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1 IntroductionA �rst wave of interest in neural networks (also known as `connectionist models' or `paralleldistributed processing') emerged after the introduction of simpli�ed neurons by McCulloch andPitts in 1943 (McCulloch & Pitts, 1943). These neurons were presented as models of biologicalneurons and as conceptual components for circuits that could perform computational tasks.When Minsky and Papert published their book Perceptrons in 1969 (Minsky & Papert, 1969)in which they showed the de�ciencies of perceptron models, most neural network funding wasredirected and researchers left the �eld. Only a few researchers continued their e�orts, mostnotably Teuvo Kohonen, Stephen Grossberg, James Anderson, and Kunihiko Fukushima.The interest in neural networks re-emerged only after some important theoretical results wereattained in the early eighties (most notably the discovery of error back-propagation), and newhardware developments increased the processing capacities. This renewed interest is re
ectedin the number of scientists, the amounts of funding, the number of large conferences, and thenumber of journals associated with neural networks. Nowadays most universities have a neuralnetworks group, within their psychology, physics, computer science, or biology departments.Arti�cial neural networks can be most adequately characterised as `computational models'with particular properties such as the ability to adapt or learn, to generalise, or to cluster ororganise data, and which operation is based on parallel processing. However, many of the above-mentioned properties can be attributed to existing (non-neural) models; the intriguing questionis to which extent the neural approach proves to be better suited for certain applications thanexisting models. To date an equivocal answer to this question is not found.Often parallels with biological systems are described. However, there is still so little known(even at the lowest cell level) about biological systems, that the models we are using for ourarti�cial neural systems seem to introduce an oversimpli�cation of the `biological' models.In this course we give an introduction to arti�cial neural networks. The point of view wetake is that of a computer scientist. We are not concerned with the psychological implication ofthe networks, and we will at most occasionally refer to biological neural models. We considerneural networks as an alternative computational scheme rather than anything else.These lecture notes start with a chapter in which a number of fundamental properties arediscussed. In chapter 3 a number of `classical' approaches are described, as well as the discussionon their limitations which took place in the early sixties. Chapter 4 continues with the descrip-tion of attempts to overcome these limitations and introduces the back-propagation learningalgorithm. Chapter 5 discusses recurrent networks; in these networks, the restraint that thereare no cycles in the network graph is removed. Self-organising networks, which require no exter-nal teacher, are discussed in chapter 6. Then, in chapter 7 reinforcement learning is introduced.Chapters 8 and 9 focus on applications of neural networks in the �elds of robotics and imageprocessing respectively. The �nal chapters discuss implementational aspects.
13
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2 FundamentalsThe arti�cial neural networks which we describe in this course are all variations on the paralleldistributed processing (PDP) idea. The architecture of each network is based on very similarbuilding blocks which perform the processing. In this chapter we �rst discuss these processingunits and discuss di�erent network topologies. Learning strategies|as a basis for an adaptivesystem|will be presented in the last section.2.1 A framework for distributed representationAn arti�cial network consists of a pool of simple processing units which communicate by sendingsignals to each other over a large number of weighted connections.A set of major aspects of a parallel distributed model can be distinguished (cf. Rumelhartand McClelland, 1986 (McClelland & Rumelhart, 1986; Rumelhart & McClelland, 1986)):� a set of processing units (`neurons,' `cells');� a state of activation yk for every unit, which equivalent to the output of the unit;� connections between the units. Generally each connection is de�ned by a weight wjk whichdetermines the e�ect which the signal of unit j has on unit k;� a propagation rule, which determines the e�ective input sk of a unit from its externalinputs;� an activation function Fk, which determines the new level of activation based on thee�ective input sk(t) and the current activation yk(t) (i.e., the update);� an external input (aka bias, o�set) �k for each unit;� a method for information gathering (the learning rule);� an environment within which the system must operate, providing input signals and|ifnecessary|error signals.Figure 2.1 illustrates these basics, some of which will be discussed in the next sections.2.1.1 Processing unitsEach unit performs a relatively simple job: receive input from neighbours or external sourcesand use this to compute an output signal which is propagated to other units. Apart from thisprocessing, a second task is the adjustment of the weights. The system is inherently parallel inthe sense that many units can carry out their computations at the same time.Within neural systems it is useful to distinguish three types of units: input units (indicatedby an index i) which receive data from outside the neural network, output units (indicated by15
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Figure 2.1: The basic components of an arti�cial neural network. The propagation rule used here isthe `standard' weighted summation.an index o) which send data out of the neural network, and hidden units (indicated by an indexh) whose input and output signals remain within the neural network.During operation, units can be updated either synchronously or asynchronously. With syn-chronous updating, all units update their activation simultaneously; with asynchronous updat-ing, each unit has a (usually �xed) probability of updating its activation at a time t, and usuallyonly one unit will be able to do this at a time. In some cases the latter model has someadvantages.2.1.2 Connections between unitsIn most cases we assume that each unit provides an additive contribution to the input of theunit with which it is connected. The total input to unit k is simply the weighted sum of theseparate outputs from each of the connected units plus a bias or o�set term �k:sk(t) =Xj wjk(t) yj(t) + �k(t): (2.1)The contribution for positive wjk is considered as an excitation and for negative wjk as inhibition.In some cases more complex rules for combining inputs are used, in which a distinction is madebetween excitatory and inhibitory inputs. We call units with a propagation rule (2.1) sigmaunits.A di�erent propagation rule, introduced by Feldman and Ballard (Feldman & Ballard, 1982),is known as the propagation rule for the sigma-pi unit:sk(t) =Xj wjk(t) Ym yjm(t) + �k(t): (2.2)Often, the yjm are weighted before multiplication. Although these units are not frequently used,they have their value for gating of input, as well as implementation of lookup tables (Mel, 1990).2.1.3 Activation and output rulesWe also need a rule which gives the e�ect of the total input on the activation of the unit. We needa function Fk which takes the total input sk(t) and the current activation yk(t) and produces anew value of the activation of the unit k:yk(t+ 1) = Fk(yk(t); sk(t)): (2.3)



2.2. NETWORK TOPOLOGIES 17Often, the activation function is a nondecreasing function of the total input of the unit:yk(t+ 1) = Fk(sk(t)) = Fk0@Xj wjk(t) yj(t) + �k(t)1A ; (2.4)although activation functions are not restricted to nondecreasing functions. Generally, some sortof threshold function is used: a hard limiting threshold function (a sgn function), or a linear orsemi-linear function, or a smoothly limiting threshold (see �gure 2.2). For this smoothly limitingfunction often a sigmoid (S-shaped) function likeyk = F(sk) = 11 + e�sk (2.5)is used. In some applications a hyperbolic tangent is used, yielding output values in the range[�1;+1].
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ii iFigure 2.2: Various activation functions for a unit.In some cases, the output of a unit can be a stochastic function of the total input of theunit. In that case the activation is not deterministically determined by the neuron input, butthe neuron input determines the probability p that a neuron get a high activation value:p(yk  1) = 11 + e�sk=T ; (2.6)in which T (cf. temperature) is a parameter which determines the slope of the probabilityfunction. This type of unit will be discussed more extensively in chapter 5.In all networks we describe we consider the output of a neuron to be identical to its activationlevel.2.2 Network topologiesIn the previous section we discussed the properties of the basic processing unit in an arti�cialneural network. This section focuses on the pattern of connections between the units and thepropagation of data.As for this pattern of connections, the main distinction we can make is between:� Feed-forward networks, where the data 
ow from input to output units is strictly feed-forward. The data processing can extend over multiple (layers of) units, but no feedbackconnections are present, that is, connections extending from outputs of units to inputs ofunits in the same layer or previous layers.� Recurrent networks that do contain feedback connections. Contrary to feed-forward net-works, the dynamical properties of the network are important. In some cases, the activa-tion values of the units undergo a relaxation process such that the network will evolve toa stable state in which these activations do not change anymore. In other applications,the change of the activation values of the output neurons are signi�cant, such that thedynamical behaviour constitutes the output of the network (Pearlmutter, 1990).



18 CHAPTER 2. FUNDAMENTALSClassical examples of feed-forward networks are the Perceptron and Adaline, which will bediscussed in the next chapter. Examples of recurrent networks have been presented by Anderson(Anderson, 1977), Kohonen (Kohonen, 1977), and Hop�eld (Hop�eld, 1982) and will be discussedin chapter 5.2.3 Training of arti�cial neural networksA neural network has to be con�gured such that the application of a set of inputs produces(either `direct' or via a relaxation process) the desired set of outputs. Various methods to setthe strengths of the connections exist. One way is to set the weights explicitly, using a prioriknowledge. Another way is to `train' the neural network by feeding it teaching patterns andletting it change its weights according to some learning rule.2.3.1 Paradigms of learningWe can categorise the learning situations in two distinct sorts. These are:� Supervised learning or Associative learning in which the network is trained by providingit with input and matching output patterns. These input-output pairs can be provided byan external teacher, or by the system which contains the network (self-supervised).� Unsupervised learning or Self-organisation in which an (output) unit is trained to respondto clusters of pattern within the input. In this paradigm the system is supposed to dis-cover statistically salient features of the input population. Unlike the supervised learningparadigm, there is no a priori set of categories into which the patterns are to be classi�ed;rather the system must develop its own representation of the input stimuli.2.3.2 Modifying patterns of connectivityBoth learning paradigms discussed above result in an adjustment of the weights of the connec-tions between units, according to some modi�cation rule. Virtually all learning rules for modelsof this type can be considered as a variant of the Hebbian learning rule suggested by Hebb inhis classic book Organization of Behaviour (1949) (Hebb, 1949). The basic idea is that if twounits j and k are active simultaneously, their interconnection must be strengthened. If j receivesinput from k, the simplest version of Hebbian learning prescribes to modify the weight wjk with�wjk = 
yjyk; (2.7)where 
 is a positive constant of proportionality representing the learning rate. Another commonrule uses not the actual activation of unit k but the di�erence between the actual and desiredactivation for adjusting the weights: �wjk = 
yj(dk � yk); (2.8)in which dk is the desired activation provided by a teacher. This is often called the Widrow-Ho�rule or the delta rule, and will be discussed in the next chapter.Many variants (often very exotic ones) have been published the last few years. In the nextchapters some of these update rules will be discussed.2.4 Notation and terminologyThroughout the years researchers from di�erent disciplines have come up with a vast number ofterms applicable in the �eld of neural networks. Our computer scientist point-of-view enablesus to adhere to a subset of the terminology which is less biologically inspired, yet still con
ictsarise. Our conventions are discussed below.



2.4. NOTATION AND TERMINOLOGY 192.4.1 NotationWe use the following notation in our formulae. Note that not all symbols are meaningful for allnetworks, and that in some cases subscripts or superscripts may be left out (e.g., p is often notnecessary) or added (e.g., vectors can, contrariwise to the notation below, have indices) wherenecessary. Vectors are indicated with a bold non-slanted font:j, k, : : : the unit j, k, : : :;i an input unit;h a hidden unit;o an output unit;xp the pth input pattern vector;xpj the jth element of the pth input pattern vector;sp the input to a set of neurons when input pattern vector p is clamped (i.e., presented to thenetwork); often: the input of the network by clamping input pattern vector p;dp the desired output of the network when input pattern vector p was input to the network;dpj the jth element of the desired output of the network when input pattern vector p was inputto the network;yp the activation values of the network when input pattern vector p was input to the network;ypj the activation values of element j of the network when input pattern vector p was input tothe network;W the matrix of connection weights;wj the weights of the connections which feed into unit j;wjk the weight of the connection from unit j to unit k;Fj the activation function associated with unit j;
jk the learning rate associated with weight wjk;� the biases to the units;�j the bias input to unit j;Uj the threshold of unit j in Fj ;Ep the error in the output of the network when input pattern vector p is input;E the energy of the network.2.4.2 TerminologyOutput vs. activation of a unit. Since there is no need to do otherwise, we consider theoutput and the activation value of a unit to be one and the same thing. That is, the output ofeach neuron equals its activation value.



20 CHAPTER 2. FUNDAMENTALSBias, o�set, threshold. These terms all refer to a constant (i.e., independent of the networkinput but adapted by the learning rule) term which is input to a unit. They may be usedinterchangeably, although the latter two terms are often envisaged as a property of the activationfunction. Furthermore, this external input is usually implemented (and can be written) as aweight from a unit with activation value 1.Number of layers. In a feed-forward network, the inputs perform no computation and theirlayer is therefore not counted. Thus a network with one input layer, one hidden layer, and oneoutput layer is referred to as a network with two layers. This convention is widely though notyet universally used.Representation vs. learning. When using a neural network one has to distinguish two issueswhich in
uence the performance of the system. The �rst one is the representational power ofthe network, the second one is the learning algorithm.The representational power of a neural network refers to the ability of a neural network torepresent a desired function. Because a neural network is built from a set of standard functions,in most cases the network will only approximate the desired function, and even for an optimalset of weights the approximation error is not zero.The second issue is the learning algorithm. Given that there exist a set of optimal weightsin the network, is there a procedure to (iteratively) �nd this set of weights?
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3 Perceptron and Adaline
This chapter describes single layer neural networks, including some of the classical approachesto the neural computing and learning problem. In the �rst part of this chapter we discuss therepresentational power of the single layer networks and their learning algorithms and will givesome examples of using the networks. In the second part we will discuss the representationallimitations of single layer networks.Two `classical' models will be described in the �rst part of the chapter: the Perceptron,proposed by Rosenblatt (Rosenblatt, 1959) in the late 50's and the Adaline, presented in theearly 60's by by Widrow and Ho� (Widrow & Ho�, 1960).3.1 Networks with threshold activation functionsA single layer feed-forward network consists of one or more output neurons o, each of which isconnected with a weighting factor wio to all of the inputs i. In the simplest case the networkhas only two inputs and a single output, as sketched in �gure 3.1 (we leave the output index oout). The input of the neuron is the weighted sum of the inputs plus the bias term. The outputw1w2 � y

+1
x1x2

Figure 3.1: Single layer network with one output and two inputs.of the network is formed by the activation of the output neuron, which is some function of theinput: y = F  2Xi=1wixi + �! ; (3.1)The activation function F can be linear so that we have a linear network, or nonlinear. In thissection we consider the threshold (or Heaviside or sgn) function:F(s) = � 1 if s > 0�1 otherwise. (3.2)The output of the network thus is either +1 or �1, depending on the input. The networkcan now be used for a classi�cation task: it can decide whether an input pattern belongs toone of two classes. If the total input is positive, the pattern will be assigned to class +1, if the23



24 CHAPTER 3. PERCEPTRON AND ADALINEtotal input is negative, the sample will be assigned to class �1. The separation between the twoclasses in this case is a straight line, given by the equation:w1x1 + w2x2 + � = 0 (3.3)The single layer network represents a linear discriminant function.A geometrical representation of the linear threshold neural network is given in �gure 3.2.Equation (3.3) can be written as x2 = �w1w2x1 � �w2 ; (3.4)and we see that the weights determine the slope of the line and the bias determines the `o�set',i.e. how far the line is from the origin. Note that also the weights can be plotted in the inputspace: the weight vector is always perpendicular to the discriminant function.x2
x1w1 w2��kwkFigure 3.2: Geometric representation of the discriminant function and the weights.Now that we have shown the representational power of the single layer network with linearthreshold units, we come to the second issue: how do we learn the weights and biases in thenetwork? We will describe two learning methods for these types of networks: the `perceptron'learning rule and the `delta' or `LMS' rule. Both methods are iterative procedures that adjustthe weights. A learning sample is presented to the network. For each weight the new value iscomputed by adding a correction to the old value. The threshold is updated in a same way:wi(t+ 1) = wi(t) + �wi(t); (3.5)�(t+ 1) = �(t) + ��(t): (3.6)The learning problem can now be formulated as: how do we compute �wi(t) and ��(t) in orderto classify the learning patterns correctly?3.2 Perceptron learning rule and convergence theoremSuppose we have a set of learning samples consisting of an input vector x and a desired outputd(x). For a classi�cation task the d(x) is usually +1 or �1. The perceptron learning rule is verysimple and can be stated as follows:1. Start with random weights for the connections;2. Select an input vector x from the set of training samples;3. If y 6= d(x) (the perceptron gives an incorrect response), modify all connections wi accord-ing to: �wi = d(x)xi;



3.2. PERCEPTRON LEARNING RULE AND CONVERGENCE THEOREM 254. Go back to 2.Note that the procedure is very similar to the Hebb rule; the only di�erence is that, when thenetwork responds correctly, no connection weights are modi�ed. Besides modifying the weights,we must also modify the threshold �. This � is considered as a connection w0 between the outputneuron and a `dummy' predicate unit which is always on: x0 = 1. Given the perceptron learningrule as stated above, this threshold is modi�ed according to:�� = � 0 if the perceptron responds correctly;d(x) otherwise. (3.7)3.2.1 Example of the Perceptron learning ruleA perceptron is initialized with the following weights: w1 = 1; w2 = 2; � = �2. The perceptronlearning rule is used to learn a correct discriminant function for a number of samples, sketched in�gure 3.3. The �rst sample A, with values x = (0:5; 1:5) and target value d(x) = +1 is presentedto the network. From eq. (3.1) it can be calculated that the network output is +1, so no weightsare adjusted. The same is the case for point B, with values x = (�0:5; 0:5) and target valued(x) = �1; the network output is negative, so no change. When presenting point C with valuesx = (0:5; 0:5) the network output will be �1, while the target value d(x) = +1. According tothe perceptron learning rule, the weight changes are: �w1 = 0:5, �w2 = 0:5, �� = 1. The newweights are now: w1 = 1:5, w2 = 2:5, � = �1, and sample C is classi�ed correctly.In �gure 3.3 the discriminant function before and after this weight update is shown.
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Figure 3.3: Discriminant function before and after weight update.3.2.2 Convergence theoremFor the perceptron learning rule there exists a convergence theorem, which states the following:Theorem 1 If there exists a set of connection weights w� which is able to perform the transfor-mation y = d(x), the perceptron learning rule will converge to some solution (which may or maynot be the same as w�) in a �nite number of steps for any initial choice of the weights.Proof Given the fact that the length of the vector w� does not play a role (because of the sgnoperation), we take kw�k = 1. Because w� is a correct solution, the value jw� � xj, where �denotes dot or inner product, will be greater than 0 or: there exists a � > 0 such that jw� � xj > �for all inputs x1. Now de�ne cos� � w �w�=kwk. When according to the perceptron learning1Technically this need not to be true for any w�; w� � x could in fact be equal to 0 for a w� which yields nomisclassi�cations (look at de�nition of F). However, another w� can be found for which the quantity will not be0. (Thanks to: Terry Regier, Computer Science, UC Berkeley)



26 CHAPTER 3. PERCEPTRON AND ADALINErule, connection weights are modi�ed at a given input x, we know that �w = d(x)x, and theweight after modi�cation is w0 =w +�w. From this it follows that:w0 �w� = w �w� + d(x) �w� � x= w �w� + sgn�w� � x�w� � x> w �w� + �kw0k2 = kw + d(x) xk2= w2 + 2d(x)w � x + x2< w2 + x2 (because d(x) = � sgn[w � x] !!)= w2 +M:After t modi�cations we have: w(t) �w� > w �w� + t�kw(t)k2 < w2 + tMsuch that cos�(t) = w� �w(t)kw(t)k> w� �w + t�pw2 + tM :From this follows that limt!1 cos�(t) = limt!1 �pMpt =1, while by de�nition cos� � 1 !The conclusion is that there must be an upper limit tmax for t. The system modi�es itsconnections only a limited number of times. In other words: after maximally tmax modi�cationsof the weights the perceptron is correctly performing the mapping. tmax will be reached whencos� = 1. If we start with connections w = 0,tmax = M�2 : (3.8)
3.2.3 The original PerceptronThe Perceptron, proposed by Rosenblatt (Rosenblatt, 1959) is somewhat more complex than asingle layer network with threshold activation functions. In its simplest form it consist of anN -element input layer (`retina') which feeds into a layer ofM `association,' `mask,' or `predicate'units �h, and a single output unit. The goal of the operation of the perceptron is to learn a giventransformation d : f�1; 1gN ! f�1; 1g using learning samples with input x and correspondingoutput y = d(x). In the original de�nition, the activity of the predicate units can be any function�h of the input layer x but the learning procedure only adjusts the connections to the outputunit. The reason for this is that no recipe had been found to adjust the connections betweenx and �h. Depending on the functions �h, perceptrons can be grouped into di�erent families.In (Minsky & Papert, 1969) a number of these families are described and properties of thesefamilies have been described. The output unit of a perceptron is a linear threshold element.Rosenblatt (1959) (Rosenblatt, 1959) proved the remarkable theorem about perceptron learningand in the early 60s perceptrons created a great deal of interest and optimism. The initialeuphoria was replaced by disillusion after the publication of Minsky and Papert's Perceptronsin 1969 (Minsky & Papert, 1969). In this book they analysed the perceptron thoroughly andproved that there are severe restrictions on what perceptrons can represent.



3.3. THE ADAPTIVE LINEAR ELEMENT (ADALINE) 27
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Figure 3.4: The Perceptron.3.3 The adaptive linear element (Adaline)An important generalisation of the perceptron training algorithm was presented by Widrow andHo� as the `least mean square' (LMS) learning procedure, also known as the delta rule. Themain functional di�erence with the perceptron training rule is the way the output of the system isused in the learning rule. The perceptron learning rule uses the output of the threshold function(either �1 or +1) for learning. The delta-rule uses the net output without further mapping intooutput values �1 or +1.The learning rule was applied to the `adaptive linear element,' also named Adaline2, devel-oped by Widrow and Ho� (Widrow & Ho�, 1960). In a simple physical implementation (�g. 3.5)this device consists of a set of controllable resistors connected to a circuit which can sum upcurrents caused by the input voltage signals. Usually the central block, the summer, is alsofollowed by a quantiser which outputs either +1 of �1, depending on the polarity of the sum.
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referenceFigure 3.5: The Adaline.Although the adaptive process is here exempli�ed in a case when there is only one output,it may be clear that a system with many parallel outputs is directly implementable by multipleunits of the above kind.If the input conductances are denoted by wi, i = 0; 1; : : : ; n, and the input and output signals2ADALINE �rst stood for ADAptive LInear NEuron, but when arti�cial neurons became less and less popularthis acronym was changed to ADAptive LINear Element.



