 
impact on ability/performance is significant.  
 
GNG-U is based on the same assumptions as GNG with the addition of:  
 

• For all nodes n, we include a local variable, the utility Un of that node. 
 
The modifications of the pseudo-code are minor. 
 

• In GNG step 3 after the local error of node s has been updated we now add 
the update rule for the utility Us of the winner-node s. 

 
 stss errorerrorUU −+←  

 
• In GNG step 7 nodes that have no edges are deleted. In GNG-U however, 

the removal criterion is based on other factors. Remove node i with the 
smallest utility Ui if 

 

 k
U

error

i

j >  

 
 where j is the node with the greatest error and k is a constant parameter. 

We remove node i if the utility falls below a certain fraction of the error. 
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• In GNG step 8 we add a new node. The utility of the new node r is 
initialised to the mean of Uu and Uv.

1 
 

 
2

vu
r

UU
U

+←  

 
• In GNG step 9 the utility is decayed for all nodes in the same manner as 

the error and with the same decay constant. 
 
 kkk UUU ×−← β  

 
 

3.3 GNG-U Explained 

3.3.1 The Utility Update Rule  
The utility-update is the direct increase in squared error for an input signal x  if 
the winner-node s was non-existent. In this case, the input would be mapped to the 
second closest node t and the increase in error for that particular signal x  would 
be 

 

stss

stss

errorerrorUU

wiwiUU

−+←
⇔

−−−+← 22

 

 
The utility is updated each iteration for the winner-node s. This yields an 
approximation of how much a particular node j decreases the error of the input 
signals in its region. Removing a high-utility node, compared to a low-utility 
node, means the increase in error in that region will be greater. The utility of a 
node becomes small either when the neighbours are very close or when the node 
rarely or never wins (since the utility is decayed). 

3.3.2 Removal Criterion and Utility 
As described above the utility of a node approximates the increase in error from 
removing that node. Further, the expected decrease in error by inserting a new 
node near the node j, with the greatest error, is some fraction of errorj. To 
determine if the error can be reduced by relocating the node i, with the lowest 
utility Ui, to the vicinity of node j we check if U

i
 falls below a certain fraction of 

errorj. The constant k decides the minimum size of that fraction. 
 
The constant k defines how sensitive the removal should be, a small k gives rise to 
frequent deletions and consequently fewer nodes are left behind. There is also the 

                                                
1 Note that the utility-variables of nodes u and v are not decreased in the same fashion as the error-
variables are, in fact they are left perfectly intact. This is commented on in 3.3.3 
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risk of a low k keeping the total number of nodes very low since it might relocate 
nodes when kUerror ij >  occurs, simply because k is too small. Explanation by 

example, assume we have a distribution where each input has equal probability. 
Assume the nodes are spread equally over the inputs. The ratio error/U will 
average some fairly stable value in this scenario. If k is sufficiently less then that 
value, nodes will be removed and relocated even though there was a “good” 
distribution of nodes, se figure 3.1(i). The reason being that k was too small. The 
purpose is to identify ratio-spikes, this purpose is subverted if k is too small. 
 

  
 (i) too small a value of k (ii) a good k value 

Figure 3.1 An illustration of the k-value problem. The horizontal line 
represents the k value and the jagged line is the error/U ratio. This is a 
simplification to facilitate explaining the phenomenon. 

 
A large k on the other hand, causes less frequent deletions. In fact, the constant k 
can be seen as a measure of how much “memory” GNG-U should have.  

3.3.3 Utility Initialisation for New Nodes 
Fritzke does not define the initialisation of the utility variable for a new node. 
However, in the DemoGNG v1.5 implementation [6] it is defined as the mean of 
U

u
 and U

v
. Note also that there is no mention of a decrease of the utilities of nodes 

u and v corresponding to the error decrease in GNG after a new node has been 
inserted. It stands to reason that the utilities of u and v should be decreased in the 
same manner as the errors. This is something to test in future implementations. 

3.4 Experiments on GNG-U 
The purpose of these experiments is to illustrate some of the aspects of the GNG-
U algorithm. The mean errors are computed every 500th iteration, as the mean of 
the 500 latest errors (squared distances) between inputs and winner-nodes. 
 
Relocation of nodes 
Figure 3.4.1 illustrates how GNG-U successfully relocates nodes in a jumping 
distribution scenario. Figure 3.4.2 is the mean error. 
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 (i) iteration 15000 (ii) iteration 25000 (iii) iteration 35000 
 
Figure 3.4.1 Three states of GNG using a non-stationary input distribution of two-dimensional 
points equally distributed, first in the ranges (-1,0.65)…(-0.65,1) and after 20000 iterations  
(0.65,-1)…(1,-0.65). (i), The state after 15000 iterations, with 39 nodes. (ii), The state after25000 
iterations, with 13 nodes.(iii), the state after 35000 iterations, with 38 nodes. 
 

 
 
Parameters used: 
max-nodes = 40 
λ = 400 
α = 0.5 
amax = 100 
e

w
 = 0.05 

e
n
 = 0.0006 

β =  0.0005 
k = 3.0  
 
 
 

Figure 3.4.2 The mean error. At 20000, the distribution jumps and we consequently get an 
increase in mean error. As the GNG-U algorithm removes the inactive (useless) nodes they are 
available to be placed where the distribution is located after the jump and the mean error can be 
decreased to the same level as before the jump. 
 
