
Games � adversarial search
In which we examine the problems that arise when we try to plan

ahead in a world where other agents are planning against us.

Piotr Fulma«ski

Wydziaª Matematyki i Informatyki,
Uniwersytet �ódzki, Polska

April 8, 2010



Spis tre±ci

1 Introduction to lecture

2 Game in AI

3 Optimal decisions in games � minimax

4 Optimal decisions in games � alpha-beta cuto�

5 Imperfect real-time decisions

6 Stochastic games

7 Partially observable games



Introduction to lecture

Competitive environments � goals in con�ict

In this part we cover competitive environments, in which the agents'
goals are in con�ict, giving rise to adversarial search problems
often knows as games.

We begin with a de�nition of the optimal move and an algorithm
for �nding it.

We then look at techniques for choosing a good move when time is
limited.

We also discuss games that includes an element of chance.

We also discuss games that includes an elements of imperfect
information.



Introduction to lecture

Competitive environments � goals in con�ict

In this part we cover competitive environments, in which the agents'
goals are in con�ict, giving rise to adversarial search problems
often knows as games.

We begin with a de�nition of the optimal move and an algorithm
for �nding it.

We then look at techniques for choosing a good move when time is
limited.

We also discuss games that includes an element of chance.

We also discuss games that includes an elements of imperfect
information.



Introduction to lecture

Competitive environments � goals in con�ict

In this part we cover competitive environments, in which the agents'
goals are in con�ict, giving rise to adversarial search problems
often knows as games.

We begin with a de�nition of the optimal move and an algorithm
for �nding it.

We then look at techniques for choosing a good move when time is
limited.

We also discuss games that includes an element of chance.

We also discuss games that includes an elements of imperfect
information.



Introduction to lecture

Competitive environments � goals in con�ict

In this part we cover competitive environments, in which the agents'
goals are in con�ict, giving rise to adversarial search problems
often knows as games.

We begin with a de�nition of the optimal move and an algorithm
for �nding it.

We then look at techniques for choosing a good move when time is
limited.

We also discuss games that includes an element of chance.

We also discuss games that includes an elements of imperfect
information.



Introduction to lecture

Competitive environments � goals in con�ict

In this part we cover competitive environments, in which the agents'
goals are in con�ict, giving rise to adversarial search problems
often knows as games.

We begin with a de�nition of the optimal move and an algorithm
for �nding it.

We then look at techniques for choosing a good move when time is
limited.

We also discuss games that includes an element of chance.

We also discuss games that includes an elements of imperfect
information.



Introduction to lecture

Competitive environments � goals in con�ict

In this part we cover competitive environments, in which the agents'
goals are in con�ict, giving rise to adversarial search problems
often knows as games.

We begin with a de�nition of the optimal move and an algorithm
for �nding it.

We then look at techniques for choosing a good move when time is
limited.

We also discuss games that includes an element of chance.

We also discuss games that includes an elements of imperfect
information.



Game in AI

AI games

In AI, the most common games are of a rather specialized kind, what
game theorist call deterministic, turn-taking, two-player, zero-sum.
In our terminology, this means

deterministic,

fully observable,

agents act alternately,

utility values at the end of the game are always opposite.



Game in AI

AI games

In AI, the most common games are of a rather specialized kind, what
game theorist call deterministic, turn-taking, two-player, zero-sum.
In our terminology, this means

deterministic,

fully observable,

agents act alternately,

utility values at the end of the game are always opposite.



Game in AI

AI games

In AI, the most common games are of a rather specialized kind, what
game theorist call deterministic, turn-taking, two-player, zero-sum.
In our terminology, this means

deterministic,

fully observable,

agents act alternately,

utility values at the end of the game are always opposite.



Game in AI

AI games

In AI, the most common games are of a rather specialized kind, what
game theorist call deterministic, turn-taking, two-player, zero-sum.
In our terminology, this means

deterministic,

fully observable,

agents act alternately,

utility values at the end of the game are always opposite.



Game in AI

AI games

In AI, the most common games are of a rather specialized kind, what
game theorist call deterministic, turn-taking, two-player, zero-sum.
In our terminology, this means

deterministic,

fully observable,

agents act alternately,

utility values at the end of the game are always opposite.



Game in AI

AI games

In AI, the most common games are of a rather specialized kind, what
game theorist call deterministic, turn-taking, two-player, zero-sum.
In our terminology, this means

deterministic,

fully observable,

agents act alternately,

utility values at the end of the game are always opposite.