28 CHAPTER 3. PERCEPTRON AND ADALINEby xi and y, respectively, then the output of the central block is de�ned to bey = nXi=1wixi + �; (3.9)where � � w0. The purpose of this device is to yield a given value y = dp at its output whenthe set of values xpi , i = 1; 2; : : : ; n, is applied at the inputs. The problem is to determine thecoe�cients wi, i = 0; 1; : : : ; n, in such a way that the input-output response is correct for a largenumber of arbitrarily chosen signal sets. If an exact mapping is not possible, the average errormust be minimised, for instance, in the sense of least squares. An adaptive operation meansthat there exists a mechanism by which the wi can be adjusted, usually iteratively, to attain thecorrect values. For the Adaline, Widrow introduced the delta rule to adjust the weights. Thisrule will be discussed in section 3.4.3.4 Networks with linear activation functions: the delta ruleFor a single layer network with an output unit with a linear activation function the output issimply given by y =Xj wjxj + �: (3.10)Such a simple network is able to represent a linear relationship between the value of theoutput unit and the value of the input units. By thresholding the output value, a classi�er canbe constructed (such as Widrow's Adaline), but here we focus on the linear relationship and usethe network for a function approximation task. In high dimensional input spaces the networkrepresents a (hyper)plane and it will be clear that also multiple output units may be de�ned.Suppose we want to train the network such that a hyperplane is �tted as well as possibleto a set of training samples consisting of input values xp and desired (or target) output valuesdp. For every given input sample, the output of the network di�ers from the target value dpby (dp � yp), where yp is the actual output for this pattern. The delta-rule now uses a cost- orerror-function based on these di�erences to adjust the weights.The error function, as indicated by the name least mean square, is the summed squarederror. That is, the total error E is de�ned to beE =Xp Ep = 12 Xp (dp � yp)2; (3.11)where the index p ranges over the set of input patterns and Ep represents the error on patternp. The LMS procedure �nds the values of all the weights that minimise the error function by amethod called gradient descent. The idea is to make a change in the weight proportional to thenegative of the derivative of the error as measured on the current pattern with respect to eachweight: �pwj = �
@Ep@wj (3.12)where 
 is a constant of proportionality. The derivative is@Ep@wj = @Ep@yp @yp@wj : (3.13)Because of the linear units (eq. (3.10)), @yp@wj = xj (3.14)



3.5. EXCLUSIVE-OR PROBLEM 29and @Ep@yp = �(dp � yp) (3.15)such that �pwj = 
�pxj (3.16)where �p = dp�yp is the di�erence between the target output and the actual output for patternp. The delta rule modi�es weight appropriately for target and actual outputs of either polarityand for both continuous and binary input and output units. These characteristics have openedup a wealth of new applications.3.5 Exclusive-OR problemIn the previous sections we have discussed two learning algorithms for single layer networks, butwe have not discussed the limitations on the representation of these networks.x0 x1 d�1 �1 �1�1 1 11 �1 11 1 �1Table 3.1: Exclusive-or truth table.One of Minsky and Papert's most discouraging results shows that a single layer percep-tron cannot represent a simple exclusive-or function. Table 3.1 shows the desired relationshipsbetween inputs and output units for this function.In a simple network with two inputs and one output, as depicted in �gure 3.1, the net inputis equal to: s = w1x1 + w2x2 + �: (3.17)According to eq. (3.1), the output of the perceptron is zero when s is negative and equal toone when s is positive. In �gure 3.6 a geometrical representation of the input domain is given.For a constant �, the output of the perceptron is equal to one on one side of the dividing linewhich is de�ned by: w1x1 + w2x2 = �� (3.18)and equal to zero on the other side of this line.
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Figure 3.6: Geometric representation of input space.



30 CHAPTER 3. PERCEPTRON AND ADALINETo see that such a solution cannot be found, take a loot at �gure 3.6. The input space consistsof four points, and the two solid circles at (1;�1) and (�1; 1) cannot be separated by a straightline from the two open circles at (�1;�1) and (1; 1). The obvious question to ask is: How canthis problem be overcome? Minsky and Papert prove in their book that for binary inputs, anytransformation can be carried out by adding a layer of predicates which are connected to allinputs. The proof is given in the next section.For the speci�c XOR problem we geometrically show that by introducing hidden units,thereby extending the network to a multi-layer perceptron, the problem can be solved. Fig. 3.7ademonstrates that the four input points are now embedded in a three-dimensional space de�nedby the two inputs plus the single hidden unit. These four points are now easily separated by
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a. b.Figure 3.7: Solution of the XOR problem.a) The perceptron of �g. 3.1 with an extra hidden unit. With the indicated values of theweights wij (next to the connecting lines) and the thresholds �i (in the circles) this perceptronsolves the XOR problem. b) This is accomplished by mapping the four points of �gure 3.6onto the four points indicated here; clearly, separation (by a linear manifold) into the requiredgroups is now possible.a linear manifold (plane) into two groups, as desired. This simple example demonstrates thatadding hidden units increases the class of problems that are soluble by feed-forward, perceptron-like networks. However, by this generalisation of the basic architecture we have also incurred aserious loss: we no longer have a learning rule to determine the optimal weights!3.6 Multi-layer perceptrons can do everythingIn the previous section we showed that by adding an extra hidden unit, the XOR problemcan be solved. For binary units, one can prove that this architecture is able to perform anytransformation given the correct connections and weights. The most primitive is the next one.For a given transformation y = d(x), we can divide the set of all possible input vectors into twoclasses: X+ = fx j d(x) = 1 g and X� = f x j d(x) = �1 g: (3.19)Since there are N input units, the total number of possible input vectors x is 2N . For everyxp 2 X+ a hidden unit h can be reserved of which the activation yh is 1 if and only if the speci�cpattern p is present at the input: we can choose its weights wih equal to the speci�c pattern xpand the bias �h equal to 1�N such thatyph = sgn Xi wihxpi �N + 12! (3.20)



3.7. CONCLUSIONS 31is equal to 1 for xp = wh only. Similarly, the weights to the output neuron can be chosen suchthat the output is one as soon as one of the M predicate neurons is one:ypo = sgn MXh=1 yh +M � 12! : (3.21)This perceptron will give yo = 1 only if x 2 X+: it performs the desired mapping. Theproblem is the large number of predicate units, which is equal to the number of patterns in X+,which is maximally 2N . Of course we can do the same trick for X�, and we will always takethe minimal number of mask units, which is maximally 2N�1. A more elegant proof is givenin (Minsky & Papert, 1969), but the point is that for complex transformations the number ofrequired units in the hidden layer is exponential in N .3.7 ConclusionsIn this chapter we presented single layer feedforward networks for classi�cation tasks and forfunction approximation tasks. The representational power of single layer feedforward networkswas discussed and two learning algorithms for �nding the optimal weights were presented. Thesimple networks presented here have their advantages and disadvantages. The disadvantageis the limited representational power: only linear classi�ers can be constructed or, in case offunction approximation, only linear functions can be represented. The advantage, however, isthat because of the linearity of the system, the training algorithm will converge to the optimalsolution. This is not the case anymore for nonlinear systems such as multiple layer networks, aswe will see in the next chapter.
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4 Back-Propagation
As we have seen in the previous chapter, a single-layer network has severe restrictions: the classof tasks that can be accomplished is very limited. In this chapter we will focus on feed-forwardnetworks with layers of processing units.Minsky and Papert (Minsky & Papert, 1969) showed in 1969 that a two layer feed-forwardnetwork can overcome many restrictions, but did not present a solution to the problem of howto adjust the weights from input to hidden units. An answer to this question was presented byRumelhart, Hinton and Williams in 1986 (Rumelhart, Hinton, & Williams, 1986), and similarsolutions appeared to have been published earlier (Werbos, 1974; Parker, 1985; Cun, 1985).The central idea behind this solution is that the errors for the units of the hidden layer aredetermined by back-propagating the errors of the units of the output layer. For this reasonthe method is often called the back-propagation learning rule. Back-propagation can also beconsidered as a generalisation of the delta rule for non-linear activation functions1 and multi-layer networks.4.1 Multi-layer feed-forward networksA feed-forward network has a layered structure. Each layer consists of units which receive theirinput from units from a layer directly below and send their output to units in a layer directlyabove the unit. There are no connections within a layer. The Ni inputs are fed into the �rstlayer of Nh;1 hidden units. The input units are merely `fan-out' units; no processing takes placein these units. The activation of a hidden unit is a function Fi of the weighted inputs plus abias, as given in in eq. (2.4). The output of the hidden units is distributed over the next layer ofNh;2 hidden units, until the last layer of hidden units, of which the outputs are fed into a layerof No output units (see �gure 4.1).Although back-propagation can be applied to networks with any number of layers, just asfor networks with binary units (section 3.6) it has been shown (Hornik, Stinchcombe, & White,1989; Funahashi, 1989; Cybenko, 1989; Hartman, Keeler, & Kowalski, 1990) that only onelayer of hidden units su�ces to approximate any function with �nitely many discontinuities toarbitrary precision, provided the activation functions of the hidden units are non-linear (theuniversal approximation theorem). In most applications a feed-forward network with a singlelayer of hidden units is used with a sigmoid activation function for the units.4.2 The generalised delta ruleSince we are now using units with nonlinear activation functions, we have to generalise the deltarule which was presented in chapter 3 for linear functions to the set of non-linear activation1Of course, when linear activation functions are used, a multi-layer network is not more powerful than asingle-layer network. 33
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oh NoNh;l�2Nh;l�1Nh;1NiFigure 4.1: A multi-layer network with l layers of units.functions. The activation is a di�erentiable function of the total input, given byypk = F(spk); (4.1)in which spk =Xj wjkypj + �k: (4.2)To get the correct generalisation of the delta rule as presented in the previous chapter, we mustset �pwjk = �
 @Ep@wjk : (4.3)The error measure Ep is de�ned as the total quadratic error for pattern p at the output units:Ep = 12 NoXo=1(dpo � ypo)2; (4.4)where dpo is the desired output for unit o when pattern p is clamped. We further set E =Xp Epas the summed squared error. We can write@Ep@wjk = @Ep@spk @spk@wjk : (4.5)By equation (4.2) we see that the second factor is@spk@wjk = ypj : (4.6)When we de�ne �pk = �@Ep@spk ; (4.7)we will get an update rule which is equivalent to the delta rule as described in the previouschapter, resulting in a gradient descent on the error surface if we make the weight changesaccording to: �pwjk = 
�pkypj : (4.8)The trick is to �gure out what �pk should be for each unit k in the network. The interestingresult, which we now derive, is that there is a simple recursive computation of these �'s whichcan be implemented by propagating error signals backward through the network.



4.2. THE GENERALISED DELTA RULE 35To compute �pk we apply the chain rule to write this partial derivative as the product of twofactors, one factor re
ecting the change in error as a function of the output of the unit and onere
ecting the change in the output as a function of changes in the input. Thus, we have�pk = �@Ep@spk = �@Ep@ypk @ypk@spk : (4.9)Let us compute the second factor. By equation (4.1) we see that@ypk@spk = F0(spk); (4.10)which is simply the derivative of the squashing function F for the kth unit, evaluated at thenet input spk to that unit. To compute the �rst factor of equation (4.9), we consider two cases.First, assume that unit k is an output unit k = o of the network. In this case, it follows fromthe de�nition of Ep that @Ep@ypo = �(dpo � ypo); (4.11)which is the same result as we obtained with the standard delta rule. Substituting this andequation (4.10) in equation (4.9), we get�po = (dpo � ypo)Fo0(spo) (4.12)for any output unit o. Secondly, if k is not an output unit but a hidden unit k = h, we donot readily know the contribution of the unit to the output error of the network. However,the error measure can be written as a function of the net inputs from hidden to output layer;Ep = Ep(sp1; sp2; : : : ; spj ; : : :) and we use the chain rule to write@Ep@yph = NoXo=1 @Ep@spo @spo@yph = NoXo=1 @Ep@spo @@yph NhXj=1wkoypj = NoXo=1 @Ep@spo who = � NoXo=1 �powho: (4.13)Substituting this in equation (4.9) yields�ph = F0(sph) NoXo=1 �powho: (4.14)Equations (4.12) and (4.14) give a recursive procedure for computing the �'s for all units inthe network, which are then used to compute the weight changes according to equation (4.8).This procedure constitutes the generalised delta rule for a feed-forward network of non-linearunits.4.2.1 Understanding back-propagationThe equations derived in the previous section may be mathematically correct, but what dothey actually mean? Is there a way of understanding back-propagation other than reciting thenecessary equations?The answer is, of course, yes. In fact, the whole back-propagation process is intuitivelyvery clear. What happens in the above equations is the following. When a learning patternis clamped, the activation values are propagated to the output units, and the actual networkoutput is compared with the desired output values, we usually end up with an error in each ofthe output units. Let's call this error eo for a particular output unit o. We have to bring eo tozero.



36 CHAPTER 4. BACK-PROPAGATIONThe simplest method to do this is the greedy method: we strive to change the connectionsin the neural network in such a way that, next time around, the error eo will be zero for thisparticular pattern. We know from the delta rule that, in order to reduce an error, we have toadapt its incoming weights according to�who = (do � yo)yh: (4.15)That's step one. But it alone is not enough: when we only apply this rule, the weights frominput to hidden units are never changed, and we do not have the full representational powerof the feed-forward network as promised by the universal approximation theorem. In order toadapt the weights from input to hidden units, we again want to apply the delta rule. In thiscase, however, we do not have a value for � for the hidden units. This is solved by the chainrule which does the following: distribute the error of an output unit o to all the hidden unitsthat is it connected to, weighted by this connection. Di�erently put, a hidden unit h receives adelta from each output unit o equal to the delta of that output unit weighted with (= multipliedby) the weight of the connection between those units. In symbols: �h = Po �owho. Well, notexactly: we forgot the activation function of the hidden unit; F0 has to be applied to the delta,before the back-propagation process can continue.4.3 Working with back-propagationThe application of the generalised delta rule thus involves two phases: During the �rst phasethe input x is presented and propagated forward through the network to compute the outputvalues ypo for each output unit. This output is compared with its desired value do, resulting inan error signal �po for each output unit. The second phase involves a backward pass throughthe network during which the error signal is passed to each unit in the network and appropriateweight changes are calculated.Weight adjustments with sigmoid activation function. The results from the previoussection can be summarised in three equations:� The weight of a connection is adjusted by an amount proportional to the product of anerror signal �, on the unit k receiving the input and the output of the unit j sending thissignal along the connection: �pwjk = 
�pkypj : (4.16)� If the unit is an output unit, the error signal is given by�po = (dpo � ypo)F0(spo): (4.17)Take as the activation function F the `sigmoid' function as de�ned in chapter 2:yp = F(sp) = 11 + e�sp : (4.18)In this case the derivative is equal toF0(sp) = @@sp 11 + e�sp= 1(1 + e�sp)2 (�e�sp)= 1(1 + e�sp) e�sp(1 + e�sp)= yp(1� yp): (4.19)



4.4. AN EXAMPLE 37such that the error signal for an output unit can be written as:�po = (dpo � ypo) ypo(1� ypo): (4.20)� The error signal for a hidden unit is determined recursively in terms of error signals of theunits to which it directly connects and the weights of those connections. For the sigmoidactivation function: �ph = F0(sph) NoXo=1 �powho = yph(1� yph) NoXo=1 �powho: (4.21)Learning rate and momentum. The learning procedure requires that the change in weightis proportional to @Ep=@w. True gradient descent requires that in�nitesimal steps are taken. Theconstant of proportionality is the learning rate 
. For practical purposes we choose a learningrate that is as large as possible without leading to oscillation. One way to avoid oscillationat large 
, is to make the change in weight dependent of the past weight change by adding amomentum term: �wjk(t+ 1) = 
�pkypj + ��wjk(t); (4.22)where t indexes the presentation number and � is a constant which determines the e�ect of theprevious weight change.The role of the momentum term is shown in �gure 4.2. When no momentum term is used,it takes a long time before the minimum has been reached with a low learning rate, whereas forhigh learning rates the minimum is never reached because of the oscillations. When adding themomentum term, the minimum will be reached faster.
c

b a

Figure 4.2: The descent in weight space. a) for small learning rate; b) for large learning rate: notethe oscillations, and c) with large learning rate and momentum term added.Learning per pattern. Although, theoretically, the back-propagation algorithm performsgradient descent on the total error only if the weights are adjusted after the full set of learningpatterns has been presented, more often than not the learning rule is applied to each patternseparately, i.e., a pattern p is applied, Ep is calculated, and the weights are adapted (p =1; 2; : : : ; P ). There exists empirical indication that this results in faster convergence. Care hasto be taken, however, with the order in which the patterns are taught. For example, whenusing the same sequence over and over again the network may become focused on the �rst fewpatterns. This problem can be overcome by using a permuted training method.4.4 An exampleA feed-forward network can be used to approximate a function from examples. Suppose wehave a system (for example a chemical process or a �nancial market) of which we want to know



38 CHAPTER 4. BACK-PROPAGATIONthe characteristics. The input of the system is given by the two-dimensional vector x and theoutput is given by the one-dimensional vector d. We want to estimate the relationship d = f(x)from 80 examples fxp; dpg as depicted in �gure 4.3 (top left). A feed-forward network was
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Figure 4.3: Example of function approximation with a feedforward network. Top left: The originallearning samples; Top right: The approximation with the network; Bottom left: The function whichgenerated the learning samples; Bottom right: The error in the approximation.programmed with two inputs, 10 hidden units with sigmoid activation function and an outputunit with a linear activation function. Check for yourself how equation (4.20) should be adaptedfor the linear instead of sigmoid activation function. The network weights are initialized tosmall values and the network is trained for 5,000 learning iterations with the back-propagationtraining rule, described in the previous section. The relationship between x and d as representedby the network is shown in �gure 4.3 (top right), while the function which generated the learningsamples is given in �gure 4.3 (bottom left). The approximation error is depicted in �gure 4.3(bottom right). We see that the error is higher at the edges of the region within which thelearning samples were generated. The network is considerably better at interpolation thanextrapolation.4.5 Other activation functionsAlthough sigmoid functions are quite often used as activation functions, other functions can beused as well. In some cases this leads to a formula which is known from traditional functionapproximation theories.For example, from Fourier analysis it is known that any periodic function can be written asa in�nite sum of sine and cosine terms (Fourier series):f(x) = 1Xn=0(an cosnx+ bn sinnx): (4.23)



4.6. DEFICIENCIES OF BACK-PROPAGATION 39We can rewrite this as a summation of sine termsf(x) = a0 + 1Xn=1 cn sin(nx+ �n); (4.24)with cn = p(a2n + b2n) and �n = arctan(b=a). This can be seen as a feed-forward network witha single input unit for x; a single output unit for f(x) and hidden units with an activationfunction F = sin(s). The factor a0 corresponds with the bias of the output unit, the factors cncorrespond with the weighs from hidden to output unit; the phase factor �n corresponds withthe bias term of the hidden units and the factor n corresponds with the weights between theinput and hidden layer.The basic di�erence between the Fourier approach and the back-propagation approach isthat the in the Fourier approach the `weights' between the input and the hidden units (theseare the factors n) are �xed integer numbers which are analytically determined, whereas in theback-propagation approach these weights can take any value and are typically learning using alearning heuristic.To illustrate the use of other activation functions we have trained a feed-forward networkwith one output unit, four hidden units, and one input with ten patterns drawn from the functionf(x) = sin(2x) sin(x). The result is depicted in Figure 4.4. The same function (albeit with otherlearning points) is learned with a network with eight (!) sigmoid hidden units (see �gure 4.5).From the �gures it is clear that it pays o� to use as much knowledge of the problem at hand aspossible.
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Figure 4.4: The periodic function f(x) = sin(2x) sin(x) approximated with sine activation functions.(Adapted from (Dastani, 1991).)4.6 De�ciencies of back-propagationDespite the apparent success of the back-propagation learning algorithm, there are some aspectswhich make the algorithm not guaranteed to be universally useful. Most troublesome is the longtraining process. This can be a result of a non-optimum learning rate and momentum. A lot ofadvanced algorithms based on back-propagation learning have some optimised method to adaptthis learning rate, as will be discussed in the next section. Outright training failures generallyarise from two sources: network paralysis and local minima.Network paralysis. As the network trains, the weights can be adjusted to very large values.The total input of a hidden unit or output unit can therefore reach very high (either positive ornegative) values, and because of the sigmoid activation function the unit will have an activationvery close to zero or very close to one. As is clear from equations (4.20) and (4.21), the weight
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2 4 6-4

+1

-1Figure 4.5: The periodic function f(x) = sin(2x) sin(x) approximated with sigmoid activation func-tions. (Adapted from (Dastani, 1991).)adjustments which are proportional to ypk(1� ypk) will be close to zero, and the training processcan come to a virtual standstill.Local minima. The error surface of a complex network is full of hills and valleys. Becauseof the gradient descent, the network can get trapped in a local minimum when there is a muchdeeper minimum nearby. Probabilistic methods can help to avoid this trap, but they tend tobe slow. Another suggested possibility is to increase the number of hidden units. Although thiswill work because of the higher dimensionality of the error space, and the chance to get trappedis smaller, it appears that there is some upper limit of the number of hidden units which, whenexceeded, again results in the system being trapped in local minima.4.7 Advanced algorithmsMany researchers have devised improvements of and extensions to the basic back-propagationalgorithm described above. It is too early for a full evaluation: some of these techniques mayprove to be fundamental, others may simply fade away. A few methods are discussed in thissection.Maybe the most obvious improvement is to replace the rather primitive steepest descentmethod with a direction set minimisation method, e.g., conjugate gradient minimisation. Notethat minimisation along a direction u brings the function f at a place where its gradient isperpendicular to u (otherwise minimisation along u is not complete). Instead of following thegradient at every step, a set of n directions is constructed which are all conjugate to each othersuch that minimisation along one of these directions uj does not spoil the minimisation along oneof the earlier directions ui, i.e., the directions are non-interfering. Thus one minimisation in thedirection of ui su�ces, such that nminimisations in a system with n degrees of freedom bring thissystem to a minimum (provided the system is quadratic). This is di�erent from gradient descent,which directly minimises in the direction of the steepest descent (Press, Flannery, Teukolsky, &Vetterling, 1986).Suppose the function to be minimised is approximated by its Taylor seriesf(x) = f(p) +Xi @f@xi ����p xi + 12 Xi;j @2f@xi@xj �����p xixj + � � �� 12xTAx� bTx+ c