The utility boundary k (low and high) 
To illustrate how the k parameter influences the behaviour of the GNG-U 
algorithm, a moving distribution has been chosen. In figure 3.4.3, a high value of 
the k parameter will be used to illustrate the “memory phenomenon” and in figure 
3.4.5, a low value will be used to illustrate frequent deletions. The mean errors are 
found in 3.4.4 and 3.4.6 respectively. 
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 (i) iteration 15000 (ii) iteration 30000 (iii) iteration 45000 
 
Figure 3.4.3, Three states of GNG-U tracking a non-stationary down-up moving, input distribution 
of two-dimensional points equally distributed in the range (-0.25, -0.25)…(0.25, 0.25) and then 
translated so as to move along a vertical path, down then up etc. The centre of the distribution is 
moved by 0.0001 in the described manner each iteration. (i), The state after 15000 iterations, with 
27 nodes. (ii), The state after 30000 iterations, with 36 nodes. (iii), The state after 45000 
iterations, with 37 nodes. As can be seen, a trail of nodes are left dragging behind the distribution, 
this is a result of the high k-parameter value. The number of nodes vary between 27 and 52. 

 
 
Parameters used: 
max-nodes = 60 
λ = 600 
α = 0.5 
amax = 100 
e

w
 = 0.09 

e
n
 = 0.006 

β =  0.0005 
k = 200.0  
 
 

Figure 3.4.4. The mean error. The unevenness of the error depends on nodes being relocated and 
on the motion of the distribution. 
 

   
 (i) iteration 15000 (ii) iteration 30000 (iii) iteration 45000 
 
Figure 3.4.5. Three states of GNG-U tracking a non-stationary down-up moving, input distribution 
of two-dimensional points equally distributed in the range (-0.25, -0.25)…(0.25, 0.25) and then 
translated so as to move along a vertical path, down then up etc. The centre of the distribution is 
moved by 0.0001 in the described manner each iteration. (i), The state after 15000 iterations, with 
20 nodes. (ii), The state after 30000 iterations, with 17 nodes. (iii), The state after 45000 
iterations, with 17 nodes. 
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Parameters used: 
max-nodes = 60 
λ = 600 
α = 0.5 
amax = 100 
e

w
 = 0.09 

e
n
 = 0.006 

β =  0.0005 
k = 1.0  
 
 

Figure 3.4.6 The mean error. The unevenness of the error depends on nodes being relocted and on 
the motion of the distribution. The error is slightly higher here than in 3.4.4, since fewer nodes are 
left in place due to the low value of the k-parameter. The number of nodes vary between 15 and 
20. 

3.5 Summary and Discussion 
GNG-U is good at tracking rapidly moving distributions, and can successfully 
relocate nodes to avoid wasting resources. GNG-U can be used with stationary 
distributions as well, but that is not the purpose of the algorithm and GNG 
performs equally good or better in these respects. Depending on what behaviour is 
valued more, low resource-waste or memory, the k-parameter should be set 
accordingly. It determines the deletion-sensitivity and can have a limiting effect 
on the total number of nodes used. 
 
Because of the similarities between GNG-U and GNG, the later parts of the 
discussion concerning GNG in section 2.5 also apply to GNG-U. 
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4 Radial Basis Function Networks 

4.1 Introduction to RBF Networks 
An Artificial Neural Network (ANN) can be described as a massively parallel 
system consisting of simple interconnected processing units [9]. There are many 
types of ANNs but we will only cover the basics of the Radial Basis Function 
(RBF) network.  
 
The RBF network is a fully interconnected feed forward network with one hidden 
layer, see figure 4.1.  

 
Each node k in the hidden layer has a vector kµ  that determines the position of 

the node in input space and a standard deviation σk that defines the width of the 
local receptive field of node k. Each node in the hidden layer is connected to all 
other nodes in the output layer. Each connection has a weight, wij, which is a real 
value. The weights are updated during training and we refer to this adaptation as 
learning. The activation function of the hidden nodes, denoted )(xf i  in figure 4.1, 

can be any strictly positive radially symmetric function with a unique maximum at 
its centre kµ , but we will assume the Gaussian function is used, since it is the 

common case. 
 
When inputs are presented to the network, only the nodes that have the input 
within their receptive fields are activated. The level of activation depends on the 
distance to the input and decreases rapidly with increasing distance. The output 
layer consists of nodes with linear output functions. Further, each output node has 
a bias, which can be viewed as an extra weight w0k with the constant input 1. RBF 
networks are used in classification scenarios as well as in function approximation. 
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Figure 4.1, a Radial Basis Function Network with Gaussian hidden nodes. 

Input 
vector 



20 

4.2 Training 
Since the two layers in a RBF network perform different tasks, it is reasonable to 
separate their training. The separation is possible because of the local receptive 
field nature of the hidden units [10]. 
 