Game in AI

AI games

In AI, the most common games are of a rather specialized kind, what
game theorist call deterministic, turn-taking, two-player, zero-sum.
In our terminology, this means

deterministic,

fully observable,

agents act alternately,

utility values at the end of the game are always opposite.



Game in AI

AI games

In AI, the most common games are of a rather specialized kind, what
game theorist call deterministic, turn-taking, two-player, zero-sum.
In our terminology, this means

deterministic,

fully observable,

agents act alternately,

utility values at the end of the game are always opposite.



Game in AI

AI games

In AI, the most common games are of a rather specialized kind, what
game theorist call deterministic, turn-taking, two-player, zero-sum.
In our terminology, this means

deterministic,

fully observable,

agents act alternately,

utility values at the end of the game are always opposite.



Game in AI

AI games

In AI, the most common games are of a rather specialized kind, what
game theorist call deterministic, turn-taking, two-player, zero-sum.
In our terminology, this means

deterministic,

fully observable,

agents act alternately,

utility values at the end of the game are always opposite.



Game in AI

Why games?

Games are interesting because they are to hard to solve.

Exmaple: chess

An average branching factor of about 35.

Games often go to 50 moves.

So the search tree has about 35100 or 10154 nodes.

Fortunately the search graph has �only� about 1040 distinc nodes.



Game in AI

Why games?

Games are interesting because they are to hard to solve.

Exmaple: chess

An average branching factor of about 35.

Games often go to 50 moves.

So the search tree has about 35100 or 10154 nodes.

Fortunately the search graph has �only� about 1040 distinc nodes.



Game in AI

Why games?

Games are interesting because they are to hard to solve.

Exmaple: chess

An average branching factor of about 35.

Games often go to 50 moves.

So the search tree has about 35100 or 10154 nodes.

Fortunately the search graph has �only� about 1040 distinc nodes.



Game in AI

Why games?

Games are interesting because they are to hard to solve.

Exmaple: chess

An average branching factor of about 35.

Games often go to 50 moves.

So the search tree has about 35100 or 10154 nodes.

Fortunately the search graph has �only� about 1040 distinc nodes.



Game in AI

Why games?

Games are interesting because they are to hard to solve.

Exmaple: chess

An average branching factor of about 35.

Games often go to 50 moves.

So the search tree has about 35100 or 10154 nodes.

Fortunately the search graph has �only� about 1040 distinc nodes.



Game in AI

Why games?

Games are interesting because they are to hard to solve.

Exmaple: chess

An average branching factor of about 35.

Games often go to 50 moves.

So the search tree has about 35100 or 10154 nodes.

Fortunately the search graph has �only� about 1040 distinc nodes.



Game in AI

Why games?

Games, like the real world, therefore require the ability to
make some decision even when calculating
the optimal decision is infeasible. Games also
penalize ine�ciency severely.



Game in AI

De�nition

A game can be formally de�ned as a kind of search problem with the
following elements

The initial state, which speci�es how the game is set up at the
start.

Function PLAYER(s), which de�nes which player has the move in a
state s.

Function ACTIONS(s), which returns the set of legal moves in a
state.

The transition model, RESULT(s,a), which de�nes the result of a
move.

A terminal test, TERMINAL-TEST(s), which is true when the game
is over and false otherwise (equivalent of a goal test function).

Function UTILITY(s,p), also called an objective function or payo�
function) which returns �nal numeric value for a game that ends in
terminal state s for a player p (equivalent of a cost function).



Game in AI

De�nition

A game can be formally de�ned as a kind of search problem with the
following elements

The initial state, which speci�es how the game is set up at the
start.

Function PLAYER(s), which de�nes which player has the move in a
state s.

Function ACTIONS(s), which returns the set of legal moves in a
state.

The transition model, RESULT(s,a), which de�nes the result of a
move.

A terminal test, TERMINAL-TEST(s), which is true when the game
is over and false otherwise (equivalent of a goal test function).

Function UTILITY(s,p), also called an objective function or payo�
function) which returns �nal numeric value for a game that ends in
terminal state s for a player p (equivalent of a cost function).



Game in AI

De�nition

A game can be formally de�ned as a kind of search problem with the
following elements

The initial state, which speci�es how the game is set up at the
start.

Function PLAYER(s), which de�nes which player has the move in a
state s.

Function ACTIONS(s), which returns the set of legal moves in a
state.

The transition model, RESULT(s,a), which de�nes the result of a
move.

A terminal test, TERMINAL-TEST(s), which is true when the game
is over and false otherwise (equivalent of a goal test function).

Function UTILITY(s,p), also called an objective function or payo�
function) which returns �nal numeric value for a game that ends in
terminal state s for a player p (equivalent of a cost function).