4.7. ADVANCED ALGORITHMS 41where T denotes transpose, andc � f(p) b � �rf jp [A]ij � @2f@xi@xj �����p : (4.25)A is a symmetric positive de�nite2 n� n matrix, the Hessian of f at p. The gradient of f isrf = Ax� b; (4.27)such that a change of x results in a change of the gradient as�(rf) = A(�x): (4.28)Now suppose f was minimised along a direction ui to a point where the gradient �gi+1 of f isperpendicular to ui, i.e., uTi gi+1 = 0; (4.29)and a new direction ui+1 is sought. In order to make sure that moving along ui+1 does not spoilminimisation along ui we require that the gradient of f remain perpendicular to ui, i.e.,uTi gi+2 = 0; (4.30)otherwise we would once more have to minimise in a direction which has a component of ui.Combining (4.29) and (4.30), we get0 = uTi (gi+1 � gi+2) = uTi �(rf) = uTi Aui+1: (4.31)When eq. (4.31) holds for two vectors ui and ui+1 they are said to be conjugate.Now, starting at some point p0, the �rst minimisation direction u0 is taken equal to g0 =�rf(p0), resulting in a new point p1. For i � 0, calculate the directionsui+1 = gi+1 + 
iui; (4.32)where 
i is chosen to make uTi Aui�1 = 0 and the successive gradients perpendicular, i.e.,
i = gTi+1gi+1gTi gi with gk = �rf jpk for all k � 0: (4.33)Next, calculate pi+2 = pi+1 + �i+1ui+1 where �i+1 is chosen so as to minimise f(pi+2)3.It can be shown that the u's thus constructed are all mutually conjugate (e.g., see (Stoer& Bulirsch, 1980)). The process described above is known as the Fletcher-Reeves method, butthere are many variants which work more or less the same (Hestenes & Stiefel, 1952; Polak,1971; Powell, 1977).Although only n iterations are needed for a quadratic system with n degrees of freedom,due to the fact that we are not minimising quadratic systems, as well as a result of round-o�errors, the n directions have to be followed several times (see �gure 4.6). Powell introducedsome improvements to correct for behaviour in non-quadratic systems. The resulting cost isO(n) which is signi�cantly better than the linear convergence4 of steepest descent.2A matrix A is called positive de�nite if 8y 6= 0,yTAy > 0: (4.26)3This is not a trivial problem (see (Press et al., 1986).) However, line minimisation methods exist withsuper-linear convergence (see footnote 4).4A method is said to converge linearly if E i+1 = cE i with c < 1. Methods which converge with a higher power,i.e., E i+1 = c(E i)m with m > 1 are called super-linear.
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i

a very slow approximation

gradient

i+1u
u

Figure 4.6: Slow decrease with conjugate gradient in non-quadratic systems. The hills on the leftare very steep, resulting in a large search vector ui. When the quadratic portion is entered the newsearch direction is constructed from the previous direction and the gradient, resulting in a spiralingminimisation. This problem can be overcome by detecting such spiraling minimisations and restartingthe algorithm with u0 = �rf .Some improvements on back-propagation have been presented based on an independent adap-tive learning rate parameter for each weight.Van den Boomgaard and Smeulders (Boomgaard & Smeulders, 1989) show that for a feed-forward network without hidden units an incremental procedure to �nd the optimal weightmatrix W needs an adjustment of the weights with�W (t+ 1) = 
(t+ 1) (d(t+ 1)�W (t)x(t+ 1))x(t+ 1); (4.34)in which 
 is not a constant but an variable (Ni + 1) � (Ni + 1) matrix which depends on theinput vector. By using a priori knowledge about the input signal, the storage requirements for
 can be reduced.Silva and Almeida (Silva & Almeida, 1990) also show the advantages of an independent stepsize for each weight in the network. In their algorithm the learning rate is adapted after everylearning pattern:
jk(t+ 1) = 8<: u
jk(t) if @E(t+1)@wjk and @E(t)@wjk have the same signs;d
jk(t) if @E(t+1)@wjk and @E(t)@wjk have opposite signs. (4.35)where u and d are positive constants with values slightly above and below unity, respectively.The idea is to decrease the learning rate in case of oscillations.4.8 How good are multi-layer feed-forward networks?From the example shown in �gure 4.3 is is clear that the approximation of the network is notperfect. The resulting approximation error is in
uenced by:1. The learning algorithm and number of iterations. This determines how good the error onthe training set is minimized.



4.8. HOW GOOD ARE MULTI-LAYER FEED-FORWARD NETWORKS? 432. The number of learning samples. This determines how good the training samples representthe actual function.3. The number of hidden units. This determines the `expressive power' of the network. For`smooth' functions only a few number of hidden units are needed, for wildly 
uctuatingfunctions more hidden units will be needed.In the previous sections we discussed the learning rules such as back-propagation and the othergradient based learning algorithms, and the problem of �nding the minimum error. In thissection we particularly address the e�ect of the number of learning samples and the e�ect of thenumber of hidden units.We �rst have to de�ne an adequate error measure. All neural network training algorithmstry to minimize the error of the set of learning samples which are available for training thenetwork. The average error per learning sample is de�ned as the learning error rate error rate:E learning = 1Plearning PlearningXp=1 Ep;in which Ep is the di�erence between the desired output value and the actual network outputfor the learning samples: Ep = 12 NoXo=1(dpo � ypo)2:This is the error which is measurable during the training process.It is obvious that the actual error of the network will di�er from the error at the locations ofthe training samples. The di�erence between the desired output value and the actual networkoutput should be integrated over the entire input domain to give a more realistic error measure.This integral can be estimated if we have a large set of samples: the test set. We now de�ne thetest error rate as the average error of the test set:E test = 1Ptest PtestXp=1 Ep:In the following subsections we will see how these error measures depend on learning set sizeand number of hidden units.4.8.1 The e�ect of the number of learning samplesA simple problem is used as example: a function y = f(x) has to be approximated with a feed-forward neural network. A neural network is created with an input, 5 hidden units with sigmoidactivation function and a linear output unit. Suppose we have only a small number of learningsamples (e.g., 4) and the networks is trained with these samples. Training is stopped when theerror does not decrease anymore. The original (desired) function is shown in �gure 4.7A as adashed line. The learning samples and the approximation of the network are shown in the same�gure. We see that in this case E learning is small (the network output goes perfectly through thelearning samples) but E test is large: the test error of the network is large. The approximationobtained from 20 learning samples is shown in �gure 4.7B. The E learning is larger than in thecase of 5 learning samples, but the E test is smaller.This experiment was carried out with other learning set sizes, where for each learning set sizethe experiment was repeated 10 times. The average learning and test error rates as a functionof the learning set size are given in �gure 4.8. Note that the learning error increases with anincreasing learning set size, and the test error decreases with increasing learning set size. A low
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Figure 4.7: E�ect of the learning set size on the generalization. The dashed line gives the desiredfunction, the learning samples are depicted as circles and the approximation by the network is shownby the drawn line. 5 hidden units are used. a) 4 learning samples. b) 20 learning samples.learning error on the (small) learning set is no guarantee for a good network performance! Withincreasing number of learning samples the two error rates converge to the same value. Thisvalue depends on the representational power of the network: given the optimal weights, howgood is the approximation. This error depends on the number of hidden units and the activationfunction. If the learning error rate does not converge to the test error rate the learning procedurehas not found a global minimum.
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Figure 4.8: E�ect of the learning set size on the error rate. The average error rate and the averagetest error rate as a function of the number of learning samples.4.8.2 The e�ect of the number of hidden unitsThe same function as in the previous subsection is used, but now the number of hidden units isvaried. The original (desired) function, learning samples and network approximation is shownin �gure 4.9A for 5 hidden units and in �gure 4.9B for 20 hidden units. The e�ect visiblein �gure 4.9B is called overtraining. The network �ts exactly with the learning samples, butbecause of the large number of hidden units the function which is actually represented by thenetwork is far more wild than the original one. Particularly in case of learning samples whichcontain a certain amount of noise (which all real-world data have), the network will `�t the noise'of the learning samples instead of making a smooth approximation.
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Figure 4.9: E�ect of the number of hidden units on the network performance. The dashed linegives the desired function, the circles denote the learning samples and the drawn line gives theapproximation by the network. 12 learning samples are used. a) 5 hidden units. b) 20 hidden units.This example shows that a large number of hidden units leads to a small error on the trainingset but not necessarily leads to a small error on the test set. Adding hidden units will alwayslead to a reduction of the E learning. However, adding hidden units will �rst lead to a reductionof the E test, but then lead to an increase of E test. This e�ect is called the peaking e�ect. Theaverage learning and test error rates as a function of the learning set size are given in �gure 4.10.
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Figure 4.10: The average learning error rate and the average test error rate as a function of thenumber of hidden units.4.9 ApplicationsBack-propagation has been applied to a wide variety of research applications. Sejnowski andRosenberg (1987) (Sejnowski & Rosenberg, 1986) produced a spectacular success with NETtalk,a system that converts printed English text into highly intelligible speech.A feed-forward network with one layer of hidden units has been described by Gorman andSejnowski (1988) (Gorman & Sejnowski, 1988) as a classi�cation machine for sonar signals.Another application of a multi-layer feed-forward network with a back-propagation trainingalgorithm is to learn an unknown function between input and output signals from the presen-



46 CHAPTER 4. BACK-PROPAGATIONtation of examples. It is hoped that the network is able to generalise correctly, so that inputvalues which are not presented as learning patterns will result in correct output values. Anexample is the work of Josin (Josin, 1988), who used a two-layer feed-forward network withback-propagation learning to perform the inverse kinematic transform which is needed by arobot arm controller (see chapter 8).



5 Recurrent NetworksThe learning algorithms discussed in the previous chapter were applied to feed-forward networks:all data 
ows in a network in which no cycles are present.But what happens when we introduce a cycle? For instance, we can connect a hidden unitwith itself over a weighted connection, connect hidden units to input units, or even connect allunits with each other. Although, as we know from the previous chapter, the approximationalcapabilities of such networks do not increase, we may obtain decreased complexity, network size,etc. to solve the same problem.An important question we have to consider is the following: what do we want to learn ina recurrent network? After all, when one is considering a recurrent network, it is possible tocontinue propagating activation values ad in�nitum, or until a stable point (attractor) is reached.As we will see in the sequel, there exist recurrent network which are attractor based, i.e., theactivation values in the network are repeatedly updated until a stable point is reached afterwhich the weights are adapted, but there are also recurrent networks where the learning ruleis used after each propagation (where an activation value is transversed over each weight onlyonce), while external inputs are included in each propagation. In such networks, the recurrentconnections can be regarded as extra inputs to the network (the values of which are computedby the network itself).In this chapter recurrent extensions to the feed-forward network introduced in the previouschapters will be discussed|yet not to exhaustion. The theory of the dynamics of recurrentnetworks extends beyond the scope of a one-semester course on neural networks. Yet the basicsof these networks will be discussed.Subsequently some special recurrent networks will be discussed: the Hop�eld network insection 5.2, which can be used for the representation of binary patterns; subsequently we touchupon Boltzmann machines, therewith introducing stochasticity in neural computation.5.1 The generalised delta-rule in recurrent networksThe back-propagation learning rule, introduced in chapter 4, can be easily used for trainingpatterns in recurrent networks. Before we will consider this general case, however, we will �rstdescribe networks where some of the hidden unit activation values are fed back to an extra setof input units (the Elman network), or where output values are fed back into hidden units (theJordan network).A typical application of such a network is the following. Suppose we have to construct anetwork that must generate a control command depending on an external input, which is a timeseries x(t), x(t�1), x(t�2), : : :. With a feed-forward network there are two possible approaches:1. create inputs x1, x2, : : :, xn which constitute the last n values of the input vector. Thusa `time window' of the input vector is input to the network.2. create inputs x, x0, x", : : :. Besides only inputting x(t), we also input its �rst, second, etc.47



48 CHAPTER 5. RECURRENT NETWORKSderivatives. Naturally, computation of these derivatives is not a trivial task for higher-orderderivatives.The disadvantage is, of course, that the input dimensionality of the feed-forward network ismultiplied with n, leading to a very large network, which is slow and di�cult to train. TheJordan and Elman networks provide a solution to this problem. Due to the recurrent connections,a window of inputs need not be input anymore; instead, the network is supposed to learn thein
uence of the previous time steps itself.5.1.1 The Jordan networkOne of the earliest recurrent neural network was the Jordan network (Jordan, 1986a, 1986b).An exemplar network is shown in �gure 5.1. In the Jordan network, the activation values of the
ohinputunits

stateunits
Figure 5.1: The Jordan network. Output activation values are fed back to the input layer, to a setof extra neurons called the state units.output units are fed back into the input layer through a set of extra input units called the stateunits. There are as many state units as there are output units in the network. The connectionsbetween the output and state units have a �xed weight of +1; learning takes place only in theconnections between input and hidden units as well as hidden and output units. Thus all thelearning rules derived for the multi-layer perceptron can be used to train this network.5.1.2 The Elman networkThe Elman network was introduced by Elman in 1990 (Elman, 1990). In this network a set ofcontext units are introduced, which are extra input units whose activation values are fed backfrom the hidden units. Thus the network is very similar to the Jordan network, except that(1) the hidden units instead of the output units are fed back; and (2) the extra input units haveno self-connections.The schematic structure of this network is shown in �gure 5.2.Again the hidden units are connected to the context units with a �xed weight of value +1.Learning is done as follows:1. the context units are set to 0; t = 1;



5.1. THE GENERALISED DELTA-RULE IN RECURRENT NETWORKS 49output layerhidden layer
input layer context layerFigure 5.2: The Elman network. With this network, the hidden unit activation values are fed backto the input layer, to a set of extra neurons called the context units.2. pattern xt is clamped, the forward calculations are performed once;3. the back-propagation learning rule is applied;4. t t+ 1; go to 2.The context units at step t thus always have the activation value of the hidden units at stept� 1.ExampleAs we mentioned above, the Jordan and Elman networks can be used to train a network onreproducing time sequences. The idea of the recurrent connections is that the network is able to`remember' the previous states of the input values. As an example, we trained an Elman networkon controlling an object moving in 1D. This object has to follow a pre-speci�ed trajectory xd. Tocontrol the object, forces F must be applied, since the object su�ers from friction and perhapsother external forces.To tackle this problem, we use an Elman net with inputs x and xd, one output F , and threehidden units. The hidden units are connected to three context units. In total, �ve units feedinto the hidden layer.The results of training are shown in �gure 5.3. The same test can be done with an ordinary
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500400300200100�2�4Figure 5.3: Training an Elman network to control an object. The solid line depicts the desiredtrajectory xd; the dashed line the realised trajectory. The third line is the error.



50 CHAPTER 5. RECURRENT NETWORKSfeed-forward network with sliding window input. We tested this with a network with �ve inputs,four of which constituted the sliding window x�3, x�2, x�1, and x0, and one the desired nextposition of the object. Results are shown in �gure 5.4. The disappointing observation is that
0 100 200 300 400 50002

4
�2�4Figure 5.4: Training a feed-forward network to control an object. The solid line depicts the desiredtrajectory xd; the dashed line the realised trajectory. The third line is the error.the results are actually better with the ordinary feed-forward network, which has the samecomplexity as the Elman network.5.1.3 Back-propagation in fully recurrent networksMore complex schemes than the above are possible. For instance, independently of each otherPineda (Pineda, 1987) and Almeida (Almeida, 1987) discovered that error back-propagation isin fact a special case of a more general gradient learning method which can be used for trainingattractor networks. However, also when a network does not reach a �xpoint, a learning methodcan be used: back-propagation through time (Pearlmutter, 1989, 1990). This learning method,the discussion of which extents beyond the scope of our course, can be used to train a multi-layerperceptron to follow trajectories in its activation values.5.2 The Hop�eld networkOne of the earliest recurrent neural networks reported in literature was the auto-associatorindependently described by Anderson (Anderson, 1977) and Kohonen (Kohonen, 1977) in 1977.It consists of a pool of neurons with connections between each unit i and j, i 6= j (see �gure 5.5).All connections are weighted.In 1982, Hop�eld (Hop�eld, 1982) brings together several earlier ideas concerning thesenetworks and presents a complete mathematical analysis based on Ising spin models (Amit,Gutfreund, & Sompolinsky, 1986). It is therefore that this network, which we will describe inthis chapter, is generally referred to as the Hop�eld network.5.2.1 DescriptionThe Hop�eld network consists of a set of N interconnected neurons (�gure 5.5) which updatetheir activation values asynchronously and independently of other neurons. All neurons areboth input and output neurons. The activation values are binary. Originally, Hop�eld choseactivation values of 1 and 0, but using values +1 and �1 presents some advantages discussedbelow. We will therefore adhere to the latter convention.



5.2. THE HOPFIELD NETWORK 51

Figure 5.5: The auto-associator network. All neurons are both input and output neurons, i.e., apattern is clamped, the network iterates to a stable state, and the output of the network consists ofthe new activation values of the neurons.The state of the system is given by the activation values1 y = (yk). The net input sk(t+ 1)of a neuron k at cycle t+ 1 is a weighted sumsk(t+ 1) =Xj 6=k yj(t)wjk + �k: (5.1)A simple threshold function (�gure 2.2) is applied to the net input to obtain the new activationvalue yi(t+ 1) at time t+ 1:yk(t+ 1) = 8<:+1 if sk(t+ 1) > Uk�1 if sk(t+ 1) < Ukyk(t) otherwise, (5.2)i.e., yk(t+1) = sgn(sk(t+1)). For simplicity we henceforth choose Uk = 0, but this is of coursenot essential.A neuron k in the Hop�eld network is called stable at time t if, in accordance with equa-tions (5.1) and (5.2), yk(t) = sgn(sk(t� 1)): (5.3)A state � is called stable if, when the network is in state �, all neurons are stable. A patternxp is called stable if, when xp is clamped, all neurons are stable.When the extra restriction wjk = wkj is made, the behaviour of the system can be describedwith an energy function E = �12XXj 6=k yjykwjk �Xk �kyk: (5.4)Theorem 2 A recurrent network with connections wjk = wkj in which the neurons are updatedusing rule (5.2) has stable limit points.Proof First, note that the energy expressed in eq. (5.4) is bounded from below, since the yk arebounded from below and the wjk and �k are constant. Secondly, E is monotonically decreasingwhen state changes occur, because�E = ��yk0@Xj 6=k yjwjk + �k1A (5.5)is always negative when yk changes according to eqs. (5.1) and (5.2).1Often, these networks are described using the symbols used by Hop�eld: Vk for activation of unit k, Tjk forthe connection weight between units j and k, and Uk for the external input of unit k. We decided to stick to themore general symbols yk, wjk, and �k.



52 CHAPTER 5. RECURRENT NETWORKSThe advantage of a +1=�1 model over a 1=0 model then is symmetry of the states of thenetwork. For, when some pattern x is stable, its inverse is stable, too, whereas in the 1=0 modelthis is not always true (as an example, the pattern 00 � � � 00 is always stable, but 11 � � � 11 neednot be). Similarly, both a pattern and its inverse have the same energy in the +1=�1 model.Removing the restriction of bidirectional connections (i.e., wjk = wkj) results in a systemthat is not guaranteed to settle to a stable state.5.2.2 Hop�eld network as associative memoryA primary application of the Hop�eld network is an associative memory. In this case, theweights of the connections between the neurons have to be thus set that the states of the systemcorresponding with the patterns which are to be stored in the network are stable. These statescan be seen as `dips' in energy space. When the network is cued with a noisy or incomplete testpattern, it will render the incorrect or missing data by iterating to a stable state which is insome sense `near' to the cued pattern.The Hebb rule can be used (section 2.3.2) to store P patterns:wjk = 8><>: PXp=1xpjxpk if j 6= k0 otherwise, (5.6)i.e., if xpj and xpk are equal, wjk is increased, otherwise decreased by one (note that, in the originalHebb rule, weights only increase). It appears, however, that the network gets saturated veryquickly, and that about 0:15N memories can be stored before recall errors become severe.There are two problems associated with storing too many patterns:1. the stored patterns become unstable;2. spurious stable states appear (i.e., stable states which do not correspond with storedpatterns).The �rst of these two problems can be solved by an algorithm proposed by Bruce et al. (Bruce,Canning, Forrest, Gardner, & Wallace, 1986):Algorithm 1 Given a starting weight matrix W = hwjki, for each pattern xp to be stored andeach element xpk in xp de�ne a correction �k such that�k = � 0 if yk is stable and xp is clamped;1 otherwise. (5.7)Now modify wjk by �wjk = yjyk(�j + �k) if j 6= k. Repeat this procedure until all patterns arestable.It appears that, in practice, this algorithm usually converges. There exist cases, however, wherethe algorithm remains oscillatory (try to �nd one)!The second problem stated above can be alleviated by applying the Hebb rule in reverse tothe spurious stable state, but with a low learning factor (Hop�eld, Feinstein, & Palmer, 1983).Thus these patterns are weakly unstored and will become unstable again.5.2.3 Neurons with graded responseThe network described in section 5.2.1 can be generalised by allowing continuous activationvalues. Here, the threshold activation function is replaced by a sigmoid. As before, this systemcan be proved to be stable when a symmetric weight matrix is used (Hop�eld, 1984).