There are three main questions to answer in connection with the training of the 
hidden layer. How many hidden nodes do we need, what should the widths be and 
where should the nodes be placed. There are several methods designed to 
accomplish this to various degrees, typically the classical k-means algorithm is 
used as the clustering algorithm for the hidden layer. However, we will focus on 
the application of a slightly modified version of GNG as the clustering algorithm 
for the hidden layer. 
 
When the hidden units have been trained, all that remains is to train the output-
layer weights, which is done using the delta rule [10]. 
 
 jiiijij zydww )( −+← η  

 
where di is the desired response, yi is the actual response, η is the step-size and zj 
is the output from hidden node j (see figure 4.1). 
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5 Supervised GNG 

5.1 Introduction to Supervised GNG 
Supervised GNG or SGNG is described by Bernd Fritzke [7] as a new algorithm 
for constructing RBF networks. The SGNG algorithm can be described as an RBF 
network with a slightly modified version of the GNG algorithm as the method for 
constructing and managing the hidden layer. 
 

5.2 Supervised GNG 

5.2.1 Brief Description 
For the sake of argument, we will discuss only classification and not function 
approximation, the general discussion that follows however, applies equally to 
both cases and when this is not the case, it will be pointed out.  
 
Assume we want to classify n-dimensional vectors into M classes. Assume further 
that we code our outputs in a one-out-of-M fashion, this means we will have one 
output node for each class, and that the output-node with the greatest value is the 
only one considered in each response from the RBF network. Training is done by 
presenting pairs of input and expected output vectors. 
 
As in GNG, we start with two randomly positioned nodes that are connected by a 
neighbour edge. Note that the edge has no weight, since it is not part of the actual 
RBF network, but represents the fact that two nodes are neighbours, as in GNG. 
The neighbour information is maintained in the same manner as in GNG, by 
application of competitive Hebbian learning (CHL). The adaptation of the hidden 
nodes is also performed in the same manner as in the GNG algorithm, the winner 
node s is moved some fraction of the squared distance to the input, and the 
neighbours of s are moved an even smaller fraction of their squared distance to the 
input. The two most notable differences, the local error updates and the insertion 
criteria are discussed later. 

Figure 5.1 depicts a SGNG-network, it is a regular RBF network with a modified 
version of the GNG algorithm as the clustering algorithm for the hidden layer. 
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5.2.2 SGNG Pseudo-Code 
Let the input vector be denoted ),...,( 1 nxxx = . 

Let the desired output vector be denoted ),...,( 1 Mddd = . 

Let the output vector of the output-layer be denoted ),...,( 1 Myyy = . 

Let σj be the standard deviation, or width, of the RBF node j. 
Let zi be the output from the hidden node i, and wij the weight from hidden node i 
to output node j. 
Let η  be the step-size. 
All weights are randomly initialised in the interval [-1,1]. 
 
INIT: Create two randomly positioned hidden-nodes, connected by an edge with 
age 0 and set their errors to 0. Randomly initialise the weights between these 
nodes and the output-nodes in the interval [-1,1]. 
 

• Generate an input vector x  conforming to some distribution, also let d  be 
the corresponding desired output vector. 

 
• Locate the two nodes s and t nearest to x , that is, the two nodes with 

reference vectors sw  and tw  such that 
2

xws −  is the smallest value and 
2

xwt −  is the second smallest, for all nodes. 

 
• Evaluate the net using the input vector x . Adjust the output-layer weights 

by applying the delta rule.  
 

 jiiijij zydww )( −+← η  

 
• The winning node s must update it’s local error variable so we add the 

squared error of the output 

  

 
2

yderrorerror ss −+←  (1) 

 
• Move s and it’s topological neighbours (i.e. all nodes connected to s by an 

edge) towards x  by fractions e
w
 and e

n
 of the distance. [ ]1,0, ∈nw ee  

 
 )( swss wxeww −+←   

 )(),( sNeighbouriwxeww inii ∈∀−+←  

 
• For each node j that was just moved, set the width of the RBF 

to the mean of the distances between j and all the neighbours of 
j. 
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• Increment the age of all edges from node s to its topological 

neighbours.   
 

• If s and t are connected by an edge, then set the age of that edge 
to 0. If they are not connected then create an edge of age 0 
between them.   

 
• If there are any edges with an age larger than a

max then remove 

them. If, after this, there are nodes with no edges then remove 
these nodes. Recalculate the mean RBF widths of the affected 
nodes.   
 

• If some insertion criteria is met then insertion of a new  (3) 
node r is done as follows: 

o Find the node u with largest error. 
o Among the neighbours of u, find the node v with the largest error. 
o Insert the new node r between u and v as follows: 

 

 
2

)( vu
r

ww
w

+=   

 
o Create edges between u and r, and v and r, and then remove the 

edge between u and v. 
o Recalculate the mean RBF widths of u, v and r. 
o Decrease the error-variables of u and v and set the error of node r. 

 
 5.0×← uu errorerror   

 5.0×← vv errorerror   

 5.0)( ×+← vur errorerrorerror  

 
o Initialise the weights, randomly in the interval [-1,1], from node r 

to all nodes in the output layer. 
 