Game in AI

De�nition

A game can be formally de�ned as a kind of search problem with the
following elements

The initial state, which speci�es how the game is set up at the
start.

Function PLAYER(s), which de�nes which player has the move in a
state s.

Function ACTIONS(s), which returns the set of legal moves in a
state.

The transition model, RESULT(s,a), which de�nes the result of a
move.

A terminal test, TERMINAL-TEST(s), which is true when the game
is over and false otherwise (equivalent of a goal test function).

Function UTILITY(s,p), also called an objective function or payo�
function) which returns �nal numeric value for a game that ends in
terminal state s for a player p (equivalent of a cost function).



Game in AI

De�nition

A game can be formally de�ned as a kind of search problem with the
following elements

The initial state, which speci�es how the game is set up at the
start.

Function PLAYER(s), which de�nes which player has the move in a
state s.

Function ACTIONS(s), which returns the set of legal moves in a
state.

The transition model, RESULT(s,a), which de�nes the result of a
move.

A terminal test, TERMINAL-TEST(s), which is true when the game
is over and false otherwise (equivalent of a goal test function).

Function UTILITY(s,p), also called an objective function or payo�
function) which returns �nal numeric value for a game that ends in
terminal state s for a player p (equivalent of a cost function).



Game in AI

De�nition

A game can be formally de�ned as a kind of search problem with the
following elements

The initial state, which speci�es how the game is set up at the
start.

Function PLAYER(s), which de�nes which player has the move in a
state s.

Function ACTIONS(s), which returns the set of legal moves in a
state.

The transition model, RESULT(s,a), which de�nes the result of a
move.

A terminal test, TERMINAL-TEST(s), which is true when the game
is over and false otherwise (equivalent of a goal test function).

Function UTILITY(s,p), also called an objective function or payo�
function) which returns �nal numeric value for a game that ends in
terminal state s for a player p (equivalent of a cost function).



Game in AI

De�nition

A game can be formally de�ned as a kind of search problem with the
following elements

The initial state, which speci�es how the game is set up at the
start.

Function PLAYER(s), which de�nes which player has the move in a
state s.

Function ACTIONS(s), which returns the set of legal moves in a
state.

The transition model, RESULT(s,a), which de�nes the result of a
move.

A terminal test, TERMINAL-TEST(s), which is true when the game
is over and false otherwise (equivalent of a goal test function).

Function UTILITY(s,p), also called an objective function or payo�
function) which returns �nal numeric value for a game that ends in
terminal state s for a player p (equivalent of a cost function).



Game in AI

De�nition

The initial state, ACTIONS and RESULTS de�ne the game tree for the
game � a game where

the nodes are game states and

the edges are moves.

Example

Game tree for the game of tic-tac-toe.



Game in AI

De�nition

The initial state, ACTIONS and RESULTS de�ne the game tree for the
game � a game where

the nodes are game states and

the edges are moves.

Example

Game tree for the game of tic-tac-toe.



Optimal decisions in games

What is an optimal solution in games?

In a normal search problem, the optimal solution would be a
sequence of actions leading to a goal state.

In adversarial search, opponent has something to say about it.

Therefore we must �nd a contingent strategy, which speci�es our
move in the initial state and then moves in the states resulting from
every possible response by our opponent.



Optimal decisions in games

What is an optimal solution in games?

In a normal search problem, the optimal solution would be a
sequence of actions leading to a goal state.

In adversarial search, opponent has something to say about it.

Therefore we must �nd a contingent strategy, which speci�es our
move in the initial state and then moves in the states resulting from
every possible response by our opponent.



Optimal decisions in games

What is an optimal solution in games?

In a normal search problem, the optimal solution would be a
sequence of actions leading to a goal state.

In adversarial search, opponent has something to say about it.

Therefore we must �nd a contingent strategy, which speci�es our
move in the initial state and then moves in the states resulting from
every possible response by our opponent.



Optimal decisions in games

What is an optimal solution in games?

In a normal search problem, the optimal solution would be a
sequence of actions leading to a goal state.

In adversarial search, opponent has something to say about it.

Therefore we must �nd a contingent strategy, which speci�es our
move in the initial state and then moves in the states resulting from
every possible response by our opponent.



Optimal decisions in games

How to �nd optimal strategy

One ply tree.

Expansion of the previous tree: two ply (one move deep).

Example with two moves deep tree.



Optimal decisions in games

How to �nd optimal strategy

One ply tree.

Expansion of the previous tree: two ply (one move deep).

Example with two moves deep tree.



Optimal decisions in games

How to �nd optimal strategy

One ply tree.