5.2. THE HOPFIELD NETWORK 53Hop�eld networks for optimisation problemsAn interesting application of the Hop�eld network with graded response arises in a heuristicsolution to the NP-complete travelling salesman problem (Garey & Johnson, 1979). In thisproblem, a path of minimal distance must be found between n cities, such that the begin- andend-points are the same.Hop�eld and Tank (Hop�eld & Tank, 1985) use a network with n � n neurons. Each rowin the matrix represents a city, whereas each column represents the position in the tour. Whenthe network is settled, each row and each column should have one and only one active neuron,indicating a speci�c city occupying a speci�c position in the tour. The neurons are updated usingrule (5.2) with a sigmoid activation function between 0 and 1. The activation value yXj = 1indicates that city X occupies the jth place in the tour.An energy function describing this problem can be set up as follows. To ensure a correctsolution, the following energy must be minimised:E = A2 XX Xj Xk 6=j yXjyXk+ B2 Xj XX XX 6=Y yXjyY j+ C2 0@XX Xj yXj � n1A2 (5.8)where A, B, and C are constants. The �rst and second terms in equation (5.8) are zero if andonly if there is a maximum of one active neuron in each row and column, respectively. The lastterm is zero if and only if there are exactly n active neurons.To minimise the distance of the tour, an extra termD2 XX XY 6=XXj dXY yXj(yY;j+1 + yY;j�1) (5.9)is added to the energy, where dXY is the distance between cities X and Y and D is a constant.For convenience, the subscripts are de�ned modulo n.The weights are set as follows:wXj;Y k = �A�XY (1� �jk) inhibitory connections within each row�B�jk(1� �XY ) inhibitory connections within each column�C global inhibition�DdXY (�k;j+1 + �k;j�1) data term (5.10)where �jk = 1 if j = k and 0 otherwise. Finally, each neuron has an external bias input Cn.DiscussionAlthough this application is interesting from a theoretical point of view, the applicability islimited. Whereas Hop�eld and Tank state that, in a ten city tour, the network converges to avalid solution in 16 out of 20 trials while 50% of the solutions are optimal, other reports showless encouraging results. For example, (Wilson & Pawley, 1988) �nd that in only 15% of theruns a valid result is obtained, few of which lead to an optimal or near-optimal solution. Themain problem is the lack of global information. Since, for an N -city problem, there are N !possible tours, each of which may be traversed in two directions as well as started in N points,the number of di�erent tours is N !=2N . Di�erently put, the N -dimensional hypercube in whichthe solutions are situated is 2N degenerate. The degenerate solutions occur evenly within the



54 CHAPTER 5. RECURRENT NETWORKShypercube, such that all but one of the �nal 2N con�gurations are redundant. The competitionbetween the degenerate tours often leads to solutions which are piecewise optimal but globallyine�cient.5.3 Boltzmann machinesThe Boltzmann machine, as �rst described by Ackley, Hinton, and Sejnowski in 1985 (Ackley,Hinton, & Sejnowski, 1985) is a neural network that can be seen as an extension to Hop�eldnetworks to include hidden units, and with a stochastic instead of deterministic update rule.The weights are still symmetric. The operation of the network is based on the physics principleof annealing . This is a process whereby a material is heated and then cooled very, very slowly toa freezing point. As a result, the crystal lattice will be highly ordered, without any impurities,such that the system is in a state of very low energy. In the Boltzmann machine this systemis mimicked by changing the deterministic update of equation (5.2) in a stochastic update, inwhich a neuron becomes active with a probability p,p(yk  +1) = 11 + e��Ek=T (5.11)where T is a parameter comparable with the (synthetic) temperature of the system. Thisstochastic activation function is not to be confused with neurons having a sigmoid deterministicactivation function.In accordance with a physical system obeying a Boltzmann distribution, the network willeventually reach `thermal equilibrium' and the relative probability of two global states � and �will follow the Boltzmann distribution P�P� = e�(E��E�)=T (5.12)where P� is the probability of being in the �th global state, and E� is the energy of that state.Note that at thermal equilibrium the units still change state, but the probability of �nding thenetwork in any global state remains constant.At low temperatures there is a strong bias in favour of states with low energy, but thetime required to reach equilibrium may be long. At higher temperatures the bias is not sofavourable but equilibrium is reached faster. A good way to beat this trade-o� is to start at ahigh temperature and gradually reduce it. At high temperatures, the network will ignore smallenergy di�erences and will rapidly approach equilibrium. In doing so, it will perform a search ofthe coarse overall structure of the space of global states, and will �nd a good minimum at thatcoarse level. As the temperature is lowered, it will begin to respond to smaller energy di�erencesand will �nd one of the better minima within the coarse-scale minimum it discovered at hightemperature.As multi-layer perceptrons, the Boltzmann machine consists of a non-empty set of visibleand a possibly empty set of hidden units. Here, however, the units are binary-valued and areupdated stochastically and asynchronously. The simplicity of the Boltzmann distribution leadsto a simple learning procedure which adjusts the weights so as to use the hidden units in anoptimal way (Ackley et al., 1985). This algorithm works as follows.First, the input and output vectors are clamped. The network is then annealed until itapproaches thermal equilibrium at a temperature of 0. It then runs for a �xed time at equi-librium and each connection measures the fraction of the time during which both the units itconnects are active. This is repeated for all input-output pairs so that each connection canmeasure hyjykiclamped, the expected probability, averaged over all cases, that units j and k aresimultaneously active at thermal equilibrium when the input and output vectors are clamped.



5.3. BOLTZMANN MACHINES 55Similarly, hyjykifree is measured when the output units are not clamped but determined by thenetwork.In order to determine optimal weights in the network, an error function must be determined.Now, the probability P free(yp) that the visible units are in state yp when the system is runningfreely can be measured. Also, the desired probability P clamped(yp) that the visible units arein state yp is determined by clamping the visible units and letting the network run. Now, ifthe weights in the network are correctly set, both probabilities are equal to each other, and theerror E in the network must be 0. Otherwise, the error must have a positive value measuringthe discrepancy between the network's internal mode and the environment. For this e�ect, the`asymmetric divergence' or `Kullback information' is used:E =Xp P clamped(yp) log P clamped(yp)P free(yp) ; (5.13)Now, in order to minimise E using gradient descent, we must change the weights according to�wjk = �
 @E@wjk : (5.14)It is not di�cult to show that@E@wjk = � 1T �hyjykiclamped � hyjykifree� : (5.15)Therefore, each weight is updated by�wjk = 
 �hyjykiclamped � hyjykifree� : (5.16)
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6 Self-Organising Networks
In the previous chapters we discussed a number of networks which were trained to perform amapping F : <n ! <m by presenting the network `examples' (xp;dp) with dp = F (xp) of thismapping. However, problems exist where such training data, consisting of input and desiredoutput pairs are not available, but where the only information is provided by a set of inputpatterns xp. In these cases the relevant information has to be found within the (redundant)training samples xp.Some examples of such problems are:� clustering: the input data may be grouped in `clusters' and the data processing systemhas to �nd these inherent clusters in the input data. The output of the system should givethe cluster label of the input pattern (discrete output);� vector quantisation: this problem occurs when a continuous space has to be discretised.The input of the system is the n-dimensional vector x, the output is a discrete repre-sentation of the input space. The system has to �nd optimal discretisation of the inputspace;� dimensionality reduction: the input data are grouped in a subspace which has lower di-mensionality than the dimensionality of the data. The system has to learn an optimalmapping, such that most of the variance in the input data is preserved in the output data;� feature extraction: the system has to extract features from the input signal. This oftenmeans a dimensionality reduction as described above.In this chapter we discuss a number of neuro-computational approaches for these kinds ofproblems. Training is done without the presence of an external teacher. The unsupervisedweight adapting algorithms are usually based on some form of global competition between theneurons.There are very many types of self-organising networks, applicable to a wide area of problems.One of the most basic schemes is competitive learning as proposed by Rumelhart and Zipser(Rumelhart & Zipser, 1985). A very similar network but with di�erent emergent propertiesis the topology-conserving map devised by Kohonen. Other self-organising networks are ART,proposed by Carpenter and Grossberg (Carpenter & Grossberg, 1987a; Grossberg, 1976), andFukushima's cognitron (Fukushima, 1975, 1988).6.1 Competitive learning6.1.1 ClusteringCompetitive learning is a learning procedure that divides a set of input patterns in clustersthat are inherent to the input data. A competitive learning network is provided only with input57



58 CHAPTER 6. SELF-ORGANISING NETWORKSvectors x and thus implements an unsupervised learning procedure. We will show its equivalenceto a class of `traditional' clustering algorithms shortly. Another important use of these networksis vector quantisation, as discussed in section 6.1.2.o
i wio

Figure 6.1: A simple competitive learning network. Each of the four outputs o is connected to allinputs i.An example of a competitive learning network is shown in �gure 6.1. All output units o areconnected to all input units i with weights wio. When an input pattern x is presented, only asingle output unit of the network (the winner) will be activated. In a correctly trained network,all x in one cluster will have the same winner. For the determination of the winner and thecorresponding learning rule, two methods exist.Winner selection: dot productFor the time being, we assume that both input vectors x and weight vectors wo are normalisedto unit length. Each output unit o calculates its activation value yo according to the dot productof input and weight vector: yo =Xi wioxi =woTx: (6.1)In a next pass, output neuron k is selected with maximum activation8o 6= k : yo � yk: (6.2)Activations are reset such that yk = 1 and yo 6=k = 0. This is is the competitive aspect of thenetwork, and we refer to the output layer as the winner-take-all layer. The winner-take-all layeris usually implemented in software by simply selecting the output neuron with highest activationvalue. This function can also be performed by a neural network known as MAXNET (Lippmann,1989). In MAXNET, all neurons o are connected to other units o0 with inhibitory links and toitself with an excitatory link: wo;o0 = ��� if o 6= o0+1 otherwise. (6.3)It can be shown that this network converges to a situation where only the neuron with highestinitial activation survives, whereas the activations of all other neurons converge to zero. Fromnow on, we will simply assume a winner k is selected without being concerned which algorithmis used.Once the winner k has been selected, the weights are updated according to:wk(t+ 1) = wk(t) + 
(x(t)�wk(t))kwk(t) + 
(x(t)�wk(t))k (6.4)where the divisor ensures that all weight vectors w are normalised. Note that only the weightsof winner k are updated.The weight update given in equation (6.4) e�ectively rotates the weight vector wo towardsthe input vector x. Each time an input x is presented, the weight vector closest to this input is
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weight vector

pattern vectorw1w2 w3
Figure 6.2: Example of clustering in 3D with normalised vectors, which all lie on the unity sphere. Thethree weight vectors are rotated towards the centres of gravity of the three di�erent input clusters.selected and is subsequently rotated towards the input. Consequently, weight vectors are rotatedtowards those areas where many inputs appear: the clusters in the input. This procedure isvisualised in �gure 6.2.

a. b.

xw1 w2
w1

x w2Figure 6.3: Determining the winner in a competitive learning network. a. Three normalised vectors.b. The three vectors having the same directions as in a., but with di�erent lengths. In a., vectorsx and w1 are nearest to each other, and their dot product xTw1 = jxjjw1j cos� is larger than thedot product of x and w2. In b., however, the pattern and weight vectors are not normalised, and inthis case w2 should be considered the `winner' when x is applied. However, the dot product xTw1is still larger than xTw2.Winner selection: Euclidean distancePreviously it was assumed that both inputs x and weight vectors w were normalised. Using thethe activation function given in equation (6.1) gives a `biological plausible' solution. In �gure 6.3it is shown how the algorithm would fail if unnormalised vectors were to be used. Naturallyone would like to accommodate the algorithm for unnormalised input data. To this end, thewinning neuron k is selected with its weight vector wk closest to the input pattern x, using the



60 CHAPTER 6. SELF-ORGANISING NETWORKSEuclidean distance measure: k : kwk � xk � kwo � xk 8o: (6.5)It is easily checked that equation (6.5) reduces to (6.1) and (6.2) if all vectors are normalised. TheEuclidean distance norm is therefore a more general case of equations (6.1) and (6.2). Instead ofrotating the weight vector towards the input as performed by equation (6.4), the weight updatemust be changed to implement a shift towards the input:wk(t+ 1) =wk(t) + 
(x(t)�wk(t)): (6.6)Again only the weights of the winner are updated.A point of attention in these recursive clustering techniques is the initialisation. Especiallyif the input vectors are drawn from a large or high-dimensional input space, it is not beyondimagination that a randomly initialised weight vector wo will never be chosen as the winnerand will thus never be moved and never be used. Therefore, it is customary to initialise weightvectors to a set of input patterns fxg drawn from the input set at random. Another morethorough approach that avoids these and other problems in competitive learning is called leakylearning . This is implemented by expanding the weight update given in equation (6.6) withwl(t+ 1) =wl(t) + 
0(x(t)�wl(t)) 8l 6= k (6.7)with 
0 � 
 the leaky learning rate. A somewhat similar method is known as frequency sensitivecompetitive learning (Ahalt, Krishnamurthy, Chen, & Melton, 1990). In this algorithm,each neuron records the number of times it is selected winner. The more often it wins, the lesssensitive it becomes to competition. Conversely, neurons that consistently fail to win increasetheir chances of being selected winner.Cost functionEarlier it was claimed, that a competitive network performs a clustering process on the inputdata. I.e., input patterns are divided in disjoint clusters such that similarities between inputpatterns in the same cluster are much bigger than similarities between inputs in di�erent clusters.Similarity is measured by a distance function on the input vectors, as discussed before. Acommon criterion to measure the quality of a given clustering is the square error criterion, givenby E =Xp kwk � xpk2 (6.8)where k is the winning neuron when input xp is presented. The weights w are interpretedas cluster centres. It is not di�cult to show that competitive learning indeed seeks to �nd aminimum for this square error by following the negative gradient of the error-function:Theorem 3 The error function for pattern xpEp = 12Xi (wki � xpi )2; (6.9)where k is the winning unit, is minimised by the weight update rule in eq. (6.6).Proof As in eq. (3.12), we calculate the e�ect of a weight change on the error function. So wehave that �pwio = �
 @Ep@wio (6.10)where 
 is a constant of proportionality. Now, we have to determine the partial derivative of Ep:@Ep@wio = nwio � xpi if unit o wins0 otherwise (6.11)



6.1. COMPETITIVE LEARNING 61such that �pwio = �
(wio � xpi ) = 
(xpo � wio) (6.12)which is eq. (6.6) written down for one element of wo.Therefore, eq. (6.8) is minimised by repeated weight updates using eq. (6.6).An almost identical process of moving cluster centres is used in a large family of conven-tional clustering algorithms known as square error clustering methods, e.g., k-means, FORGY,ISODATA, CLUSTER.ExampleIn �gure 6.4, 8 clusters of each 6 data points are depicted. A competitive learning network usingEuclidean distance to select the winner was initialised with all weight vectors wo = 0. Thenetwork was trained with 
 = 0:1 and a 
0 = 0:001 and the positions of the weights after 500iterations are shown.
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Figure 6.4: Competitive learning for clustering data. The data are given by \+". The positions ofthe weight vectors after 500 iterations is given by \o".6.1.2 Vector quantisationAnother important use of competitive learning networks is found in vector quantisation. A vectorquantisation scheme divides the input space in a number of disjoint subspaces and represents eachinput vector x by the label of the subspace it falls into (i.e., index k of the winning neuron). Thedi�erence with clustering is that we are not so much interested in �nding clusters of similar data,but more in quantising the entire input space. The quantisation performed by the competitivelearning network is said to `track the input probability density function': the density of neuronsand thus subspaces is highest in those areas where inputs are most likely to appear, whereasa more coarse quantisation is obtained in those areas where inputs are scarce. An example oftracking the input density is sketched in �gure 6.5. Vector quantisation through competitive
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: input pattern : weight vector

x2

x1Figure 6.5: This �gure visualises the tracking of the input density. The input patterns are drawnfrom <2; the weight vectors also lie in <2. In the areas where inputs are scarce, the upper part of the�gure, only few (in this case two) neurons are used to discretise the input space. Thus, the upperpart of the input space is divided into two large separate regions. The lower part, however, wheremany more inputs have occurred, �ve neurons discretise the input space into �ve smaller subspaces.learning results in a more �ne-grained discretisation in those areas of the input space wheremost input have occurred in the past.In this way, competitive learning can be used in applications where data has to be com-pressed such as telecommunication or storage. However, competitive learning has also be usedin combination with supervised learning methods, and be applied to function approximationproblems or classi�cation problems. We will describe two examples: the \counterpropagation"method and the \learning vector quantization".CounterpropagationIn a large number of applications, networks that perform vector quantisation are combined withanother type of network in order to perform function approximation. An example of such a
forward

feed-vector

quantisationi h o ywhowihFigure 6.6: A network combining a vector quantisation layer with a 1-layer feed-forward neuralnetwork. This network can be used to approximate functions from <2 to <2, the input space <2 isdiscretised in 5 disjoint subspaces.



6.1. COMPETITIVE LEARNING 63network is given in �gure 6.6. This network can approximate a functionf : <n ! <mby associating with each neuron o a function value [w1o; w2o; : : : ; wmo]T which is somehow repre-sentative for the function values f(x) of inputs x represented by o. This way of approximatinga function e�ectively implements a `look-up table': an input x is assigned to a table entry kwith 8o 6= k: kx �wkk � kx �wok, and the function value [w1k; w2k; : : : ; wmk]T in this tableentry is taken as an approximation of f(x). A well-known example of such a network is theCounterpropagation network (Hecht-Nielsen, 1988).Depending on the application, one can choose to perform the vector quantisation beforelearning the function approximation, or one can choose to learn the quantisation and the ap-proximation layer simultaneously. As an example of the latter, the network presented in �gure 6.6can be supervisedly trained in the following way:1. present the network with both input x and function value d = f(x);2. perform the unsupervised quantisation step. For each weight vector, calculate the distancefrom its weight vector to the input pattern and �nd winner k. Update the weights wihwith equation (6.6);3. perform the supervised approximation step:wko(t+ 1) = wko(t) + 
(do � wko(t)): (6.13)This is simply the �-rule with yo =Ph yhwho = wko when k is the winning neuron and thedesired output is given by d = f(x).If we de�ne a function g(x; k) as :g(x; k) = ( 1 if k is winner0 otherwise (6.14)it can be shown that this learning procedure converges towho = Z<n yog(x; h) dx: (6.15)I.e., each table entry converges to the mean function value over all inputs in the subspacerepresented by that table entry. As we have seen before, the quantisation scheme tracks theinput probability density function, which results in a better approximation of the function inthose areas where input is most likely to appear.Not all functions are represented accurately by this combination of quantisation and approx-imation layers. E.g., a simple identity or combinations of sines and cosines are much betterapproximated by multilayer back-propagation networks if the activation functions are chosenappropriately. However, if we expect our input to be (a subspace of) a high dimensional inputspace <n and we expect our function f to be discontinuous at numerous points, the combinationof quantisation and approximation is not uncommon and probably very e�cient. Of course thiscombination extends itself much further than the presented combination of the presented singlelayer competitive learning network and the single layer feed-forward network. The latter couldbe replaced by a reinforcement learning procedure (see chapter 7). The quantisation layer canbe replaced by various other quantisation schemes, such as Kohonen networks (see section 6.2)or octree methods (Jansen, Smagt, & Groen, 1994). In fact, various modern statistical functionapproximation methods (CART, MARS (Breiman, Friedman, Olshen, & Stone, 1984; Friedman,1991)) are based on this very idea, extended with the possibility to have the approximation layerin
uence the quantisation layer (e.g., to obtain a better or locally more �ne-grained quantisa-tion). Recent research (Rosen, Goodwin, & Vidal, 1992) also investigates in this direction.



64 CHAPTER 6. SELF-ORGANISING NETWORKSLearning Vector QuantisationIt is an unpleasant habit in neural network literature, to also cover Learning Vector Quantisation(LVQ) methods in chapters on unsupervised clustering. Granted that these methods also performa clustering or quantisation task and use similar learning rules, they are trained supervisedlyand perform discriminant analysis rather than unsupervised clustering. These networks attemptto de�ne `decision boundaries' in the input space, given a large set of exemplary decisions (thetraining set); each decision could, e.g., be a correct class label.A rather large number of slightly di�erent LVQ methods is appearing in recent literature.They are all based on the following basic algorithm:1. with each output neuron o, a class label (or decision of some other kind) yo is associated;2. a learning sample consists of input vector xp together with its correct class label ypo ;3. using distance measures between weight vectors wo and input vector xp, not only thewinner k1 is determined, but also the second best k2:kxp �wk1k < kxp �wk2k < kxp �wik 8o 6= k1; k2;4. the labels ypk1 , ypk2 are compared with dp. The weight update rule given in equation (6.6)is used selectively based on this comparison.An example of the last step is given by the LVQ2 algorithm by Kohonen (Kohonen, 1977), usingthe following strategy:� if ypk1 6= dp and dp = ypk2 ;� and kxp �wk2k � kxp �wk1k < �;� then wk2(t+ 1) =wk2 + 
(x �wk2(t))� and wk1(t+ 1) =wk1(t)� 
(x �wk1(t))I.e., wk2 with the correct label is moved towards the input vector, while wk1 with the incorrectlabel is moved away from it.The new LVQ algorithms that are emerging all use di�erent implementations of these di�erentsteps, e.g., how to de�ne class labels yo, how many `next-best' winners are to be determined,how to adapt the number of output neurons i and how to selectively use the weight update rule.6.2 Kohonen networkThe Kohonen network (Kohonen, 1982, 1984) can be seen as an extension to the competitivelearning network, although this is chronologically incorrect. Also, the Kohonen network has adi�erent set of applications.In the Kohonen network, the output units in S are ordered in some fashion, often in a two-dimensional grid or array, although this is application-dependent. The ordering, which is chosenby the user1, determines which output neurons are neighbours.Now, when learning patterns are presented to the network, the weights to the output unitsare thus adapted such that the order present in the input space <N is preserved in the output,i.e., the neurons in S. This means that learning patterns which are near to each other in theinput space (where `near' is determined by the distance measure used in �nding the winning unit)1Of course, variants have been designed which automatically generate the structure of the network (Martinetz& Schulten, 1991; Fritzke, 1991).



6.2. KOHONEN NETWORK 65must be mapped on output units which are also near to each other, i.e., the same or neighbouringunits. Thus, if inputs are uniformly distributed in <N and the order must be preserved, thedimensionality of S must be at least N . The mapping, which represents a discretisation of theinput space, is said to be topology preserving . However, if the inputs are restricted to a subspaceof <N , a Kohonen network can be used of lower dimensionality. For example: data on a two-dimensional manifold in a high dimensional input space can be mapped onto a two-dimensionalKohonen network, which can for example be used for visualisation of the data.Usually, the learning patterns are random samples from <N . At time t, a sample x(t) isgenerated and presented to the network. Using the same formulas as in section 6.1, the winningunit k is determined. Next, the weights to this winning unit as well as its neighbours are adaptedusing the learning rulewo(t+ 1) =wo(t) + 
g(o; k) (x(t)�wo(t)) 8o 2 S: (6.16)Here, g(o; k) is a decreasing function of the grid-distance between units o and k, such thatg(k; k) = 1. For example, for g() a Gaussian function can be used, such that (in one dimension!)g(o; k) = exp ��(o� k)2� (see �gure 6.7). Due to this collective learning scheme, input signals
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Figure 6.7: Gaussian neuron distance function g(). In this case, g() is shown for a two-dimensionalgrid because it looks nice.which are near to each other will be mapped on neighbouring neurons. Thus the topologyinherently present in the input signals will be preserved in the mapping, such as depicted in�gure 6.8.
Iteration 0 Iteration 200 Iteration 600 Iteration 1900Figure 6.8: A topology-conserving map converging. The weight vectors of a network with two inputsand 8� 8 output neurons arranged in a planar grid are shown. A line in each �gure connects weightwi;(o1;o2) with weights wi;(o1+1;o2) and wi;(i1;i2+1). The leftmost �gure shows the initial weights; therightmost when the map is almost completely formed.If the intrinsic dimensionality of S is less than N , the neurons in the network are `folded' inthe input space, such as depicted in �gure 6.9.