 

• Decrease all error-variables of all nodes j by a factor β. This gives recently 
measured errors greater influence than older ones. 

  
 jjj errorerrorerror ×−← β   

 
• If the stopping criterion is not met then repeat the process.  (4) 
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5.3 SGNG Explained 

5.3.1 The Local Accumulated Error 
In SGNG, the local error is updated differently from in GNG. The local error of 
the winner node s is updated, in (1), with the squared output error of the RBF 
network, in other words the squared difference in real output and desired output.  
 
By observing the local accumulated squared errors, we can identify nodes that 
exist in regions of input space where many misclassifications occur. It is logical to 
assume that nodes with large local accumulated errors received patterns from 
different classes since if they did not, the delta rule, with a properly set η, would 
have successfully modified the output layer weights and the local accumulated 
errors would not have grown so high. In function approximation, the error 
consequently represents the need for more gaussians to allow better 
approximation of that particular function-interval. With this argument in mind, it 
would seem sensible to use the local error information when deciding possible 
locations of new nodes. Another approach could be to use gradient information to 
distribute the error amongst the hidden nodes. This will be discussed in section 
5.5. 

5.3.2 The Mean Distance and RBF Width 
As stated in the SGNG definition in [7] the widths of the RBF-nodes are set to the 
mean distance to their neighbours, a question that arises when reading this is how 
often the widths should be updated. Since this is not specified, a certain amount of 
freedom is given in this respect. In (2) we have chosen to update the widths of all 
nodes that have been affected each iteration. This is however not very economical 
in terms of execution time. Another approach is to update the widths every nth 
iteration, thus being able to control how closely we want to approximate the real 
mean widths, or one could use a discounting factor to allow the mean width to 
slowly adjust to its new values. However, such details will not be discussed in this 
report.  

5.3.3 Insertion of New Nodes 
The criteria for inserting new nodes, (3), could very well be a fixed insertion 
policy however a better method would be to observe the mean squared error per 
pattern or some independent validation set. If the squared error stops decreasing 
that can be interpreted as the delta rule and node movements not being able to 
adjust sufficiently to lower the error, this in turn means that for the current 
network size this is as good as it gets and that it is time to insert a new node. Of 
course, it could also be that the problem cannot be solved and that this is the 
reason for the error not dropping further. 
 
The newly inserted node r receives the interpolated position of its “parents” and 
the parents errors are reduced by 50%, this reduction was decided heuristically 
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since it is difficult to motivate theoretically [7]. The purpose is the same as in the 
GNG algorithm, to prevent the next insertion to occur in the same place. If more 
nodes need to be inserted in this region, the errors will reflect this eventually. 

5.3.4 Stopping Criteria 
The criteria for stopping, (4), could be defined as a maximum size that the 
network may reach. However, this is as difficult to do as for other RBF methods, 
because it requires knowledge about the distribution that we simply might not 
have. Another method is available to us because of the incremental nature of the 
algorithm. We can simply define a maximum error allowed, and train until the 
criterion is met. Yet, another approach that applies only to classification and not 
function approximation would be to have an upper limit on the allowed number of 
misclassifications. This is more practical in the classification case since the 
number of misclassifications converges towards lower values much faster than the 
error.  

5.3.5 General Notes and Observations 
The constant adjusting of widths continuously disrupts some of the training of the 
output-layer weights, and so does the insertions of new nodes. The disruption 
caused by the insertion of a new node is in no way surprising since additional 
input is added to the summation in the output nodes. In addition, when a new node 
is inserted, new random-valued weights are created to link the new node to the 
output layer. The new weights introduce unpredictable and almost certainly 
erroneous contributions before they are trained. 
 
Using SGNG in function approximation requires a larger number of iterations, 
since we want to achieve low errors, something not as essential in classification 
since we normally use decision thresholds to quantize the answers. Another point 
worth mentioning regarding function approximation, specifically interpolation of 
discretely sampled functions, is that the number of nodes used should be less than 
the number of samples. Since, otherwise we risk over-training the SGNG-net, it 
will start inventing erroneous values in between the samples that do not coincide 
with the real function-values we are trying to approximate. 

5.4 Experiments 
Three experiments will be presented to illustrate the ability of SGNG to handle 
some typical function approximation and classification tasks.  
 
The XOR function 
One of the standard benchmarks, the XOR problem in figure 5.4.1, can be solved 
by a SGNG net with one linear output. But, because of the adaptive nature of the 
algorithm, it is not practical to solve the XOR problem with just 2 nodes as they 
will be pulled back and forth between the four input ( (0,0), (1,0), (1,1), (0,1) ), 
each movement affecting the width of the RBFs. Using more than two nodes, for 
example 6, will introduce stability and reduce the lengths of the movements which 
in turn facilitates the training of the output layer weights. However, the XOR 
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function being a mapping ( ) ( ) ( ) ( ){ } }1,0{1,0,1,1,0,1,0,0 →  could equally well be, and 
is normally viewed as, a classification problem of two classes. In this experiment 
however, the function view was chosen since it illustrates the ability of SGNG to 
approximate a non-continuous function. 
 