Expansion of the previous tree: two ply (one move deep).

Example with two moves deep tree.



Optimal decisions in games

How to �nd optimal strategy

One ply tree.

Expansion of the previous tree: two ply (one move deep).

Example with two moves deep tree.



Minimax algorithm

function MINIMAX(state) return an action

{

v := MAX(state)

return the action in ACTIONS(state) with value v

}

function MAX(state) return a utility value

{

if(TERMINAL-TEST(state)) then

return UTILITY(state)

v := -infty

for each a in ACTIONS(state) do

v := max(v,MIN(RESULT(state,a)))

return v

}

function MIN(state) return a utility value

{

if(TERMINAL-TEST(state)) then

return UTILITY(state)

v := +infty

for each a in ACTIONS(state) do

v := min(v,MIN(RESULT(state,a)))

return v

}



Optimal decisions in games

Optimal decision in multiplayer games

Let us examine how to extend the minimax idea to multiplayer games.

First, we need to replace the single value for each node with a vector of
values. For terminal states, this vector gives the utility of the state from
each player's viewpoint.

Example with two moves deep tree and two players.



Optimal decisions in games

Optimal decision in multiplayer games

Let us examine how to extend the minimax idea to multiplayer games.

First, we need to replace the single value for each node with a vector of
values. For terminal states, this vector gives the utility of the state from
each player's viewpoint.

Example with two moves deep tree and two players.



Optimal decisions in games

Optimal decision in multiplayer games

Let us examine how to extend the minimax idea to multiplayer games.

First, we need to replace the single value for each node with a vector of
values. For terminal states, this vector gives the utility of the state from
each player's viewpoint.

Example with two moves deep tree and two players.



Optimal decisions in games

Optimal decision in multiplayer games

Example with one move deep tree for three players.



Optimal decisions in games

Optimal decision in multiplayer games

The minimax algorithm performs a complete depth-�rst exploration of
the game tree. This is a real problem, because the number of game
states it has to examine is exponential in the depth of the tree.
Unfortuantely, we can't eliminate the exponent, but it turns out we can
e�ectively cut it in half. The trick is that it is possible to compute the
correct minimax decision without looking at every node in the game tree.
The technique we examine is called alpha-beta pruning or alpha-beta
cuto�. When applied to a standard minimax tree, it returns the same
move as minimax would, but prunes away branches that cannot possibly
in�uence the �nal decision.



Optimal decisions in games

alpha-beta cuto� � intuition

Intuition



Optimal decisions in games

alpha-beta cuto� � example

Example



Optimal decisions in games

De�nition of alpha and beta parameter

α the value of the best choice we have found so far at any choice
point along the path for MAX (so, α is the highest value so far).

β the value of the best choice we have found so far at any choice
point along the path for MIN (so, β is the lowest value so far).



Optimal decisions in games

alpha-beta cuto� with alpha and beta parameter

Example with alpha and beta



Optimal decisions in games

alpha-beta cuto� and move ordering

The efectiveness of alpha-beta pruning is highly dependent on the order
in which the states are examined.



Optimal decisions in games

alpha-beta cuto� and move ordering

The efectiveness of alpha-beta pruning is highly dependent on the order
in which the states are examined.



Minimax with alpha-beta cuto� algorithm

function MINIMAX-ALPHA-BETA-CUTOFF(state) return an action

{

v := MAX(state,-infty,+infty)

return the action in ACTIONS(state) with value v

}

function MAX(state,alpha,beta) return a utility value

{

if(TERMINAL-TEST(state)) then

return UTILITY(state)

v := -infty

for each a in ACTIONS(state) do

v := max(v,MIN(RESULT(state,a),alpha,beta))

if (v >= beta) then

return v

alpha := maximum(alpha,v)

return v

}

function MIN(state,alpha,beta) return a utility value

{

if(TERMINAL-TEST(state)) then

return UTILITY(state)

v := +infty

for each a in ACTIONS(state) do

v := min(v,MIN(RESULT(state,a),alpha,beta))

if (v <= alpha) then

return v

beta := minimum(beta,v)

return v

}



Imperfect real-time decisions

Imperfect real-time decisions

Evaluation function. This function returns an estimate of the
expected utility of the game from a given position, just as the
heuristic functions in previous part of this lecture.

Cutting o� search (depth limit). Replace
if(TERMINAL-TEST(state)) then return UTILITY(state)

with
if(CUTOFF-TEST(state,depth)) then return EVAL(state)

Forward pruning � some moves at a given node are pruned
immediately without further consideration.

Search versus lookup.