66 CHAPTER 6. SELF-ORGANISING NETWORKS
Figure 6.9: The mapping of a two-dimensional input space on a one-dimensional Kohonen network.The topology-conserving quality of this network has many counterparts in biological brains.The brain is organised in many places so that aspects of the sensory environment are representedin the form of two-dimensional maps. For example, in the visual system, there are severaltopographic mappings of visual space onto the surface of the visual cortex. There are organisedmappings of the body surface onto the cortex in both motor and somatosensory areas, andtonotopic mappings of frequency in the auditory cortex. The use of topographic representations,where some important aspect of a sensory modality is related to the physical locations of thecells on a surface, is so common that it obviously serves an important information processingfunction.It does not come as a surprise, therefore, that already many applications have been devisedof the Kohonen topology-conserving maps. Kohonen himself has successfully used the networkfor phoneme-recognition (Kohonen, Makisara, & Saramaki, 1984). Also, the network has beenused to merge sensory data from di�erent kinds of sensors, such as auditory and visual, `looking'at the same scene (Gielen, Krommenhoek, & Gisbergen, 1991). Yet another application is inrobotics, such as shown in section 8.1.1.To explain the plausibility of a similar structure in biological networks, Kohonen remarksthat the lateral inhibition between the neurons could be obtained via e�erent connections be-tween those neurons. In one dimension, those connection strengths form a `Mexican hat' (see�gure 6.10).

lateral distance

excitation

Figure 6.10: Mexican hat. Lateral interaction around the winning neuron as a function of distance:excitation to nearby neurons, inhibition to farther o� neurons.6.3 Principal component networks6.3.1 IntroductionThe networks presented in the previous sections can be seen as (nonlinear) vector transformationswhich map an input vector to a number of binary output elements or neurons. The weights areadjusted in such a way that they could be considered as prototype vectors (vectorial means) forthe input patterns for which the competing neuron wins.The self-organising transform described in this section rotates the input space in such away that the values of the output neurons are as uncorrelated as possible and the energy orvariances of the patterns is mainly concentrated in a few output neurons. An example is shown
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Figure 6.11: Distribution of input samples.in �gure 6.11. The two dimensional samples (x1; x2) are plotted in the �gure. It can be easilyseen that x1 and x2 are related, such that if we know x1 we can make a reasonable predictionof x2 and vice versa since the points are centered around the line x1 = x2. If we rotate the axesover �=4 we get the (e1; e2) axis as plotted in the �gure. Here the conditional prediction has nouse because the points have uncorrelated coordinates. Another property of this rotation is thatthe variance or energy of the transformed patterns is maximised on a lower dimension. This canbe intuitively veri�ed by comparing the spreads (dx1 ; dx2) and (de1 ; de2) in the �gures. After therotation, the variance of the samples is large along the e1 axis and small along the e2 axis.This transform is very closely related to the eigenvector transformation known from imageprocessing where the image has to be coded or transformed to a lower dimension and recon-structed again by another transform as well as possible (see section 9.3.2).The next section describes a learning rule which acts as a Hebbian learning rule, but whichscales the vector length to unity. In the subsequent section we will see that a linear neuron witha normalised Hebbian learning rule acts as such a transform, extending the theory in the lastsection to multi-dimensional outputs.6.3.2 Normalised Hebbian ruleThe model considered here consists of one linear(!) neuron with input weights w. The outputyo(t) of this neuron is given by the usual inner product of its weight w and the input vector x:yo(:t) =w(t)Tx(t) (6.17)As seen in the previous sections, all models are based on a kind of Hebbian learning. However,the basic Hebbian rule would make the weights grow uninhibitedly if there were correlation inthe input patterns. This can be overcome by normalising the weight vector to a �xed length,typically 1, which leads to the following learning rulew(t+ 1) = w(t) + 
y(t)x(t)L (w(t) + 
y(t)x(t)) (6.18)where L(�) indicates an operator which returns the vector length, and 
 is a small learningparameter. Compare this learning rule with the normalised learning rule of competitive learning.There the delta rule was normalised, here the standard Hebb rule is.



68 CHAPTER 6. SELF-ORGANISING NETWORKSNow the operator which computes the vector length, the norm of the vector, can be approx-imated by a Taylor expansion around 
 = 0:L (w(t) + 
y(t)x(t)) = 1 + 
 @L@
 ����
=0 +O(
2): (6.19)When we substitute this expression for the vector length in equation (6.18), it resolves forsmall 
 to2 w(t+ 1) = (w(t) + 
y(t)x(t)) 1� 
 @L@
 ����
=0 +O(
2)! : (6.20)Since �L�
 j
=0 = y(t)2, discarding the higher order terms of 
 leads tow(t+ 1) =w(t) + 
y(t) (x(t)� y(t)w(t)) (6.21)which is called the `Oja learning rule' (Oja, 1982). This learning rule thus modi�es the weightin the usual Hebbian sense, the �rst product terms is the Hebb rule yo(t)x(t), but normalisesits weight vector directly by the second product term �yo(t)yo(t)w(t). What exactly does thislearning rule do with the weight vector?6.3.3 Principal component extractorRemember probability theory? Consider an N -dimensional signal x(t) with� mean � = E(x(t));� correlation matrix R = E((x(t)� �)(x(t)� �)T ).In the following we assume the signal mean to be zero, so � = 0.From equation (6.21) we see that the expectation of the weights for the Oja learning ruleequals E(w(t+ 1)jw(t)) =w(t) + 
 �Rw(t)� �w(t)TRw(t)�w(t)� (6.22)which has a continuous counterpartddtw(t) = Rw(t)� �w(t)TRw(t)�w(t): (6.23)Theorem 1 Let the eigenvectors ei of R be ordered with descending associated eigenvalues �isuch that �1 > �2 > : : : > �N . With equation (6.23) the weights w(t) will converge to �e1.Proof 1 Since the eigenvectors of R span the N -dimensional space, the weight vector can bedecomposed as w(t) = NXi �i(t)ei: (6.24)Substituting this in the di�erential equation and concluding the theorem is left as an exercise.2Remembering that 1=(1 + a
) = 1� a
 +O(
2).



6.4. ADAPTIVE RESONANCE THEORY 696.3.4 More eigenvectorsIn the previous section it was shown that a single neuron's weight converges to the eigenvector ofthe correlation matrix with maximum eigenvalue, i.e., the weight of the neuron is directed in thedirection of highest energy or variance of the input patterns. Here we tackle the question of howto �nd the remaining eigenvectors of the correlation matrix given the �rst found eigenvector.Consider the signal x which can be decomposed into the basis of eigenvectors ei of itscorrelation matrix R, x = NXi �iei (6.25)If we now subtract the component in the direction of e1, the direction in which the signal hasthe most energy, from the signal x ~x = x � �1e1 (6.26)we are sure that when we again decompose ~x into the eigenvector basis, the coe�cient �1 = 0,simply because we just subtracted it. We call ~x the de
ation of x.If now a second neuron is taught on this signal ~x, then its weights will lie in the direction of theremaining eigenvector with the highest eigenvalue. Since the de
ation removed the componentin the direction of the �rst eigenvector, the weight will converge to the remaining eigenvectorwith maximum eigenvalue. In the previous section we ordered the eigenvalues in magnitude, soaccording to this de�nition in the limit we will �nd e2. We can continue this strategy and �ndall the N eigenvectors belonging to the signal x.We can write the de
ation in neural network terms if we see thatyo =wTx = eT1 NXi �iei = �i (6.27)since w = e1: (6.28)So that the de
ated vector ~x equals ~x = x � yow: (6.29)The term subtracted from the input vector can be interpreted as a kind of a back-projection orexpectation. Compare this to ART described in the next section.6.4 Adaptive resonance theoryThe last unsupervised learning network we discuss di�ers from the previous networks in that itis recurrent; as with networks in the next chapter, the data is not only fed forward but also backfrom output to input units.6.4.1 Background: Adaptive resonance theoryIn 1976, Grossberg (Grossberg, 1976) introduced a model for explaining biological phenomena.The model has three crucial properties:1. a normalisation of the total network activity. Biological systems are usually very adaptiveto large changes in their environment. For example, the human eye can adapt itself tolarge variations in light intensities;2. contrast enhancement of input patterns. The awareness of subtle di�erences in inputpatterns can mean a lot in terms of survival. Distinguishing a hiding panther from aresting one makes all the di�erence in the world. The mechanism used here is contrastenhancement;



70 CHAPTER 6. SELF-ORGANISING NETWORKS3. short-term memory (STM) storage of the contrast-enhanced pattern. Before the inputpattern can be decoded, it must be stored in the short-term memory. The long-termmemory (LTM) implements an arousal mechanism (i.e., the classi�cation), whereas theSTM is used to cause gradual changes in the LTM.The system consists of two layers, F1 and F2, which are connected to each other via theLTM (see �gure 6.12). The input pattern is received at F1, whereas classi�cation takes place inF2. As mentioned before, the input is not directly classi�ed. First a characterisation takes place
LTMLTM

STM activity pattern

STM activity pattern

category representation field

feature representation field
F1

F2

inputFigure 6.12: The ART architecture.by means of extracting features, giving rise to activation in the feature representation �eld. Theexpectations, residing in the LTM connections, translate the input pattern to a categorisationin the category representation �eld. The classi�cation is compared to the expectation of thenetwork, which resides in the LTM weights from F2 to F1. If there is a match, the expectationsare strengthened, otherwise the classi�cation is rejected.6.4.2 ART1: The simpli�ed neural network modelThe ART1 simpli�ed model consists of two layers of binary neurons (with values 1 and 0), calledF1 (the comparison layer) and F2 (the recognition layer) (see �gure 6.13). Each neuron in F1is connected to all neurons in F2 via the continuous-valued forward long term memory (LTM)W f , and vice versa via the binary-valued backward LTM W b. The other modules are gain 1and 2 (G1 and G2), and a reset module.Each neuron in the comparison layer receives three inputs: a component of the input pattern,a component of the feedback pattern, and a gain G1. A neuron outputs a 1 if and only if atleast three of these inputs are high: the `two-thirds rule.'The neurons in the recognition layer each compute the inner product of their incoming(continuous-valued) weights and the pattern sent over these connections. The winning neuronthen inhibits all the other neurons via lateral inhibition.Gain 2 is the logical `or' of all the elements in the input pattern x.Gain 1 equals gain 2, except when the feedback pattern from F2 contains any 1; then it isforced to zero.Finally, the reset signal is sent to the active neuron in F2 if the input vector x and theoutput of F1 di�er by more than some vigilance level.OperationThe network starts by clamping the input at F1. Because the output of F2 is zero, G1 and G2are both on and the output of F1 matches its input.
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Figure 6.13: The ART1 neural network.The pattern is sent to F2, and in F2 one neuron becomes active. This signal is then sentback over the backward LTM, which reproduces a binary pattern at F1. Gain 1 is inhibited,and only the neurons in F1 which receive a `one' from both x and F2 remain active.If there is a substantial mismatch between the two patterns, the reset signal will inhibit theneuron in F2 and the process is repeated.Instead of following Carpenter and Grossberg's description of the system using di�erentialequations, we use the notation employed by Lippmann (Lippmann, 1987):1. Initialisation: wjib(0) = 1wijf (0) = 11 +Nwhere N is the number of neurons in F1, M the number of neurons in F2, 0 � i < N ,and 0 � j < M . Also, choose the vigilance threshold �, 0 � � � 1;2. Apply the new input pattern x;3. compute the activation values y0 of the neurons in F2:yi0 = NXj=1wijf (t)xi; (6.30)4. select the winning neuron k (0 � k < M);5. vigilance test: if wkb(t) � xx � x > �; (6.31)where � denotes inner product, go to step 7, else go to step 6. Note that wkb �x essentiallyis the inner product x� � x, which will be large if x� and x are near to each other;6. neuron k is disabled from further activity. Go to step 3;7. Set for all l, 0 � l < N : wklb(t+ 1) = wklb(t)xl;wlkf (t+ 1) = wklb(t)xl12 +PNi=1wkib(t)xi ;



72 CHAPTER 6. SELF-ORGANISING NETWORKS8. re-enable all neurons in F2 and go to step 2.Figure 6.14 shows exemplar behaviour of the network.
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Figure 6.14: An example of the behaviour of the Carpenter Grossberg network for letter patterns.The binary input patterns on the left were applied sequentially. On the right the stored patterns (i.e.,the weights of W b for the �rst four output units) are shown.6.4.3 ART1: The original modelIn later work, Carpenter and Grossberg (Carpenter & Grossberg, 1987a, 1987b) present severalneural network models to incorporate parts of the complete theory. We will only discuss the�rst model, ART1.The network incorporates a follow-the-leader clustering algorithm (Hartigan, 1975). Thisalgorithm tries to �t each new input pattern in an existing class. If no matching class can befound, i.e., the distance between the new pattern and all existing classes exceeds some threshold,a new class is created containing the new pattern.The novelty in this approach is that the network is able to adapt to new incoming pat-terns, while the previous memory is not corrupted. In most neural networks, such as the back-propagation network, all patterns must be taught sequentially; the teaching of a new patternmight corrupt the weights for all previously learned patterns. By changing the structure of thenetwork rather than the weights, ART1 overcomes this problem.NormalisationWe will refer to a cell in F1 or F2 with k.Each cell k in F1 or F2 receives an input sk and respond with an activation level yk.In order to introduce normalisation in the model, we set I =P sk and let the relative inputintensity �k = skI�1.So we have a model in which the change of the response yk of an input at a certain cell k� depends inhibitorily on all other inputs and the sensitivity of the cell, i.e., the surroundingsof each cell have a negative in
uence on the cell �ykPl 6=k sl;



6.4. ADAPTIVE RESONANCE THEORY 73� has an excitatory response as far as the input at the cell is concerned +Bsk;� has an inhibitory response for normalisation �yksk;� has a decay �Ayk.Here, A and B are constants. The di�erential equation for the neurons in F1 and F2 now isdykdt = �Ayk + (B � yk)sk � ykXl 6=k sl; (6.32)with 0 � yk(0) � B because the inhibitory e�ect of an input can never exceed the excitatoryinput.At equilibrium, when dyk=dt = 0, and with I =P sk we have thatyk(A+ I) = Bsk: (6.33)Because of the de�nition of �k = skI�1 we getyk = �k BIA+ I : (6.34)Therefore, at equilibrium yk is proportional to �k, and, sinceBIA+ I � B; (6.35)the total activity ytotal =P yk never exceeds B: it is normalised.Contrast enhancementIn order to make F2 react better on di�erences in neuron values in F1 (or vice versa), contrastenhancement is applied: the contrasts between the neuronal values in a layer are ampli�ed. Wecan show that eq. (6.32) does not su�ce anymore. In order to enhance the contrasts, we chopo� all the equal fractions (uniform parts) in F1 or F2. This can be done by adding an extrainhibitory input proportional to the inputs from the other cells with a factor C:dykdt = �Ayk + (B � yk)sk � (yk + C)Xl 6=k sl: (6.36)At equilibrium, when we set B = (n� 1)C where n is the number of neurons, we haveyk = nCIA+ I ��k � 1n� : (6.37)Now, when an input in which all the sk are equal is given, then all the yk are zero: the e�ect ofC is enhancing di�erences. If we set B � (n� 1)C or C=(B+C) � 1=n, then more of the inputshall be chopped o�.DiscussionThe description of ART1 continues by de�ning the di�erential equations for the LTM. Insteadof following Carpenter and Grossberg's description, we will revert to the simpli�ed model aspresented by Lippmann (Lippmann, 1987).
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7 Reinforcement learning
In the previous chapters a number of supervised training methods have been described in whichthe weight adjustments are calculated using a set of `learning samples', existing of input anddesired output values. However, not always such a set of learning examples is available. Oftenthe only information is a scalar evaluation r which indicates how well the neural network is per-forming. Reinforcement learning involves two subproblems. The �rst is that the `reinforcement'signal r is often delayed since it is a result of network outputs in the past. This temporal creditassignment problem is solved by learning a `critic' network which represents a cost functionJ predicting future reinforcement. The second problem is to �nd a learning procedure whichadapts the weights of the neural network such that a mapping is established which minimizesJ . The two problems are discussed in the next paragraphs, respectively. Figure 7.1 shows areinforcement-learning network interacting with a system.7.1 The criticThe �rst problem is how to construct a critic which is able to evaluate system performance. Ifthe objective of the network is to minimize a direct measurable quantity r, performance feedbackis straightforward and a critic is not required. On the other hand, how is current behavior tobe evaluated if the objective concerns future system performance. The performance may forinstance be measured by the cumulative or future error. Most reinforcement learning methods(such as Barto, Sutton and Anderson (Barto, Sutton, & Anderson, 1983)) use the temporaldi�erence (TD) algorithm (Sutton, 1988) to train the critic.Suppose the immediate cost of the system at time step k are measured by r(xk;uk; k), as afunction of system states xk and control actions (network outputs) uk. The immediate measurer is often called the external reinforcement signal in contrast to the internal reinforcementsignal in �gure 7.1. De�ne the performance measure J(xk;uk; k) of the system as a discountedcritic Ĵ

xu systemreinforcementsignalreinf.learningcontrollerFigure 7.1: Reinforcement learning scheme.75



76 CHAPTER 7. REINFORCEMENT LEARNINGcumulative of future cost. The task of the critic is to predict the performance measure:J(xk;uk; k) = 1Xi=k 
i�kr(xi;ui; i) (7.1)in which 
 2 [0; 1] is a discount factor (usually � 0.95).The relation between two successive prediction can easily be derived:J(xk;uk; k) = r(xk;uk; k) + 
J(xk+1;uk+1; k + 1): (7.2)If the network is correctly trained, the relation between two successive network outputs Ĵshould be: Ĵ(xk;uk; k) = r(xk;uk; k) + 
Ĵ(xk+1;uk+1; k + 1): (7.3)If the network is not correctly trained, the temporal di�erence �(k) between two successivepredictions is used to adapt the critic network:�(k) = hr(xk;uk; k) + 
Ĵ(xk+1;uk+1; k + 1)i� Ĵ(xk;uk; k): (7.4)A learning rule for the weights of the critic network wc(k), based on minimizing �2(k) canbe derived: �wc(k) = ��"(k)@Ĵ(xk;uk; k)@wc(k) (7.5)in which � is the learning rate.7.2 The controller networkIf the critic is capable of providing an immediate evaluation of performance, the controllernetwork can be adapted such that the optimal relation between system states and control actionsis found. Three approaches are distinguished:1. In case of a �nite set of actions U , all actions may virtually be executed. The action whichdecreases the performance criterion most is selected:uk = minu2U Ĵ(xk;uk; k) (7.6)The RL-method with this `controller' is called Q-learning (Watkins & Dayan, 1992). Themethod approximates dynamic programming which will be discussed in the next section.2. If the performance measure J(xk;uk; k) is accurately predicted, then the gradient withrespect to the controller command uk can be calculated, assuming that the critic networkis di�erentiable. If the measure is to be minimized, the weights of the controller wr areadjusted in the direction of the negative gradient:�wr(k) = �� @Ĵ(xk;uk; k)@u(k) @u(k)@wr(k) (7.7)with � being the learning rate. Werbos (Werbos, 1992) has discussed some of these gradientbased algorithms in detail. Sofge and White (Sofge & White, 1992) applied one of thegradient based methods to optimize a manufacturing process.