   
  (i) iteration 1 (ii) iteration 300 (iii) iteration 800 
 
Figure 5.4.1 shows three states of the SGNG algorithm on the XOR problem. There are four inputs 
located at (1,1), (1,0), (0,1), (0,0), each iteration one of them is selected at random with equal 
probability. (i), the initial iteration. (ii), after 300 iterations, all nodes but one have been inserted 
and moved into place. (iii), after 800 iterations we have reached the accepted mean squared-error 
threshold 0.00001. 

 
Parameters used: 
max-nodes = 6 
λ = 100 
amax = 80 
e

w
 = 0.3 

e
n
 = 0.0006 

β =  0.0005 
η = 0.2 
error back-log = 100 
max-squared-error = 0.00001 

 
Figure 5.4.2 The mean error of the outputs of the SGNG net, calculated every 100th iteration. After 
800 iterations, the mean squared error is less than 0.00001. The mean error at 800 iterations is 
approximately 5.83613e-06. 
 
Two classes in a discrete distribution 
As an example of classification, we will use a discrete distribution with two 
classes depicted in figure 5.4.3. It is the same distribution as in Section 2.4, figure 
2.4.1. The class-membership is denoted by the colour.  
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Figure 5.4.3, shows the discrete 2-classes 613-point distribution from section 2.4, and the 
misclassification graph from the training session. The SGNG-RBF net could successfully classify 
2000 successive, randomly chosen, inputs after 12000 iterations using 120 nodes. The parameters 
used were: max-nodes = 120, λ = 800, amax = 120, e

w
 = 0.09, e

n
 = 0.0004, β = 0.02, η = 0.05, 

misclassification-back-log = 2000, allowed number of misclassification = 0, decision difference 
minimum = 0.0, decision min limit = 0.65. 
 
Comparison between SGNG and GNG in a classification scenario 
Having seen the SGNG performance in classifying the 613-point discrete 
distribution in figure 5.4.3, it is only natural to wonder how much the supervised 
error information really contributes to solving the classification problem. Figure 
5.4.4 shows the standard GNG applied to classification of the same distribution as 
in 5.4.3 and using the same parameters. The difference in the placement of nodes 
can be seen clearly. In 5.4.4 (GNG) the nodes are more evenly distributed than in 
5.4.3 (SGNG) where the density of nodes tend to increase in areas where it is 
difficult to classify the inputs. 
 

 
 
Figure 5.4.4, GNG (with RBF) shows the discrete 2-classes 613-point distribution from section 
5.4.3, and the misclassification graph from the training session. The GNG-RBF net failed to 
classify 2000 successive, randomly chosen, inputs after 300000 iterations using 120 nodes. The 
exact same parameters as in 5.4.3 were used. The minimum number of misclassifications reached 
was 1, which is quite good, however at 120000 iterations the misclassification count was 9 and the 
misclassification count oscillated around that value until the experiment was terminated at 300000 
iterations. 
 
To further illustrate the difference in node-placement between GNG and SGNG 
and to illustrate a long-term issue with SGNG, consider the discrete distribution in 
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figure 5.4.5, which has a sharp, jagged class-border. The distribution is presented 
in pairs, SGNG and GNG, at three different iterations.  
 

        
 (i) SGNG at 32000 iterations and 34 nodes (ii) GNG at 32000 iterations and 34 nodes 
 

        
 (iii) SGNG at 70000 iterations and 70 nodes (iv) GNG at 70000 iterations and 70 nodes 
 

        
 (v) SGNG at 145000 iterations and 70 nodes (vi) GNG at 145000 iterations and 70 nodes 
 
Figure 5.4.5. A uniform discrete distribution of 2520 points divided evenly into two classes. In 
each iteration, an input is randomly selected from the distribution in a uniform fashion. (i) and (ii) 
shows SGNG and GNG at 32000 iterations. (iii) and (iv) shows the SGNS and GNG at 70000 
iterations. The maximum number of nodes is reached at 68000 iterations. (v) and (vi) shows the 
states after 145000 iterations, it can be seen that SGNG and GNG have produced very similar 
node-placements. The parameters used were: max-nodes = 70, λ = 1000, amax = 60, e

w
 = 0.04, e

n
 

= 0.0001, β = 0.02, η = 0.03, misclassification-back-log = 5000, allowed number of 
misclassification = 0, decision difference minimum = 0.0, decision min limit = 0.65. 
 
After 32000 iterations we can see a distinct difference in the placement of nodes 
between 5.4.5(i) and 5.4.5(ii). In 5.4.5(i) SGNG places nodes near the jagged edge 
since that is where most of the misclassifications occur. In 5.4.5(ii), GNG places 
the nodes based on the local accumulated errors, which results in rather evenly 
placed nodes. These two different behaviours become even more announced at 
5.4.5(iii) and 5.4.5(iv). The maximum number of nodes is reached at 68000 
iterations at which point the supervised error-information ceases to affect the 
behaviour of SGNG because no more nodes are inserted and since the node-
movements are not based on the local accumulated error. After 145000 iterations, 
5.4.5(v) and 5.4.5(vi), it can be seen that SGNG and GNG have produced very 
similar node-placements, this is a result of the fact that no more nodes are being 
inserted and that both GNG and SGNG move nodes in the exact same manner. In 
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5.4.5(v) the nodes that were located about the jagged edge have been dragged 
away by the neighbouring nodes. 
 