7.3. BARTO'S APPROACH: THE ASE-ACE COMBINATION 773. A direct approach to adapt the controller is to use the di�erence between the predicted andthe `true' performance measure as expressed in equation 7.3. Suppose that the performancemeasure is to be minimized. Control actions that result in negative di�erences, i.e. the trueperformance is better than was expected, then the controller has to be `rewarded'. On theother hand, in case of a positive di�erence, then the control action has to be `penalized'.The idea is to explore the set of possible actions during learning and incorporate thebene�cial ones into the controller. Learning in this way is related to trial-and-error learningstudied by psychologists in which behavior is selected according to its consequences.Generally, the algorithms select probabilistically actions from a set of possible actions andupdate action probabilities on basis of the evaluation feedback. Most of the algorithmsare based on a look-up table representation of the mapping from system states to actions(Barto et al., 1983). Each table entry has to learn which control action is best when thatentry is accessed. It may be also possible to use a parametric mapping from systems statesto action probabilities. Gullapalli (Gullapalli, 1990) adapted the weights of a single layernetwork. In the next section the approach of Barto et. al. is described.7.3 Barto's approach: the ASE-ACE combinationBarto, Sutton and Anderson (Barto et al., 1983) have formulated `reinforcement learning'as a learning strategy which does not need a set of examples provided by a `teacher.' Thesystem described by Barto explores the space of alternative input-output mappings and uses anevaluative feedback (reinforcement signal) on the consequences of the control signal (networkoutput) on the environment. It has been shown that such reinforcement learning algorithms areimplementing an on-line, incremental approximation to the dynamic programming method foroptimal control, and are also called `heuristic' dynamic programming (Werbos, 1990).The basic building blocks in the Barto network are an Associative Search Element (ASE)which uses a stochastic method to determine the correct relation between input and output andan Adaptive Critic Element (ACE) which learns to give a correct prediction of future rewardor punishment (Figure 7.2). The external reinforcement signal r can be generated by a specialsensor (for example a collision sensor of a mobile robot) or be derived from the state vector. Forexample, in control applications, where the state s of a system should remain in a certain partA of the control space, reinforcement is given by:r = � 0 if s 2 A,�1 otherwise. (7.8)7.3.1 Associative searchIn its most elementary form the ASE gives a binary output value yo(t) 2 f0; 1g as a stochasticfunction of an input vector. The total input of the ASE is, similar to the neuron presented inchapter 2, the weighted sum of the inputs, with the exception that the bias input in this case isa stochastic variable N with mean zero normal distribution:s(t) = NXj=1wSjxj(t) +Nj: (7.9)The activation function F is a threshold such thatyo(t) = y(t) = � 1 if s(t) > 0,0 otherwise. (7.10)
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Figure 7.2: Architecture of a reinforcement learning scheme with critic elementFor updating the weights, a Hebbian type of learning rule is used. However, the update isweighted with the reinforcement signal r(t) and an `eligibility' ej is de�ned instead of the productyo(t)xj(t) of input and output: wSj(t+ 1) = wSj(t) + �r(t)ej(t) (7.11)where � is a learning factor. The eligibility ej is given byej(t+ 1) = �ej(t) + (1� �)yo(t)xj(t) (7.12)with � the decay rate of the eligibility. The eligibility is a sort of `memory;' ej is high if thesignals from the input state unit j and the output unit are correlated over some time.Using r(t) in expression (7.11) has the disadvantage that learning only �nds place when thereis an external reinforcement signal. Instead of r(t), usually a continuous internal reinforcementsignal r̂(t) given by the ACE, is used.Barto and Anandan (Barto & Anandan, 1985) proved convergence for the case of a singlebinary output unit and a set of linearly independent patterns xp: In control applications, theinput vector is the (n-dimensional) state vector s of the system. In order to obtain a linearindependent set of patterns xp, often a `decoder' is used, which divides the range of each of theinput variables si in a number of intervals. The aim is to divide the input (state) space in anumber of disjunct subspaces (or `boxes' as called by Barto). The input vector can thereforeonly be in one subspace at a time. The decoder converts the input vector into a binary valuedvector x, with only one element equal to one, indicating which subspace is currently visited. Ithas been shown (Kr�ose & Dam, 1992) that instead of a-priori quantisation of the input space,a self-organising quantisation, based on methods described in this chapter, results in a betterperformance.7.3.2 Adaptive criticThe Adaptive Critic Element (ACE, or `evaluation network') is basically the same as described insection 7.1. An error signal is derived from the temporal di�erence of two successive predictions(in this case denoted by p!) and is used for training the ACE:r̂(t) = r(t) + 
p(t)� p(t� 1): (7.13)



7.3. BARTO'S APPROACH: THE ASE-ACE COMBINATION 79p(t) is implemented as a series of `weights' wCj to the ACE such thatp(t) = wCk (7.14)if the system is in state k at time t, denoted by xk = 1. The function is learned by adjustingthe wCj 's according to a `delta-rule' with an error signal � given by r̂(t):�wCj(t) = �r̂(t)hj(t): (7.15)� is the learning parameter and hj(t) indicates the `trace' of neuron xj:hj(t) = �hj(t� 1) + (1� �)xj(t� 1): (7.16)This trace is a low-pass �lter or momentum, through which the credit assigned to state j increaseswhile state j is active and decays exponentially after the activity of j has expired.If r̂(t) is positive, the action u of the system has resulted in a higher evaluation value, whereasa negative r̂(t) indicates a deterioration of the system. r̂(t) can be considered as an internalreinforcement signal.7.3.3 The cart-pole systemAn example of such a system is the cart-pole balancing system (see �gure 7.3). Here, a dynamicscontroller must control the cart in such a way that the pole always stands up straight. Thecontroller applies a `left' or `right' force F of �xed magnitude to the cart, which may changedirection at discrete time intervals. The model has four state variables:x the position of the cart on the track,� the angle of the pole with the vertical,_x the cart velocity, and_� the angle velocity of the pole.Furthermore, a set of parameters specify the pole length and mass, cart mass, coe�cients offriction between the cart and the track and at the hinge between the pole and the cart, thecontrol force magnitude, and the force due to gravity. The state space is partitioned on thebasis of the following quantisation thresholds:1. x: �0:8;�2:4m,2. �: 0;�1;�6;�12�,3. _x: �0:5;�1 m/s,4. _�: �50;�1�/s.This yields 3�6�3�3 = 162 regions corresponding to all of the combinations of the intervals.The decoder output is a 162-dimensional vector. A negative reinforcement signal is providedwhen the state vector gets out of the admissible range: when x > 2:4, x < �2:4, � > 12� or� < �12�. The system has proved to solve the problem in about 75 learning steps.
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Figure 7.3: The cart-pole system.7.4 Reinforcement learning versus optimal controlThe objective of optimal control is generate control actions in order to optimize a prede�nedperformance measure. One technique to �nd such a sequence of control actions which de�ne anoptimal control policy is Dynamic Programming (DP). The method is based on the principleof optimality, formulated by Bellman (Bellman, 1957): Whatever the initial system state, ifthe �rst control action is contained in an optimal control policy, then the remaining controlactions must constitute an optimal control policy for the problem with as initial system state thestate remaining from the �rst control action. The `Bellman equations' follow directly from theprinciple of optimality. Solving the equations backwards in time is called dynamic programming.Assume that a performance measure J(xk;uk; k) = PNi=k r(xi;ui; i) with r being theimmediate costs, is to be minimized. The minimum costs Jmin of cost J can be derived by theBellman equations of DP. The equations for the discrete case are (White & Jordan, 1992):Jmin(xk;uk; k) = minu2U [Jmin(xk+1;uk+1; k + 1) + r(xk;uk; k)] ; (7.17)Jmin(xN ) = r(xN ): (7.18)The strategy for �nding the optimal control actions is solving equation (7.17) and (7.18) fromwhich uk can be derived. This can be achieved backwards, starting at state xN . The require-ments are a bounded N, and a model which is assumed to be an exact representation of thesystem and the environment. The model has to provide the relation between successive systemstates resulting from system dynamics, control actions and disturbances. In practice, a solutioncan be derived only for a small N and simple systems. In order to deal with large or in�nity N,the performance measure could be de�ned as a discounted sum of future costs as expressed byequation 7.2.Reinforcement learning provides a solution for the problem stated above without the use ofa model of the system and environment. RL is therefore often called an `heuristic' dynamic pro-gramming technique (Barto, Sutton, & Watkins, 1990),(Sutton, Barto, & Wilson, 1992),(Wer-bos, 1992). The most directly related RL-technique to DP is Q-learning (Watkins & Dayan,1992). The basic idea in Q-learning is to estimate a function, Q, of states and actions, whereQ is the minimum discounted sum of future costs Jmin(xk;uk; k) (the name `Q-learning' comesfrom Watkins' notation). For convenience, the notation with J is continued here:Ĵ(xk;uk; k) = 
Jmin(xk+1;uk+1; k + 1) + r(xk;uk; k) (7.19)The optimal control rule can be expressed in terms of Ĵ by noting that an optimal control actionfor state xk is any action uk that minimizes Ĵ according to equation 7.6.The estimate of minimum cost Ĵ is updated at time step k+1 according equation 7.5 . The



7.4. REINFORCEMENT LEARNING VERSUS OPTIMAL CONTROL 81temporal di�erence "(k) between the `true' and expected performance is again used:"(k) = �
 minu2U Ĵ(xk+1;uk+1; k + 1) + r(xk;uk; k)� � Ĵ(xk;uk; k)Watkins has shown that the function converges under some pre-speci�ed conditions to the trueoptimal Bellmann equation (Watkins & Dayan, 1992): (1) the critic is implemented as a look-uptable; (2) the learning parameter � must converge to zero; (3) all actions continue to be triedfrom all states.
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8 Robot ControlAn important area of application of neural networks is in the �eld of robotics. Usually, thesenetworks are designed to direct a manipulator, which is the most important form of the industrialrobot, to grasp objects, based on sensor data. Another applications include the steering andpath-planning of autonomous robot vehicles.In robotics, the major task involves making movements dependent on sensor data. Thereare four, related, problems to be distinguished (Craig, 1989):Forward kinematics. Kinematics is the science of motion which treats motion without regardto the forces which cause it. Within this science one studies the position, velocity, acceleration,and all higher order derivatives of the position variables. A very basic problem in the study ofmechanical manipulation is that of forward kinematics. This is the static geometrical problem ofcomputing the position and orientation of the end-e�ector (`hand') of the manipulator. Speci�-cally, given a set of joint angles, the forward kinematic problem is to compute the position andorientation of the tool frame relative to the base frame (see �gure 8.1).
1

4

3

2

tool frame

base frameFigure 8.1: An exemplar robot manipulator.Inverse kinematics. This problem is posed as follows: given the position and orientation ofthe end-e�ector of the manipulator, calculate all possible sets of joint angles which could be usedto attain this given position and orientation. This is a fundamental problem in the practical useof manipulators.The inverse kinematic problem is not as simple as the forward one. Because the kinematicequations are nonlinear, their solution is not always easy or even possible in a closed form. Also,the questions of existence of a solution, and of multiple solutions, arise.Solving this problem is a least requirement for most robot control systems.85



86 CHAPTER 8. ROBOT CONTROLDynamics. Dynamics is a �eld of study devoted to studying the forces required to causemotion. In order to accelerate a manipulator from rest, glide at a constant end-e�ector velocity,and �nally decelerate to a stop, a complex set of torque functions must be applied by the jointactuators. In dynamics not only the geometrical properties (kinematics) are used, but also thephysical properties of the robot are taken into account. Take for instance the weight (inertia)of the robotarm, which determines the force required to change the motion of the arm. Thedynamics introduces two extra problems to the kinematic problems.1. The robot arm has a `memory'. Its responds to a control signal depends also on its history(e.g. previous positions, speed, acceleration).2. If a robot grabs an object then the dynamics change but the kinematics don't. This isbecause the weight of the object has to be added to the weight of the arm (that's whyrobot arms are so heavy, making the relative weight change very small).Trajectory generation. To move a manipulator from here to there in a smooth, controlledfashion each joint must be moved via a smooth function of time. Exactly how to compute thesemotion functions is the problem of trajectory generation.In the �rst section of this chapter we will discuss the problems associated with the positioningof the end-e�ector (in e�ect, representing the inverse kinematics in combination with sensorytransformation). Section 8.2 discusses a network for controlling the dynamics of a robot arm.Finally, section 8.3 describes neural networks for mobile robot control.8.1 End-e�ector positioningThe �nal goal in robot manipulator control is often the positioning of the hand or end-e�ector inorder to be able to, e.g., pick up an object. With the accurate robot arm that are manufactured,this task is often relatively simple, involving the following steps:1. determine the target coordinates relative to the base of the robot. Typically, when thisposition is not always the same, this is done with a number of �xed cameras or othersensors which observe the work scene, from the image frame determine the position of theobject in that frame, and perform a pre-determined coordinate transformation;2. with a precise model of the robot (supplied by the manufacturer), calculate the joint anglesto reach the target (i.e., the inverse kinematics). This is a relatively simple problem;3. move the arm (dynamics control) and close the gripper.The arm motion in point 3 is discussed in section 8.2. Gripper control is not a trivial matter atall, but we will not focus on that.Involvement of neural networks. So if these parts are relatively simple to solve with ahigh accuracy, why involve neural networks? The reason is the applicability of robots. When`traditional' methods are used to control a robot arm, accurate models of the sensors and manip-ulators (in some cases with unknown parameters which have to be estimated from the system'sbehaviour; yet still with accurate models as starting point) are required and the system mustbe calibrated. Also, systems which su�er from wear-and-tear (and which mechanical systemsdon't?) need frequent recalibration or parameter determination. Finally, the development ofmore complex (adaptive!) control methods allows the design and use of more 
exible (i.e., lessrigid) robot systems, both on the sensory and motory side.



8.1. END-EFFECTOR POSITIONING 878.1.1 Camera{robot coordination is function approximationThe system we focus on in this section is a work 
oor observed by a �xed cameras, and a robotarm. The visual system must identify the target as well as determine the visual position of theend-e�ector.The target position xtarget together with the visual position of the hand xhand are input tothe neural controller N (�). This controller then generates a joint position � for the robot:� = N (xtarget;xhand): (8.1)We can compare the neurally generated � with the optimal �0 generated by a �ctitious perfectcontroller R(�): �0 = R(xtarget;xhand): (8.2)The task of learning is to make the N generate an output `close enough' to �0.There are two problems associated with teaching N (�):1. generating learning samples which are in accordance with eq. (8.2). This is not trivial,since in useful applications R(�) is an unknown function. Instead, a form of self-supervisedor unsupervised learning is required. Some examples to solve this problem are given below;2. constructing the mapping N (�) from the available learning samples. When the (usuallyrandomly drawn) learning samples are available, a neural network uses these samples torepresent the whole input space over which the robot is active. This is evidently a formof interpolation, but has the problem that the input space is of a high dimensionality, andthe samples are randomly distributed.We will discuss three fundamentally di�erent approaches to neural networks for robot end-e�ector positioning. In each of these approaches, a solution will be found for both the learningsample generation and the function representation.Approach 1: Feed-forward networksWhen using a feed-forward system for controlling the manipulator, a self-supervised learningsystem must be used.One such a system has been reported by Psaltis, Sideris and Yamamura (Psaltis, Sideris, &Yamamura, 1988). Here, the network, which is constrained to two-dimensional positioning ofthe robot arm, learns by experimentation. Three methods are proposed:1. Indirect learning.In indirect learning, a Cartesian target point x in world coordinates is generated, e.g.,by a two cameras looking at an object. This target point is fed into the network, whichgenerates an angle vector �. The manipulator moves to position �, and the camerasdetermine the new position x0 of the end-e�ector in world coordinates. This x0 again isinput to the network, resulting in �0. The network is then trained on the error �1 = ���0(see �gure 8.2).However, minimisation of �1 does not guarantee minimisation of the overall error � = x�x0.For example, the network often settles at a `solution' that maps all x's to a single � (i.e.,the mapping I).2. General learning.The method is basically very much like supervised learning, but here the plant input� must be provided by the user. Thus the network can directly minimise j� � �0j. Thesuccess of this method depends on the interpolation capabilities of the network. Correctchoice of � may pose a problem.
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θFigure 8.2: Indirect learning system for robotics. In each cycle, the network is used in two di�erentplaces: �rst in the forward step, then for feeding back the error.3. Specialised learning.Keep in mind that the goal of the training of the network is to minimise the error atthe output of the plant: � = x � x0. We can also train the network by `backpropagating'this error trough the plant (compare this with the backpropagation of the error in Chap-ter 4). This method requires knowledge of the Jacobian matrix of the plant. A Jacobianmatrix of a multidimensional function F is a matrix of partial derivatives of F , i.e., themultidimensional form of the derivative. For example, if we have Y = F (X), i.e.,y1 = f1(x1; x2; : : : ; xn);y2 = f2(x1; x2; : : : ; xn);���ym = fm(x1; x2; : : : ; xn)then �y1 = @f1@x1 �x1 + @f1@x2 �x2 + : : :+ @f1@xn �xn;�y2 = @f2@x1 �x1 + @f2@x2 �x2 + : : :+ @f2@xn �xn;����ym = @fm@x1 �x1 + @fm@x2 �x2 + : : : + @fm@xn �xnor �Y = @F@X �X: (8.3)Eq. (8.3) is also written as �Y = J(X)�X (8.4)where J is the Jacobian matrix of F . So, the Jacobian matrix can be used to calculate thechange in the function when its parameters change.Now, in this case we have Jij = "@Pi@�j # (8.5)where Pi(�) the ith element of the plant output for input �. The learning rule appliedhere regards the plant as an additional and unmodi�able layer in the neural network. The
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Figure 8.3: The system used for specialised learning.total error � = x � x0 is propagated back through the plant by calculating the �j as ineq. (4.14): �j = F0(sj)Xi �i@Pi(�)@�j ;�i = xi � x0i;where i iterates over the outputs of the plant. When the plant is an unknown function,@Pi(�)@�j can be approximated by@Pi(�)@�j � Pi(�+ h�jej)� Pi(�)h (8.6)where ej is used to change the scalar �j into a vector. This approximate derivative canbe measured by slightly changing the input to the plant and measuring the changes in theoutput.A somewhat similar approach is taken in (Kr�ose, Korst, & Groen, 1990) and (Smagt & Kr�ose,1991). Again a two-layer feed-forward network is trained with back-propagation. However,instead of calculating a desired output vector the input vector which should have invoked thecurrent output vector is reconstructed, and back-propagation is applied to this new input vectorand the existing output vector.The con�guration used consists of a monocular manipulator which has to grasp objects. Dueto the fact that the camera is situated in the hand of the robot, the task is to move the handsuch that the object is in the centre of the image and has some predetermined size (in a laterarticle, a biologically inspired system is proposed (Smagt, Kr�ose, & Groen, 1992) in which thevisual 
ow-�eld is used to account for the monocularity of the system, such that the dimensionsof the object need not to be known anymore to the system).One step towards the target consists of the following operations:1. measure the distance from the current position to the target position in camera domain,x;2. use this distance, together with the current state � of the robot, as input for the neuralnetwork. The network then generates a joint displacement vector ��;3. send �� to the manipulator;4. again measure the distance from the current position to the target position in cameradomain, x0;5. calculate the move made by the manipulator in visual domain, x� t+1t Rx0, where t+1t R isthe rotation matrix of the second camera image with respect to the �rst camera image;



90 CHAPTER 8. ROBOT CONTROL6. teach the learning pair (x� t+1t Rx0;�;��) to the network.This system has shown to learn correct behaviour in only tens of iterations, and to be veryadaptive to changes in the sensor or manipulator (Smagt & Kr�ose, 1991; Smagt, Groen, &Kr�ose, 1993).By using a feed-forward network, the available learning samples are approximated by a single,smooth function consisting of a summation of sigmoid functions. As mentioned in section 4, afeed-forward network with one layer of sigmoid units is capable of representing practically anyfunction. But how are the optimal weights determined in �nite time to obtain this optimalrepresentation? Experiments have shown that, although a reasonable representation can beobtained in a short period of time, an accurate representation of the function that governs thelearning samples is often not feasible or extremely di�cult (Jansen et al., 1994). The reasonfor this is the global character of the approximation obtained with a feed-forward network withsigmoid units: every weight in the network has a global e�ect on the �nal approximation thatis obtained.Building local representations is the obvious way out: every part of the network is responsiblefor a small subspace of the total input space. Thus accuracy is obtained locally (Keep It Small& Simple). This is typically obtained with a Kohonen network.Approach 2: Topology conserving mapsRitter, Martinetz, and Schulten (Ritter, Martinetz, & Schulten, 1989) describe the use of aKohonen-like network for robot control. We will only describe the kinematics part, since it isthe most interesting and straightforward.The system described by Ritter et al. consists of a robot manipulator with three degrees offreedom (orientation of the end-e�ector is not included) which has to grab objects in 3D-space.The system is observed by two �xed cameras which output their (x; y) coordinates of the objectand the end e�ector (see �gure 8.4).

Figure 8.4: A Kohonen network merging the output of two cameras.Each run consists of two movements. In the gross move, the observed location of the objectx (a four-component vector) is input to the network. As with the Kohonen network, the neuronk with highest activation value is selected as winner, because its weight vector wk is nearest tox. The neurons, which are arranged in a 3-dimensional lattice, correspond in a 1�1 fashion withsubregions of the 3D workspace of the robot, i.e., the neuronal lattice is a discrete representationof the workspace. With each neuron a vector � and Jacobian matrix A are associated. Duringgross move �k is fed to the robot which makes its move, resulting in retinal coordinates xg ofthe end-e�ector. To correct for the discretisation of the working space, an additional move is



8.2. ROBOT ARM DYNAMICS 91made which is dependent of the distance between the neuron and the object in space wk � x;this small displacement in Cartesian space is translated to an angle change using the JacobianAk: ��nal = �k +Ak(x�wk) (8.7)which is a �rst-order Taylor expansion of ��nal. The �nal retinal coordinates of the end-e�ectorafter this �ne move are in xf .Learning proceeds as follows: when an improved estimate (�; A)� has been found, the fol-lowing adaptations are made for all neurons j:wjnew = wjold + 
(t) gjk(t) �x�wjold� ;(�; A)newj = (�; A)oldj + 
0(t) g0jk(t) �(�; A)�j � (�; A)oldj � :If gjk(t) = g0jk(t) = �jk, this is similar to perceptron learning. Here, as with the Kohonenlearning rule, a distance function is used such that gjk(t) and g0jk(t) are Gaussians depending onthe distance between neurons j and k with a maximum at j = k (cf. eq. (6.6)).An improved estimate (�; A)� is obtained as follows.�� = �k +Ak(x� xf ); (8.8)A� = Ak +Ak(x�wk � xf + xg)� (xf � xg)Tkxf � xgk2 (8.9)= Ak + (���Ak�x) �xTk�xk2 :In eq. (8.8), the �nal error x� xf in Cartesian space is translated to an error in joint space viamultiplication by Ak. This error is then added to �k to constitute the improved estimate ��(steepest descent minimisation of error).In eq. (8.9), �x = xf�xg, i.e., the change in retinal coordinates of the end-e�ector due to the�ne movement, and �� = Ak(x�wk), i.e., the related joint angles during �ne movement. Thuseq. (8.9) can be recognised as an error-correction rule of the Widrow-Ho� type for Jacobians A.It appears that after 6,000 iterations the system approaches correct behaviour, and that after30,000 learning steps no noteworthy deviation is present.8.2 Robot arm dynamicsWhile end-e�ector positioning via sensor{robot coordination is an important problem to solve,the robot itself will not move without dynamic control of its limbs.Again, accurate control with non-adaptive controllers is possible only when accurate modelsof the robot are available, and the robot is not too susceptible to wear-and-tear. This requirementhas led to the current-day robots that are used in many factories. But the application of neuralnetworks in this �eld changes these requirements.One of the �rst neural networks which succeeded in doing dynamic control of a robot armwas presented by Kawato, Furukawa, and Suzuki (Kawato, Furukawa, & Suzuki, 1987). Theydescribe a neural network which generates motor commands from a desired trajectory in jointangles. Their system does not include the trajectory generation or the transformation of visualcoordinates to body coordinates.The network is extremely simple. In fact, the system is a feed-forward network, but bycarefully choosing the basis functions, the network can be restricted to one learning layer suchthat �nding the optimal is a trivial task. In this case, the basis functions are thus chosen thatthe function that is approximated is a linear combination of those basis functions. This approachis similar to that presented in section 4.5.