Figure 5.4.5 illustrates what happens if SGNG iterates for a long time. In the long 
run, the nodes spread out evenly because each node is affected by its neighbours. 
This implies that the supervised information that SGNG uses to place nodes, will 
be lost if SGNG iterates for too long, the exact number of iterations depends on 
the e

w
 and e

n
 values which control the node-movements. An interesting point is 

that the SGNG and GNG performed approximately the same on this distribution. 
Figure 4.5.6 shows the misclassification graphs. 
 

 
 (i) Misclassification-graph of SGNG. (ii) Misclassification-graph of GNG. 
 
Figure 5.4.6. The misclassification-graphs of figure 5.4.5. Both graphs reach approximately the 
same low values. SGNG seems to reach lower values a little earlier than GNG. 
 
As a complement, a second distribution (figure 5.4.7) with a fuzzier class-border 
will serve to further illustrate the differences in placements of nodes by the two 
algorithms GNG and SGNG and to illustrate the SGNG behaviour after the 
maximum number of nodes is reached. 
 

   
(i) SGNG at 150000 iterations (ii)SGNG at 200000 iterations (iii) GNG at150000 iterations 

 
Figure 5.4.7. (i) SGNG at 150000 iterations with the maximum 120 nodes reached. (ii) SGNG at 
200000 iterations, the nodes have “floated out”. (iii) GNG at 150000 with the maximum 120 
nodes reached, GNG at 200000 iterations is extremely smilar to GNG at 150000 iterations, and is 
therefore not shown. The parameters used were: max-nodes = 120, λ = 800, amax = 70, e

w
 = 0.02, 

e
n
 = 0.0001, β = 0.0125, η = 0.03, misclassification-back-log = 5000, allowed number of 

misclassification = 0, decision difference minimum = 0.0, decision min limit = 0.65. 
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As can be seen in figure 5.4.7, the difference between SGNG and GNG at 150000 
iterations is considerable, SGNG concentrates nodes where the decision problem 
is difficult, and GNG places nodes as to correspond to the input distribution. 
However, as the number of iterations increase, SGNG converges towards the 
node-placement of GNG and at 200000 iterations a hint of this can be detected. 
The convergence will take longer in this experiment since the e

w
 parameter is set 

lower than in the previous experiment. The performance of the two was again 
rather equal as can be seen in the misclassification-graphs in figure 5.4.8 below. 
 

 
 (i) Misclassifications for SGNG (ii) Misclassifications for GNG 
 
Figure 5.4.8. The misclassification graphs for the SGNG (i) and GNG (ii) experiments from figure 
5.4.7. As can be seen their performance on the given task is close to equal. Again it can be seen 
that SGNG seems to reach lower values a little earlier than GNG, as can be observed in figure 
5.4.6. 
 
The Sinus Function 
In order to approximate the sinus function in the interval [0, 2π] a table of 100 
uniformly distributed samples with corresponding inputs is used. <input, output> 
pairs are then selected randomly with equal probability and presented to the 
SGNG-net. By experimenting with different values of the SGNG algorithm in 
connection with the sinus-approximation, the conclusion that rather a large value 
of the λ parameter is needed to get good placement of nodes. Figure 5.4.9 shows 
the sinus-approximation at three stages. 
 

 
 (i) iteration 12000, 4 nodes (ii) iteration 64000, 14 nodes 
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Parameters used: 
max-nodes = 28 
λ = 5000 
amax = 100 
e

w
 = 0.008 

e
n
 = 0.00005 

β =  0.0025 
η = 0.42 
error back-log = 200 
max-squared-error = 0.000004 
 

 (iii) iteration 144400, 28 nodes 
 
Figure 5.4.9 the sinus approximation at three stages. (i) 12000 iterations and 4 nodes. (ii) 64000 
iterations and 14 nodes. (iii) 144400 iterations and 28 nodes. 
 

 
Figure 5.4.10. The mean squared output-error. After 144400 iterations using 28 nodes, the error 
is below the threshold 4e-6. Looking closer at the error graph, spikes can observed at even 
intervals, these spike are due to the insertion of a new node, a result of the momentary disruption 
caused by the new untrained weights and the contribution of the new node’s output. 

5.5 Summary  
SGNG can be successfully applied to both classification and function 
approximation tasks. The parameter settings in function approximation are a bit 
sensitive compared to the classification scenario. In function approximation, we 
require the output-values to be closer to the desired output than we do in 
classification since in classification we code the desired output as one-out-of-M 
vector and accept the answer where the greatest value in the actual output is larger 
than some threshold. Naturally, this would depend on the complexity of the 
classification task. However, generally this would be true. 
 
A minor comparison was made between SGNG and GNG in the classification 
scenario. This comparison hints that the two approaches equal in performance. 
This comparison is not conclusive and suggested future work could be to more 
closely determine this, also, the comparison does not include the function 



32 

approximation scenario. In the task of classification, using SGNG instead of 
GNG, seem to be of little significance compared to the problem as a whole. GNG 
performs equally well in the experiments. SGNG reaches a lower 
misclassification-value earlier during execution but they both end up with 
approximately the same result.  
 