92 CHAPTER 8. ROBOT CONTROLDynamics model. The manipulator used consists of three joints as the manipulator in �g-ure 8.1 without wrist joint. The desired trajectory �d(t), which is generated by another subsys-tem, is fed into the inverse-dynamics model (�gure 8.5). The error between �d(t) and �(t) isfed into the neural model.
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Figure 8.5: The neural model proposed by Kawato et al.The neural model, which is shown in �gure 8.6, consists of three perceptrons, each onefeeding in one joint of the manipulator. The desired trajectory �d = (�d1; �d2; �d3) is fed into 13nonlinear subsystems. The resulting signals are weighted and summed, such thatTik(t) = 13Xl=1wlkxlk; (k = 1; 2; 3); (8.10)with xl1 = fl(�d1(t); �d2(t); �d3(t));xl2 = xl3 = gl(�d1(t); �d2(t); �d3(t));and fl and gl as in table 8.1.
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Figure 8.6: The neural network used by Kawato et al. There are three neurons, one per joint in therobot arm. Each neuron feeds from thirteen nonlinear subsystems. The upper neuron is connectedto the rotary base joint (cf. joint 1 in �gure 8.1), the other two neurons to joints 2 and 3.



8.2. ROBOT ARM DYNAMICS 93l fl(�1; �2; �3) gl(�1; �2; �3)1 ��1 ��22 ��1 sin2 �2 ��33 ��1 cos2 �2 ��2 cos �34 ��1 sin2(�2 + �3) ��3 cos �35 ��1 cos2(�2 + �3) _�21 sin �2 cos �26 ��1 sin �2 sin(�2 + �3) _�21 sin(�2 + �3) cos(�2 + �3)7 _�1 _�2 sin �2 cos �2 _�21 sin �2 cos(�2 + �3)8 _�1 _�2 sin(�2 + �3) cos(�2 + �3) _�21 cos �2 sin(�2 + �3)9 _�1 _�2 sin �2 cos(�2 + �3) _�22 sin �310 _�1 _�2 cos �2 sin(�2 + �3) _�23 sin �311 _�1 _�3 sin(�2 + �3) cos(�2 + �3) _�2 _�3 sin �312 _�1 _�3 sin �2 cos(�2 + �3) _�213 _�1 _�3Table 8.1: Nonlinear transformations used in the Kawato model.The feedback torque Tf (t) in �gure 8.5 consists ofTfk(t) = Kpk(�dk(t)� �k(t)) +Kvk d�k(t)dt ; (k = 1; 2; 3);Kvk = 0 unless j�k(t)� �dk(objective point)j < ":The feedback gains Kp and Kv were computed as (517:2; 746:0; 191:4)T and (16:2; 37:2; 8:4)T .Next, the weights adapt using the delta rule
dwikdt = xikT1 = xik(Tfk � Tik); (k = 1; 2; 3): (8.11)A desired move pattern is shown in �gure 8.7. After 20 minutes of learning the feedbacktorques are nearly zero such that the system has successfully learned the transformation. Al-though the applied patterns are very dedicated, training with a repetitive pattern sin(!kt), with!1 : !2 : !3 = 1 : p2 : p3 is also successful.
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t/sFigure 8.7: The desired joint pattern for joints 1. Joints 2 and 3 have similar time patterns.The usefulness of neural algorithms is demonstrated by the fact that novel robot architectures,which no longer need a very rigid structure to simplify the controller, are now constructed. Forexample, several groups (Katayama & Kawato, 1992; Hesselroth, Sarkar, Smagt, & Schulten,1994) report on work with a pneumatic musculo-skeletal robot arm, with rubber actuators re-placing the DC motors. The very complex dynamics and environmental temperature dependencyof this arm make the use of non-adaptive algorithms impossible, where neural networks succeed.



94 CHAPTER 8. ROBOT CONTROL8.3 Mobile robotsIn the previous sections some applications of neural networks on robot arms were discussed. Inthis section we focus on mobile robots. Basically, the control of a robot arm and the controlof a mobile robot is very similar: the (hierarchical) controller �rst plans a path, the path istransformed from Cartesian (world) domain to the joint or wheel domain using the inversekinematics of the system and �nally a dynamic controller takes care of the mapping from set-points in this domain to actuator signals. However, in practice the problems with mobile robotsoccur more with path-planning and navigation than with the dynamics of the system. Twoexamples will be given.8.3.1 Model based navigationJorgensen (Jorgensen, 1987) describes a neural approach for path-planning. Robot path-planningtechniques can be divided into two categories. The �rst, called local planning relies on informa-tion available from the current `viewpoint' of the robot. This planning is important, since it isable to deal with fast changes in the environment. Unfortunately, by itself local data is generallynot adequate since occlusion in the line of sight can cause the robot to wander into dead endcorridors or choose non-optimal routes of travel. The second situation is called global path-planning, in which case the system uses global knowledge from a topographic map previouslystored into memory. Although global planning permits optimal paths to be generated, it has itsweakness. Missing knowledge or incorrectly selected maps can invalidate a global path to an ex-tent that it becomes useless. A possible third, `anticipatory' planning combined both strategies:the local information is constantly used to give a best guess what the global environment maycontain.Jorgensen investigates two issues associated with neural network applications in unstructuredor changing environments. First, can neural networks be used in conjunction with direct sensorreadings to associatively approximate global terrain features not observable from a single robotperspective. Secondly, is a neural network fast enough to be useful in path relaxation planning,where the robot is required to optimise motion and situation sensitive constraints.For the �rst problem, the system had to store a number of possible sensor maps of theenvironment. The robot was positioned in eight positions in each room and 180� sonar scanswere made from each position. Based on these data, for each room a map was made. To be ableto represent these maps in a neural network, the map was divided into 32 � 32 grid elements,which could be projected onto the 32 � 32 nodes neural network. The maps of the di�erentrooms were `stored' in a Hop�eld type of network. In the operational phase, the robot wandersaround, and enters an unknown room. It makes one scan with the sonar, which provides a partialrepresentation of the room map (see �gure 8.8). This pattern is clamped onto the network, whichwill regenerate the best �tting pattern. With this information a global path-planner can be used.The results which are presented in the paper are not very encouraging. With a network of 32�32neurons, the total number of weights is 1024 squared, which costs more than 1 Mbyte of storageif only one byte per weight is used. Also the speed of the recall is low: Jorgensen mentions arecall time of more than two and a half hour on an IBM AT, which is used on board of therobot.Also the use of a simulated annealing paradigm for path planning is not proving to be ane�ective approach. The large number of settling trials (> 1000) is far too slow for real time,when the same functions could be better served by the use of a potential �eld approach ordistance transform.
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Figure 8.8: Schematic representation of the stored rooms, and the partial information which isavailable from a single sonar scan.8.3.2 Sensor based controlVery similar to the sensor based control for the robot arm, as described in the previous sections,a mobile robot can be controlled directly using the sensor data. Such an application has beendeveloped at Carnegy-Mellon by Touretzky and Pomerleau. The goal of their network is to drivea vehicle along a winding road. The network receives two type of sensor inputs from the sensorysystem. One is a 30� 32 (see �gure 8.9) pixel image from a camera mounted on the roof of thevehicle, where each pixel corresponds to an input unit of the network. The other input is an8� 32 pixel image from a laser range �nder. The activation levels of units in the range �nder'sretina represent the distance to the corresponding objects.
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Figure 8.9: The structure of the network for the autonomous land vehicle.The network was trained by presenting it samples with as inputs a wide variety of road imagestaken under di�erent viewing angles and lighting conditions. 1,200 Images were presented,



96 CHAPTER 8. ROBOT CONTROL40 times each while the weights were adjusted using the back-propagation principle. The authorsclaim that once the network is trained, the vehicle can accurately drive (at about 5 km/hour)along `: : : a path though a wooded area adjoining the Carnegie Mellon campus, under a varietyof weather and lighting conditions.' The speed is nearly twice as high as a non-neural algorithmrunning on the same vehicle.Although these results show that neural approaches can be possible solutions for the sensorbased control problem, there still are serious shortcomings. In simulations in our own laboratory,we found that networks trained with examples which are provided by human operators are notalways able to �nd a correct approximation of the human behaviour. This is the case if thehuman operator uses other information than the network's input to generate the steering signal.Also the learning of in particular back-propagation networks is dependent on the sequence ofsamples, and, for all supervised training methods, depends on the distribution of the trainingsamples.



9 Vision9.1 IntroductionIn this chapter we illustrate some applications of neural networks which deal with visual infor-mation processing. In the neural literature we �nd roughly two types of problems: the modellingof biological vision systems and the use of arti�cial neural networks for machine vision. We willfocus on the latter.The primary goal of machine vision is to obtain information about the environment byprocessing data from one or multiple two-dimensional arrays of intensity values (`images'), whichare projections of this environment on the system. This information can be of di�erent nature:� recognition: the classi�cation of the input data in one of a number of possible classes;� geometric information about the environment, which is important for autonomous systems;� compression of the image for storage and transmission.Often a distinction is made between low level (or early) vision, intermediate level vision andhigh level vision. Typical low-level operations include image �ltering, isolated feature detectionand consistency calculations. At a higher level segmentation can be carried out, as well asthe calculation of invariants. The high level vision modules organise and control the 
ow ofinformation from these modules and combine this information with high level knowledge foranalysis.Computer vision already has a long tradition of research, and many algorithms for imageprocessing and pattern recognition have been developed. There appear to be two computationalparadigms that are easily adapted to massive parallelism: local calculations and neighbourhoodfunctions. Calculations that are strictly localised to one area of an image are obviously easy tocompute in parallel. Examples are �lters and edge detectors in early vision. A cascade of theselocal calculations can be implemented in a feed-forward network.The �rst section describes feed-forward networks for vision. Section 9.3 shows how back-propagation can be used for image compression. In the same section, it is shown that thePCA neuron is ideally suited for image compression. Finally, sections 9.4 and 9.5 describe thecognitron for optical character recognition, and relaxation networks for calculating depth fromstereo images.9.2 Feed-forward types of networksThe early feed-forward networks as the perceptron and the adaline were essentially designed tobe be visual pattern classi�ers. In principle a multi-layer feed-forward network is able to learn toclassify all possible input patterns correctly, but an enormous amount of connections is needed(for the perceptron, Minsky showed that many problems can only be solved if each hidden unit is97



98 CHAPTER 9. VISIONconnected to all inputs). The question is whether such systems can still be regarded as `vision'systems. No use is made of the spatial relationships in the input patterns and the problemof classifying a set of `real world' images is the same as the problem of classifying a set ofarti�cial random dot patterns which are, according to Smeulders, no `images.' For that reason,most successful neural vision applications combine self-organising techniques with a feed-forwardarchitecture, such as for example the neocognitron (Fukushima, 1988), described in section 9.4.The neocognitron performs the mapping from input data to output data by a layered structurein which at each stage increasingly complex features are extracted. The lower layers extractlocal features such as a line at a particular orientation and the higher layers aim to extract moreglobal features.Also there is the problem of translation invariance: the system has to classify a patterncorrectly independent of the location on the `retina.' However, a standard feed-forward networkconsiders an input pattern which is translated as a totally `new' pattern. Several attempts havebeen described to overcome this problem, one of the more exotic ones by Widrow (Widrow,Winter, & Baxter, 1988) as a layered structure of adalines.9.3 Self-organising networks for image compressionIn image compression one wants to reduce the number of bits required to store or transmit animage. We can either require a perfect reconstruction of the original or we can accept a smalldeterioration of the image. The former is called a lossless coding and the latter a lossy coding.In this section we will consider lossy coding of images with neural networks.The basic idea behind compression is that an n-dimensional stochastic vector n, (part of)the image, is transformed into an m-dimensional stochastic vectorm = Tn: (9.1)After transmission or storage of this vector ~m, a discrete version of m, we can make a recon-struction of n by some sort of inverse transform ~T so that the reconstructed signal equals~n = ~T~n: (9.2)The error of the compression and reconstruction stage together can be given as� = E [kn� ~nk] : (9.3)There is a trade-o� between the dimensionality of m and the error �. As one decreases thedimensionality of m the error increases and vice versa, i.e., a better compression leads to ahigher deterioration of the image. The basic problem of compression is �nding T and ~T suchthat the information in m is as compact as possible with acceptable error �. The de�nition ofacceptable depends on the application area.The cautious reader has already concluded that dimension reduction is in itself not enough toobtain a compression of the data. The main importance is that some aspects of an image are moreimportant for the reconstruction then others. For example, the mean grey level and generallythe low frequency components of the image are very important, so we should code these featureswith high precision. Other, like high frequency components, are much less important so thesecan be coarse-coded. So, when we reduce the dimension of the data, we are actually trying toconcentrate the information of the data in a few numbers (the low frequency components) whichcan be coded with precision, while throwing the rest away (the high frequency components).In this section we will consider coding an image of 256 � 256 pixels. It is a bit tedious totransform the whole image directly by the network. This requires a huge amount of neurons.Because the statistical description over parts of the image is supposed to be stationary, we can



9.3. SELF-ORGANISING NETWORKS FOR IMAGE COMPRESSION 99break the image into 1024 blocks of size 8� 8, which is large enough to entail a local statisticaldescription and small enough to be managed. These blocks can then be coded separately, storedor transmitted, where after a reconstruction of the whole image can be made based on thesecoded 8� 8 blocks.9.3.1 Back-propagationThe process above can be interpreted as a 2-layer neural network. The inputs to the networkare the 8 � 8 patters and the desired outputs are the same 8 � 8 patterns as presented on theinput units. This type of network is called an auto-associator.After training with a gradient search method, minimising �, the weights between the �rstand second layer can be seen as the coding matrix T and between the second and third as thereconstruction matrix ~T.If the number of hidden units is smaller then the number of input (output) units, a com-pression is obtained, in other words we are trying to squeeze the information through a smallerchannel namely the hidden layer.This network has been used for the recognition of human faces by Cottrell (Cottrell, Munro,& Zipser, 1987). He uses an input and output layer of 64�64 units (!) on which he presented thewhole face at once. The hidden layer, which consisted of 64 units, was classi�ed with anothernetwork by means of a delta rule. Is this complex network invariant to translations in the input?9.3.2 Linear networksIt is known from statistics that the optimal transform from an n-dimensional to anm-dimensionalstochastic vector, optimal in the sense that � contains the lowest energy possible, equals theconcatenation of the �rst m eigenvectors of the correlation matrix R of N. So if (e1;e2; ::;en)are the eigenvectors of R, ordered in decreasing corresponding eigenvalue, the transformationmatrix is given as T = [e1e2 : : :e2]T .In section 6.3.1 a linear neuron with a normalised Hebbian learning rule was able to learnthe eigenvectors of the correlation matrix of the input patterns. The de�nition of the optimaltransform given above, suits exactly in the PCA network we have described.So we end up with a 64 �m � 64 network, where m is the desired number of hidden unitswhich is coupled to the total error �. Since the eigenvalues are ordered in decreasing values,which are the outputs of the hidden units, the hidden units are ordered in importance for thereconstruction.Sanger (Sanger, 1989) used this implementation for image compression. The test image isshown in �gure 9.1. It is 256� 256 with 8 bits/pixel.After training the image four times, thus generating 4� 1024 learning patterns of size 8� 8,the weights of the network converge into �gure 9.2.9.3.3 Principal components as featuresIf parts of the image are very characteristic for the scene, like corners, lines, shades etc., onespeaks of features of the image. The extraction of features can make the image understandingtask on a higher level much easer. If the image analysis is based on features it is very importantthat the features are tolerant of noise, distortion etc.From an image compression viewpoint it would be smart to code these features with as littlebits as possible, just because the de�nition of features was that they occur frequently in theimage.So one can ask oneself if the two described compression methods also extract features fromthe image. Indeed this is true and can most easily be seen in �g. 9.2. It might not be cleardirectly, but one can see that the weights are converged to:
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Figure 9.1: Input image for the network. The image is divided into 8� 8 blocks which are fed to thenetwork.
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Figure 9.2: Weights of the PCA network. The �nal weights of the network trained on the testimage. For each neuron, an 8� 8 rectangle is shown, in which the grey level of each of the elementsrepresents the value of the weight. Dark indicates a large weight, light a small weight.� neuron 0: the mean grey level;� neuron 1 and neuron 2: the �rst order gradients of the image;� neuron 3 : : : neuron 5: second orders derivates of the image.The features extracted by the principal component network are the gradients of the image.9.4 The cognitron and neocognitronYet another type of unsupervised learning is found in the cognitron, introduced by Fukushima asearly as 1975 (Fukushima, 1975). This network, with primary applications in pattern recognition,was improved at a later stage to incorporate scale, rotation, and translation invariance resultingin the neocognitron (Fukushima, 1988), which we will not discuss here.9.4.1 Description of the cellsCentral in the cognitron is the type of neuron used. Whereas the Hebb synapse (unit k, say),which is used in the perceptron model, increases an incoming weight (wjk) if and only if the



9.4. THE COGNITRON AND NEOCOGNITRON 101incoming signal (yj) is high and a control input is high, the synapse introduced by Fukushimaincreases (the absolute value of) its weight (jwjkj) only if it has positive input yj and a maximumactivation value yk = max(yk1 ; yk2 ; : : : ; ykn), where k1; k2; : : : ; kn are all `neighbours' of k. Notethat this learning scheme is competitive and unsupervised, and the same type of neuron has,at a later stage, been used in the competitive learning network (section 6.1) as well as in otherunsupervised networks.Fukushima distinguishes between excitatory inputs and inhibitory inputs. The output of anexcitatory cell u is given by1 u(k) = F � 1 + e1 + h � 1� = F �e� h1 + h� ; (9.4)where e is the excitatory input from u-cells and h the inhibitory input from v-cells. The activationfunction is F(x) = � x if x � 0,0 otherwise. (9.5)When the inhibitory input is small, i.e., h� 1, u(k) can be approximated by u(k) = e� h,which agrees with the formula for a conventional linear threshold element (with a threshold ofzero).When both the excitatory and inhibitory inputs increase in proportion, i.e.,e = �x; h = �x (9.6)(�, � constants) and � > �, then eq. (9.4) can be transformed intou(i) = (�� �)x1 + �x = �� �2� �1 + tanh(12 log �x)� (9.7)i.e., a squashing function as in �gure 2.2.9.4.2 Structure of the cognitronThe basic structure of the cognitron is depicted in �gure 9.3.
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Figure 9.3: The basic structure of the cognitron.The cognitron has a multi-layered structure. The l-th layer Ul consists of excitatory neuronsul(n) and inhibitory neurons vl(n), where n = (nx; ny) is a two-dimensional location of the cell.1Here our notational system fails. We adhere to Fukushima's symbols.



102 CHAPTER 9. VISIONA cell ul(n) receives inputs via modi�able connections al(v;n) from neurons ul�1(n+v) andconnections bl(n) from neurons vl�1(n), where v is in the connectable area (cf. area of atten-tion) of the neuron. Furthermore, an inhibitory cell vl�1(n) receives inputs via �xed excitatoryconnections cl�1(v) from the neighbouring cells ul�1(n + v), and yields an output equal to itsweighted input: vl�1(n) =Xv cl�1(v)ul�1(n+ v): (9.8)where Pv cl�1(v) = 1 and are �xed.It can be shown that the growing of the synapses (i.e., modi�cation of the a and b weights)ensures that, if an excitatory neuron has a relatively large response, the excitatory synapsesgrow faster than the inhibitory synapses, and vice versa.Receptive regionFor each cell in the cascaded layers described above a connectable area must be established. Aconnection scheme as in �gure 9.4 is used: a neuron in layer Ul connects to a small region inlayer Ul�1.
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Figure 9.4: Cognitron receptive regions.If the connection region of a neuron is constant in all layers, a too large number of layers isneeded to cover the whole input layer. On the other hand, increasing the region in later layersresults in so much overlap that the output neurons have near identical connectable areas andthus all react similarly. This again can be prevented by increasing the size of the vicinity area inwhich neurons compete, but then only one neuron in the output layer will react to some inputstimulus. This is in contradiction with the behaviour of biological brains.A solution is to distribute the connections probabilistically such that connections with alarge deviation are less numerous.9.4.3 Simulation resultsIn order to illustrate the working of the network, a simulation has been run with a four-layerednetwork with 16� 16 neurons in each layer. The network is trained with four learning patterns,consisting of a vertical, a horizontal, and two diagonal lines. Figure 9.5 shows the activationlevels in the layers in the �rst two learning iterations.After 20 learning iterations, the learning is halted and the activation values of the neuronsin layer 4 are fed back to the input neurons; also, the maximum output neuron alone is fed back,and thus the input pattern is `recognised' (see �gure 9.6).
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b.a.Figure 9.5: Two learning iterations in the cognitron.Four learning patterns (one in each row) are shown in iteration 1 (a.) and 2 (b.). Eachcolumn in a. and b. shows one layer in the network. The activation level of each neuron isshown by a circle. A large circle means a high activation. In the �rst iteration (a.), a structureis already developing in the second layer of the network. In the second iteration, the secondlayer can distinguish between the four patterns.9.5 Relaxation types of networksAs demonstrated by the Hop�eld network, a relaxation process in a connectionist network canprovide a powerful mechanism for solving some di�cult optimisation problems. Many visionproblems can be considered as optimisation problems, and are potential candidates for an im-plementation in a Hop�eld-like network. A few examples that are found in the literature will bementioned here.9.5.1 Depth from stereoBy observing a scene with two cameras one can retrieve depth information out of the imagesby �nding the pairs of pixels in the images that belong to the same point of the scene. Thecalculation of the depth is relatively easy; �nding the correspondences is the main problem. Onesolution is to �nd features such as corners and edges and match those, reducing the computationalcomplexity of the matching. Marr (Marr, 1982) showed that the correspondence problem canbe solved correctly when taking into account the physical constraints underlying the process.Three matching criteria were de�ned:� Compatibility: Two descriptive elements can only match if they arise from the same phys-ical marking (corners can only match with corners, `blobs' with `blobs,' etc.);� Uniqueness: Almost always a descriptive element from the left image corresponds to exactlyone element in the right image and vice versa;� Continuity: The disparity of the matches varies smoothly almost everywhere over theimage.
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d.c.

b.a.