A problem occurs with the SGNG algorithm when iterating for too long. The 
explanation is that since node-movements are based only on proximity to inputs 
and have no connection to the supervised error information, SGNG tend to 
converge to similar node placements as GNG, after sufficient time. This means 
that the supervised error information that was used to place the new nodes is 
meaningless in the end. This raises questions about the purpose of SGNG, 
however more experiments need to be conducted to decide upon this matter 
conclusively. 
 
SGNG uses the supervised error information when updating the local error of only 
the winner-node. A future experiment might be to update the local errors using the 
derivative and to update not just the winner-node but also the rest of the nodes 
that contributed to the output. This would perhaps give a more complete and fair 
local-error update and in turn cause better placements of new nodes. However, 
this will not solve the long-term problem of SGNG converging towards GNG. 
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6 Implementation 

6.1 Introduction 
An implementation of the GNG, GNG-U and SGNG algorithms has been made in 
order to conduct experiments and investigate details of the various algorithms. 
C++ was the programming language chosen, mainly in order to allow fast object 
oriented code that would make testing new modifications easy and practical but 
also to allow incorporation of the code into other systems if the need arises. In 
general, the performance compared to the GNG implementation [6] is 
significantly better. 

6.2 General Design Overview 
A component-based approach was chosen in order to facilitate testing of new 
variants of parts of the algorithms. The GNG-U and SGNG implementations are 
built on the GNG implementation. GNG-U inherits GNG and overloads the 
appropriate methods with the addition of utility-specific methods. The SGNG 
implementation overloads only one method, the error update. All three algorithms 
are set up in the same way by means of plugging-in components that encapsulate 
desired behaviours. The next section will cover the different components by 
describing the set-up phase of any of the algorithm objects, simply “the algorithm 
object” since it is basically the same for all three. Figure 6.1 shows an overview of 
the design. 
 

 
Figure 6.1. A simplified but accurate illustration of object interdependencies in the general case. 
In the case of SGNG the Control object (RBFClassificationControl or RBFFunction-
ApproximationControl) would also own an RBFNetwork object. 

6.2.1 The Components 
As mentioned in the general design overview, a component-based approach was 
taken. Some of the behaviour has been encapsulated in different components, each 
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defined by an interface. The components are inserted into the Algorithm object, 
which uses the functionality provided by them. 
 
The components of the algorithm objects are: 
 

• IGNGContainer – describes the behaviour of a GNG container. The 
container creates and deletes nodes and edges. It is the main repository for 
edges and nodes. Creation of a node is done via a Factory-object to allow 
creation of user defined nodes. A default implementation, 
DefaultGNGContainer, exists. A reason for this component is for example 
SGNG where the RBF hidden layer is the IGNGContainer. 

 
• IGNGNodeInserter – defines the manner in which nodes are inserted (by 

using the appropriate functionality of the current IGNGContainer) The 
GNG algorithm asks the current IGNGNodeInserter if it is ready to insert a 
node, if that is the case, a node is inserted in accordance with the current 
IGNGNodeInserter. A default fixed insertion implementation, 
DefaultNodeInserter, exists. There is also a SGNGNodeInserter used by 
the SGNGAlgorithm object. 

 
• IGNGNodeMovement – defines how nodes are moved, the default 

implementation, DefaultNodeMovement, moves nodes in a linear fashion 
as described in the pseudo-code. Alternate movements, for example non-
linear, could be interesting to implement but this is not included in this 
report. 

6.2.2 Basic Elements 
The basic elements consist of the GNGNode and GNGEdge. A GNGNode 
contains a reference vector, a utility, a local accumulated error and a set of edges 
to its neighbours. GNGNodes are created through the appropriate 
GNGNodeFactory. This allows for user defined GNGNodes, and is the 
mechanism used in the SGNG case where the RBFNode, derived from GNGNode, 
is created through the RBFNodeFactory. The factories are components of the 
IGNGContainer currently used. A GNGEdge is simply an association of two 
GNGNodes but also contains the age for that particular edge. 

6.2.3 Input Generators 
Input generators are derived from IInputGenerator and can be of two types, 
FunctionGenerator or ClassesGenerator. Regardless of the type of the input 
generator it will work properly in the case of GNG and GNG-U, the type only 
matters in the case of SGNG since it is combined with a RBF network that needs 
outputs when trained. The input generator type decides which control object is 
used in the SGNG case. If the input generator is a FunctionGenerator then 
RBFFunctionApproximationControl will be used and if it is a ClassesGenerator 
then an RBFClassificaionControl will be used. Control objects will be described 
below.  
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6.2.4 Algorithm Classes 
There are three algorithm objects; the GNGAlgorithm, GNGUAlgorithm and the 
SGNGAlgorithm. The GNGUAlgorithm and SGNGAlgorithm are both derived 
from GNGAlgorithm and override the appropriate methods in order to define their 
respective behaviour. 

6.2.5 Control Objects 
The control objects perform the over-all control, such as presenting input signals 
and iterating the algorithm objects, and in the SGNG case, handles the RBF 
network input presentation and training. They also define the stop criteria, and in 
the SGNG case of classification and function approximation, there is a minor 
difference in the two. In classification, it is normally more interesting to know 
when the number of misclassifications reaches a certain allowed maximum and in 
function approximation, the criteria are based on the output squared-error. 
 
There are three control objects:  

• GNGControl – Controls the GNG and GNG-U algorithm iteration, by 
presenting an input and iterating the algorithm. 

 
• RBFClassificationControl – Controls the SGNG (with RBF) in a pattern 

classification scenario as previously discussed in section 5.2.1. The 
outputs are coded in a one-out-of-M manner.  

 
• RBFFunctionApproximationControl – Controls the SGNG (with RBF) in a 

function approximation scenario. 

6.2.6 Graphical Representation 
An Open-GL graphical representation is provided for two-dimensional generators, 
this is helpful when attempting to understand the general behaviour of the three 
algorithms. However, since this report is not mainly about the implementation, 
details concerning this are not included in the report. 

6.3 User Instructions 
The program uses an initialisation-file named gng.ini. The initialisation-file 
contains all the parameters for all three algorithms. All parameters must be 
present and in the order described below. Comments are started by ‘#’ and forces 
the program to ignore the rest of that line. This is an example of a gng.ini file. 
 

# MODE  (gng, gngu, sgng) 
gng 
 
# Init from distribution (0=no or 1=yes) 
0 
 
 
##################################### 
###  Representation 
##################################### 
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# REPRESENTATION_UPDATE 
#    updates the graphics every n iterations 
10 
# ITERATION_DELAY_IN_MILLISECONDS 
#   delay in milliseconds between each iteration 
0 
 
##################################### 
### GNG settings 
##################################### 
 
# GNG MSE BackLog 
#    GNG MSE is logged to file during execution. 
#    the mean is calculated every n iterations. 
500 
# MAX NODES 
60 
# INSERT EVERY (lambda) 
600 
# NEW NODE-POSITION  
#   default is 0.5, this is not an original parameter in GNG. 
#   This is only for test purposes. 
0.5 
# ERROR DECAY for INSERTION (alpha)  
#   IMPORTANT: in sgng-mode this should be 0.5  
#              according to SGNG-specs 
0.5 
# AGE MAX, maximum allowed age of an edge before it is removed. 
80 
# MOVE WINNER (epsilon winner) 
0.05 
# MOVE NEIGHBOR (epsilon neighbor) 
0.0006 
# ERROR DECAY (beta) 
0.0005 
 
##################################### 
### GNG-U specific 
##################################### 
 
# UTILITY DECAY  
#    this is not an original parameter in GNG, utility decay  
#    should equal error decay. This is only for test purposes. 
0.0005 
# UTILITY BOUND  (k) 
1.0 
 
##################################### 
###  SGNG  (GNG with RBF) specific 
##################################### 
 
# MISCLASSIFICATION or ERROR BACKLOG 
#    misclassification or error is logged to file in steps of n 
100 
# NUM MISCLASSIFICATIONS ALLOWED in backLog steps 
#  if the input distribution is a classification task then this  
#  parameter determines the maximum number of allowed 
#  misclassifications during the backlog, before stopping. 
0 
# CLASSIFICATION decision diff minimum.  
#   the minimum difference between the best and second 
#   best answers in the one-out-of-k response vector. 
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#   a way of forcing more sure answers (if possible). 
#   (a value between 0..1) 
0.0 
# CLASSIFICATION decision min limit.  
#   The best answer must be greater or equal to this  
#   limit to be accepted (a value between 0..1) 
0.7 
# MAX SQUARED ERROR  
#  if the input distribution is a function approximation task  
#  then this parameter determines the maximum allowed error before 
#  stopping. 
0.00001 
# ETA, step-size used in weight training 
0.2 
 
##################################### 
### Generator stuff. 
##################################### 
 
# DIM, the Default generator uses this setting. 
2 
# DISTRIBUTION_TYPE 
1 
 
##################################### 
### Distribution types 
##################################### 
# 0 - Default 
# 1 - Four of default 
# 2 - Jump Default 
# 3 - Jump Square moving default 
# 4 - Square Slow Moving Default 
# 5 - Square Moving Four of Default 
# 6 - Four of Square Moving Default 
# 7 - Four of Four of Default 
# 8 - UpDown Moving of Default 
# 9 - UpDown Moving, Square Moving of Default 
# 10 - Square Moving, UpDown Moving, of Default 
# 11 – TwoClasses - classification 
# 12 - XOR function – function approximation 
# 13 – Discrete - classification 
# 14 - Sinus function – function approximation 

 
To be able to run the program, GLUT32.dll (in unix, the appropriate libs) must 
exist since the program relies on GLUT/OpenGL for representation. 
 
Run-time usage is quite simple, there are only three possible interaction 
possibilities: left-mouse button starts and pauses execution. When in paused mode 
the right and middle mouse buttons allow single step and REPRESENTATION_UPDATE 
steps update of the representation.  
 
To end the program, simply close the window. 
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