Figure 9.6: Feeding back activation values in the cognitron.The four learning patterns are now successively applied to the network (row 1 of �guresa{d). Next, the activation values of the neurons in layer 4 are fed back to the input (row 2of �gures a{d). Finally, all the neurons except the most active in layer 4 are set to 0, andthe resulting activation values are again fed back (row 3 of �gures a{d). After as little as 20iterations, the network has shown to be rather robust.Marr's `cooperative' algorithm (also a `non-cooperative' or local algorithm has been described(Marr, 1982)) is able to calculate the disparity map from which the depth can be reconstructed.This algorithm is some kind of neural network, consisting of neurons N(x; y; d), where neuronN(x; y; d) represents the hypothesis that pixel (x; y) in the left image corresponds with pixel(x+ d; y) in the right image. The update function isN t+1(x; y; d) = �0BBB@ Xx0;y0;d02S(x;y;d)N t(x0; y0; d0)� � Xx0;y0;d02O(x;y;d)N t(x0 ; y0; d0) +N0(x; y; d)1CCCA : (9.9)Here, � is an inhibition constant, � is a threshold function, S(x; y; d) is the local excitatoryneighbourhood, and O(x; y; d) is the local inhibitory neighbourhood, which are chosen as follows:S(x; y; d) = f (r; s; t) j (r = x _ r = x� d) ^ s = y g; (9.10)O(x; y; d) = f (r; s; t) j d = t ^ k (r; s)� (x; y) k� w g: (9.11)



9.5. RELAXATION TYPES OF NETWORKS 105The network is loaded with the cross correlation of the images at �rst: N0(x; y; d) =Il(x; y)Ir(x + d; y), where Il and Ir are the intensity matrices of the left and right image re-spectively. This network state represents all possible matches of pixels. Then the set of possiblematches is reduced by recursive application of the update function until the state of the networkis stable.The algorithm converges in about ten iterations. Then the disparity of a pixel (x; y) isdisplayed by the �ring neuron in the set fN(r; s; d) j r = x; s = yg. In each of these sets thereshould be exactly one neuron �ring, but if the algorithm could not compute the exact disparity,for instance at hidden contours, there may be zero or more than one neurons �ring.9.5.2 Image restoration and image segmentationThe restoration of degraded images is a branch of digital picture processing closely related toimage segmentation and boundary �nding. An analysis of the major applications and proceduresmay be found in (Rosenfeld & Kak, 1982). An algorithm which is based on the minimisationof an energy function and can very well be parallelised is given by Geman and Geman (Geman& Geman, 1984). Their approach is based on stochastic modelling, in which image samplesare considered to be generated by a random process that changes its statistical properties fromregion to region. The random process that that generates the image samples is a two-dimensionalanalogue of a Markov process, called a Markov random �eld. Image segmentation is thenconsidered as a statistical estimation problem in which the system calculates the optimal estimateof the region boundaries for the input image. Simultaneously estimation of the region propertiesand boundary properties has to be performed, resulting in a set of nonlinear estimation equationsthat de�ne the optimal estimate of the regions. The system must �nd the maximum a posterioriprobability estimate of the image segmentation. Geman and Geman showed that the problem canbe recast into the minimisation of an energy function, which, in turn, can be solved approximatelyby optimisation techniques such as simulated annealing. The interesting point is that simulatedannealing can be implemented using a network with local connections, in which the networkiterates into a global solution using these local operations.9.5.3 Silicon retinaMead and his co-workers (Mead, 1989) have developed an analogue VLSI vision preprocessingchip modelled after the retina. The design not only replicates many of the important functionsof the �rst stages of retinal processing, but it does so by replicating in a detailed way boththe structure and dynamics of the constituent biological units. The logarithmic compressionfrom photon input to output signal is accomplished by analogue circuits, while similarly spaceand time averaging and temporal di�erentiation are accomplished by analogue processes and aresistive network (see section 11.2.1).
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Part IVIMPLEMENTATIONS
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109Implementation of neural networks can be divided into three categories:� software simulation;� (hardware) emulation2;� hardware implementation.The distinction between the former two categories is not clear-cut. We will use the term sim-ulation to describe software packages which can run on a variety of host machines (e.g., PYG-MALION, the Rochester Connectionist Simulator, NeuralWare, Nestor, etc.). Implementation ofneural networks on general-purpose multi-processor machines such as the Connection Machine,the Warp, transputers, etc., will be referred to as emulation. Hardware implementation will bereserved for neuro-chips and the like which are speci�cally designed to run neural networks.To evaluate and provide a taxonomy of the neural network simulators and emulators dis-cussed, we will use the descriptors of table 9.1 (cf. (DARPA, 1988)).1. Equation type: many networks are de�ned by the type of equation describing their operation. Forexample, Grossberg's ART (cf. section 6.4) is described by the di�erential equationdxkdt = �Axk + (B � xk)Ik � xkXj 6=k Ij ; (9.12)in which �Axk is a decay term, +BIk is an external input, �xkIk is a normalisation term, and �xkPj 6=k Ijis a neighbour shut-o� term for competition. Although di�erential equations are very powerful, they requirea high degree of 
exibility in the software and hardware and are thus di�cult to implement on special-purpose machines. Other types of equations are, e.g., di�erence equations as used in the description ofKohonen's topological maps (see section 6.2), and optimisation equations as used in back-propagationnetworks.2. Connection topology: the design of most general purpose computers includes random access memory(RAM) such that each memory position can be accessed with uniform speed. Such designs always presenta trade-o� between size of memory and speed of access. The topology of neural networks can be matchedin a hardware design with fast local interconnections instead of global access. Most networks are more orless local in their interconnections, and a global RAM is unnecessary.3. Processing schema: although most arti�cial neural networks use a synchronous update, i.e., the outputof the network depends on the previous state of the network, asynchronous update, in which componentsor blocks of components can be updated one by one, can be implemented much more e�ciently. Also,continuous update is a possibility encountered in some implementations.4. Synaptic transmission mode: most arti�cial neural networks have a transmission mode based on theneuronal activation values multiplied by synaptic weights. In these models, the propagation time from oneneuron to another is neglected. On the other hand, biological neurons output a series of pulses in which thefrequency determines the neuron output, such that propagation times are an essential part of the model.Currently, models arise which make use of temporal synaptic transmission (Murray, 1989; Tomlinson &Walker, 1990). Table 9.1: A possible taxonomy.The following chapters describe general-purpose hardware which can be used for neuralnetwork applications, and neuro-chips and other dedicated hardware.2The term emulation (see, e.g., (Mallach, 1975) for a good introduction) in computer design means runningone computer to execute instructions speci�c to another computer. It is often used to provide the user with amachine which is seemingly compatible with earlier models.
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10 General Purpose Hardware
Parallel computers (Almasi & Gottlieb, 1989) can be divided into several categories. One im-portant aspect is the granularity of the parallelism. Broadly speaking, the granularity rangesfrom coarse-grain parallelism, typically up to ten processors, to �ne-grain parallelism, up tothousands or millions of processors.Both �ne-grain and coarse-grain parallelism is in use for emulation of neural networks. Theformer model, in which one or more processors can be used for each neuron, corresponds withtable 9.1's type 2, whereas the second corresponds with type 1. We will discuss one model of bothtypes of architectures: the (extremely) �ne-grain Connection Machine and coarse-grain Systolicarrays, viz. the Warp computer. A more complete discussion should also include transputerswhich are very popular nowadays due to their very high performance/price ratio (Group, 1987;Board, 1989; Eckmiller, Hartmann, & Hauske, 1990). In this case, descriptor 1 of table 9.1 ismost applicable.Besides the granularity, the computers can be categorised by their operation. The mostwidely used categorisation is by Flynn (Flynn, 1972) (see table 10.1). It distinguishes twotypes of parallel computers: SIMD (Single Instruction, Multiple Data) and MIMD (MultipleInstruction, Multiple Data). The former type consists of a number of processors which executethe same instructions but on di�erent data, whereas the latter has a separate program for eachprocessor. Fine-grain computers are usually SIMD, while coarse grain computers tend to beMIMD (also in correspondence with table 9.1, entries 1 and 2).Number of Data Streamssingle multipleNumber ofInstructionStreams single SISD SIMD(von Neumann) (vector, array)multiple MISD MIMD(pipeline?) (multiple micros)Table 10.1: Flynn's classi�cation.Table 10.2 shows a comparison of several types of hardware for neural network simulation.The speed entry, measured in interconnects per second, is an important measure which is of-ten used to compare neural network simulators. It measures the number of multiply-and-addoperations that can be performed per second. However, the comparison is not 100% honest:it does not always include the time needed to fetch the data on which the operations are tobe performed, and may also ignore other functions required by some algorithms such as thecomputation of a sigmoid function. Also, the speed is of course dependent of the algorithmused. 111



112 CHAPTER 10. GENERAL PURPOSE HARDWAREHARDWARE WORD STORAGE SPEED COST SPEEDLENGTH (K Intcnts) (K Int/s) (K$) / COSTWORKSTATIONSMicro/Mini PC/AT 16 100 25 5 5.0Computers Sun 3 32 250 250 20 12.5VAX 32 100 100 300 0.33Symbolics 32 32,000 35 100 0.35Attached ANZA 8{32 500 45 10 4.5Processors �� 1 32 1,000 10,000 15 667Transputer 16 2,000 3,000 4 750Bus-oriented Mark III, IV 16 1,000 500 75 6.7MX/1{16 16 50,000 120,000 300 400MASSIVELY CM{2 (64K) 32 64,000 13,000 2,000 6.5PARALLEL Warp (10) 32 320 17,000 300 56.7Warp (20) 32,000Butter
y (64) 32 60,000 8,000 500 16SUPER- Cray XMP 64 2,000 50,000 4,000 12.5COMPUTERSTable 10.2: Hardware machines for neural network simulation.The authors are well aware that the mentioned computer architectures are archaic: : : current computerarchitectures are several orders of magnitute faster. For instance, current day Sun Sparc machines (e.g., anUltra at 200 MHz) benchmark at almost 300,000 dhrystones per second, whereas the archaic Sun 3 benchmarksat about 3,800. Prices of both machines (then vs. now) are approximately the same. Go �gure! Nevertheless,the table gives an insight of the performance of di�erent types of architectures.10.1 The Connection Machine10.1.1 ArchitectureOne of the most outstanding �ne-grain SIMD parallel machines is Daniel Hillis' Connection Ma-chine (Hillis, 1985; Corporation, 1987), originally developed at MIT and later built at ThinkingMachines Corporation. The original model, the CM{1, consists of 64K (65,536) one-bit proces-sors, divided up into four units of 16K processors each. The units are connected via a cross-barswitch (the nexus) to up to four front-end computers (see �gure 10.1). The large number of ex-tremely simple processors make the machine a data parallel computer, and can be best envisagedas active memory.Each processor chip contains 16 processors, a control unit, and a router. It is connectedto a memory chip which contains 4K bits of memory per processor. Each processor consistsof a one-bit ALU with three inputs and two outputs, and a set of registers. The control unitdecodes incoming instructions broadcast by the front-end computers (which can be DEX VAXesor Symbolics Lisp machines). At any time, a processor may be either listening to the incominginstruction or not.The router implements the communication algorithm: each router is connected to its nearestneighbours via a two-dimensional grid (the NEWS grid) for fast neighbour communication; also,the chips are connected via a Boolean 12-cube, i.e., chips i and j are connected if and only ifji� jj = 2k for some integer k. Thus at most 12 hops are needed to deliver a message. So thereare 4,096 routers connected by 24,576 bidirectional wires.By slicing the memory of a processor, the CM can also implement virtual processors.The CM{2 di�ers from the CM{1 in that it has 64K bits instead of 4K bits memory perprocessor, and an improved I/O system.
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114 CHAPTER 10. GENERAL PURPOSE HARDWARE10.2 Systolic arraysSystolic arrays (Kung & Leierson, 1979) take the advantage of laying out algorithms in twodimensions. The design favours compute-bound as opposed to I/O-bound operations. Thename systolic is derived from the analogy of pumping blood through a heart and feeding datathrough a systolic array.A typical use is depicted in �gure 10.2. Here, two band matrices A and B are multipliedand added to C, resulting in an output C + AB. Essential in the design is the reuse of dataelements, instead of referencing the memory each time the element is needed.
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11 Dedicated Neuro-HardwareRecently, many neuro-chips have been designed and built. Although many techniques, such asdigital and analogue electronics, optical computers, chemical implementation, and bio-chips, areinvestigated for implementing neuro-computers, only digital and analogue electronics, and ina lesser degree optical implementations, are at present feasible techniques. We will thereforeconcentrate on such implementations.11.1 General issues11.1.1 Connectivity constraintsConnectivity within a chipA major problem with neuro-chips always is the connectivity. A single integrated circuit is, incurrent-day technology, planar with limited possibility for cross-over connections. This posesa problem. Whereas connectivity to nearest neighbour can be implemented without problems,connectivity to the second nearest neighbour results in a cross-over of four which is alreadyproblematic. On the other hand, full connectivity between a set of input and output units canbe easily attained when the input and output neurons are situated near two edges of the chip(see �gure 11.1). Note that the number of neurons in the chip grows linearly with the size ofthe chip, whereas in the earlier layout, the dependence is quadratic.
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MFigure 11.1: Connections between M input and N output neurons.Connectivity between chipsTo build large or layered ANN's, the neuro-chips have to be connected together. When onlyfew neurons have to be connected together, or the chips can be placed in subsequent rows infeed-forward types of networks, this is no problem. But in other cases, when large numbers115



116 CHAPTER 11. DEDICATED NEURO-HARDWAREof neurons in one chip have to be connected to neurons in other chips, there are a number ofproblems:� designing chip packages with a very large number of input or output leads;� fan-out of chips: each chip can ordinarily only send signals two a small number of otherchips. Ampli�ers are needed, which are costly in power dissipation and chip area;� wiring.A possible solution would be using optical interconnections. In this case, an external light sourcewould re
ect light on one set of neurons, which would re
ect part of this light using deformablemirror spatial light modulator technology on to another set of neurons. Also under developmentare three-dimensional integrated circuits.11.1.2 Analogue vs. digitalDue to the similarity between arti�cial and biological neural networks, analogue hardware seemsa good choice for implementing arti�cial neural networks, resulting in cheaper implementationswhich operate at higher speed. On the other hand, digital approaches o�er far greater 
exibilityand, not to be neglected, arbitrarily high accuracy. Also, digital chips can be designed withoutthe need of very advanced knowledge of the circuitry using CAD/CAM systems, whereas thedesign of analogue chips requires good theoretical knowledge of transistor physics as well asexperience.An advantage that analogue implementations have over digital neural networks is that theyclosely match the physical laws present in neural networks (table 9.1, point 1). First of all,weights in a neural network can be coded by one single analogue element (e.g., a resistor) whereseveral digital elements are needed1. Secondly, very simple rules as Kircho�'s laws2 can be usedto carry out the addition of input signals. As another example, Boltzmann machines (section 5.3)can be easily implemented by amplifying the natural noise present in analogue devices.11.1.3 OpticsAs mentioned above, optics could be very well used to interconnect several (layers of) neurons.One can distinguish two approaches. One is to store weights in a planar transmissive or re
ectivedevice (e.g., a spatial light modulator) and use lenses and �xed holograms for interconnection.Figure 11.2 shows an implementation of optical matrix multiplication. When N is the linearsize of the optical array divided by wavelength of the light used, the array has capacity for N2weights, so it can fully connect N neurons with N neurons (Fahrat, Psaltis, Prata, & Paek,1985).A second approach uses volume holographic correlators, o�ering connectivity between twoareas of N2 neurons for a total of N4 connections3. A possible use of such volume hologramsin an all-optical network would be to use the system for image completion (Abu-Mostafa &Psaltis, 1987). A number of images could be stored in the hologram. The input pattern iscorrelated with each of them, resulting in output patterns with a brightness varying with the1On the other hand, the opposite can be found when considering the size of the element, especially when highaccuracy is needed. However, once arti�cial neural networks have outgrown rules like back-propagation, highaccuracy might not be needed.2The Kircho� laws state that for two resistors R1 and R2 (1) in series, the total resistance can be calculatedusing R = R1 + R2, and (2) in parallel, the total resistance can be found using 1=R = 1=R1 + 1=R2 (Feynman,Leighton, & Sands, 1983).3Well : : : not exactly. Due to di�raction, the total number of independent connections that can be stored inan ideal medium is N3, i.e., the volume of the hologram divided by the cube of the wavelength. So, in fact N3=2neurons can be connected with N3=2 neurons.
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Figure 11.2: Optical implementation of matrix multiplication.degree of correlation. The images are fed into a threshold device which will conduct the imagewith highest brightness better than others. This enhancement can be repeated for several loops.11.1.4 Learning vs. non-learningIt is generally agreed that the major forte of neural networks is their ability to learn. Whereas anetwork with �xed, pre-computed, weight values could have its merit in industrial applications,on-line adaptivity remains a design goal for most neural systems.With respect to learning, we can distinguish between the following levels:1. �xed weights: the design of the network determines the weights. Examples are theretina and cochlea chips of Carver Mead's group discussed below (cf. a ROM (Read-OnlyMemory) in computer design);2. pre-programmed weights: the weights in the network can be set only once, when thechip is installed. Many optical implementations fall in this category (cf. PROM (Pro-grammable ROM));3. programmable weights: the weights can be set more than once by an external device(cf. EPROM (Erasable PROM) or EEPROM (Electrically Erasable PROM));4. on-site adapting weights: the learning mechanism is incorporated in the network(cf. RAM (Random Access Memory)).11.2 Implementation examples11.2.1 Carver Mead's silicon retinaThe chips devised by Carver Mead's group at Caltech (Mead, 1989) are heavily inspired bybiological neural networks. Mead attempts to build analogue neural chips which match biolog-ical neurons as closely as possible, including extremely low power consumption, fully analoguehardware, and operation in continuous time (table 9.1, point 3). One example of such a chip isthe Silicon Retina (Mead & Mahowald, 1988).



118 CHAPTER 11. DEDICATED NEURO-HARDWARERetinal structureThe o�-center retinal structure can be described as follows. Light is transduced to electricalsignals by photo-receptors which have a primary pathway through the triad synapses to thebipolar cells. The bipolar cells are connected to the retinal ganglion cells which are the outputcells of the retina. The horizontal cells, which are also connected via the triad synapses to thephoto-receptors, are situated directly below the photo-receptors and have synapses connected tothe axons leading to the bipolar cells.The system can be described in terms of the triad synapse's three elements:1. the photo-receptor outputs the logarithm of the intensity of the light;2. the horizontal cells form a network which averages the photo-receptor over space and time;3. the output of the bipolar cell is proportional to the di�erence between the photo-receptoroutput and the horizontal cell output.The photo-receptorThe photo-receptor circuit outputs a voltage which is proportional to the logarithm of theintensity of the incoming light. There are two important consequences:1. several orders of magnitude of intensity can be handled in a moderate signal level range;2. the voltage di�erence between two points is proportional to the contrast ratio of theirilluminance.The photo-receptor can be implemented using a photo-detector, two FET's4 connected in series5and one transistor (see �gure 11.3). The lowest photo-current is about 10�14A or 105 photons
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11.2. IMPLEMENTATION EXAMPLES 119Horizontal resistive layerEach photo-receptor is connected to its six neighbours via resistors forming a hexagonal array.The voltage at every node in the network is a spatially weighted average of the photo-receptorinputs, such that farther away inputs have less in
uence (see �gure 11.4(a)).
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Figure 11.4: The resistive layer (a) and, enlarged, a single node (b).Bipolar cellThe output of the bipolar cell is proportional to the di�erence between the photo-receptor outputand the voltage of the horizontal resistive layer. The architecture is shown in �gure 11.4(b). Itconsists of two elements: a wide-range ampli�er which drives the resistive network towardsthe photo-receptor output, and an ampli�er sensing the voltage di�erence between the photo-receptor output and the network potential.ImplementationA chip was built containing 48� 48 pixels. The output of every pixel can be accessed indepen-dently by providing the chip with the horizontal and vertical address of the pixel. The selectorscan be run in two modes: static probe or serial access. In the �rst mode, a single row andcolumn are addressed and the output of a single pixel is observed as a function of time. In thesecond mode, both vertical and horizontal shift registers are clocked to provide a serial scan ofthe processed image for display on a television display.PerformanceSeveral experiments show that the silicon retina performs similarly as biological retina (Mead &Mahowald, 1988). Similarities are shown between sensitivity for intensities; time responses fora single output when 
ashes of light are input; response to contrast edges.11.2.2 LEP's LNeuro chipA radically di�erent approach is the LNeuro chip developed at the Laboratoires d'ElectroniquePhilips (LEP) in France (Theeten, Duranton, Mauduit, & Sirat, 1990; Duranton & Sirat, 1989).Whereas most neuro-chips implement Hop�eld networks (section 5.2) or, in some cases, Kohonen



120 CHAPTER 11. DEDICATED NEURO-HARDWAREnetworks (section 6.2) (due to the fact that these networks have local learning rules), these digitalneuro-chips can be con�gured to incorporate any learning rule and network topology.ArchitectureThe LNeuro chip, depicted in �gure 11.5, consists of an multiply-and-add or relaxation part,and a learning part. The LNeuro 1.0 has a parallelism of 16. The weights wij are 8 bits long inthe relaxation phase. and 16 bit in the learning phase.
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11.2. IMPLEMENTATION EXAMPLES 121The computation thus increases linearly with the number of neurons (instead of quadraticin simulation on serial machines).The activation function is, for reasons of 
exibility, kept o�-chip. The results of the weightedsum calculation go o�-chip serially (i.e., bit by bit), and the result must be written back to theneural state registers.Finally, a column of latches is included to temporarily store memory values, such that duringa multiply of the weight with several bits the memory can be freely accessed. These latches infact take part in the learning mechanism described below.LearningThe remaining parts in the chip are dedicated to the learning mechanism. The learning mecha-nism is designed to implement the Hebbian learning rule (Hebb, 1949)wjk  wjk + �kyj (11.2)where �k is a scalar which only depends on the output neuron k. To simplify the circuitry,eq. (11.2) is simpli�ed to wjk  wjk + g(yk; yj)�k (11.3)where g(yk; yj) can have value �1, 0, or +1. In e�ect, eq. (11.3) either increments or decrementsthe wjk with �k, or keeps wjk unchanged. Thus eq. (11.2) can be simulated by executing eq. (11.3)several times over the same set of weights.The weights wk related to the output neuron k are all modi�ed in parallel. A learning stepproceeds as follows. Every learning processor (see �gure 11.5) LPj loads the weight wjk fromthe synaptic memory, the �k from the learning register, and the neural state yj. Next, theyall modify their weights in parallel using eq. (11.3) and write the adapted weights back to thesynaptic memory, also in parallel.
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