Imperfect real-time decisions

Imperfect real-time decisions

Evaluation function. This function returns an estimate of the
expected utility of the game from a given position, just as the
heuristic functions in previous part of this lecture.

Cutting o� search (depth limit). Replace
if(TERMINAL-TEST(state)) then return UTILITY(state)

with
if(CUTOFF-TEST(state,depth)) then return EVAL(state)

Forward pruning � some moves at a given node are pruned
immediately without further consideration.

Search versus lookup.



Imperfect real-time decisions

Imperfect real-time decisions

Evaluation function. This function returns an estimate of the
expected utility of the game from a given position, just as the
heuristic functions in previous part of this lecture.

Cutting o� search (depth limit). Replace
if(TERMINAL-TEST(state)) then return UTILITY(state)

with
if(CUTOFF-TEST(state,depth)) then return EVAL(state)

Forward pruning � some moves at a given node are pruned
immediately without further consideration.

Search versus lookup.



Imperfect real-time decisions

Imperfect real-time decisions

Evaluation function. This function returns an estimate of the
expected utility of the game from a given position, just as the
heuristic functions in previous part of this lecture.

Cutting o� search (depth limit). Replace
if(TERMINAL-TEST(state)) then return UTILITY(state)

with
if(CUTOFF-TEST(state,depth)) then return EVAL(state)

Forward pruning � some moves at a given node are pruned
immediately without further consideration.

Search versus lookup.



Imperfect real-time decisions

Imperfect real-time decisions

Evaluation function. This function returns an estimate of the
expected utility of the game from a given position, just as the
heuristic functions in previous part of this lecture.

Cutting o� search (depth limit). Replace
if(TERMINAL-TEST(state)) then return UTILITY(state)

with
if(CUTOFF-TEST(state,depth)) then return EVAL(state)

Forward pruning � some moves at a given node are pruned
immediately without further consideration.

Search versus lookup.



Stochastic games

Backgammon and chance nodes

Although one player (say white) knows his own legal moves are, he does
not know what opponent is going to roll and thus does not know what
opponent's legal moves will be. That means white cannot construct a
standard game tree of the sort we saw in chess or tic-tac-toe. A game
tree in backgammon must include chance nodes in addition to MAX
and MIN nodes. Terminal nodes and MAX and MIN nodes work exactly
the same way as befor (because the dice roll is known). For chance
nodes, we compute the expected value, which is the sum of the value
over all outcomes, weighted by the probability of each chance action.
This leads to generalize minimax for deterministic games to an
expectiminimax for game with chance node.



Partially observable games

Partially observable games � battleships

In deterministic partially observable games, uncertainty about the state of
the board arises entirely from the lack of the access to the choices made
by the opponent. This class includes games such as Battleships.



Partially observable games

Partially observable games � card games

Card games provide many examples of stochastic partial observability,
where the missing information is generated randomly. For example, in
many games, cards are dealt randomly at the beginning of the game,
with each player receiving a hand that is not visible to the other players.
At �rst sight, it might seem that these card games are just like dice
games: the cards are dealt randomly and determine the moves available
to each player, but all the �dice� are rolled at the beginning.
Even though this analogy turns out to be incorrect, it suggests an
e�ective algorithm: consider all possible deals of the invisible cards; solve
each one as if it wear a fully observable game; and then choose the move
that has the best outcome averaged over all the deals.



Partially observable games

Partially observable games � card games

Card games provide many examples of stochastic partial observability,
where the missing information is generated randomly. For example, in
many games, cards are dealt randomly at the beginning of the game,
with each player receiving a hand that is not visible to the other players.
At �rst sight, it might seem that these card games are just like dice
games: the cards are dealt randomly and determine the moves available
to each player, but all the �dice� are rolled at the beginning.
Even though this analogy turns out to be incorrect, it suggests an
e�ective algorithm: consider all possible deals of the invisible cards; solve
each one as if it wear a fully observable game; and then choose the move
that has the best outcome averaged over all the deals.



Partially observable games

Partially observable games � card games

Card games provide many examples of stochastic partial observability,
where the missing information is generated randomly. For example, in
many games, cards are dealt randomly at the beginning of the game,
with each player receiving a hand that is not visible to the other players.
At �rst sight, it might seem that these card games are just like dice
games: the cards are dealt randomly and determine the moves available
to each player, but all the �dice� are rolled at the beginning.
Even though this analogy turns out to be incorrect, it suggests an
e�ective algorithm: consider all possible deals of the invisible cards; solve
each one as if it wear a fully observable game; and then choose the move
that has the best outcome averaged over all the deals.


	Introduction to lecture
	Game in AI
	Optimal decisions in games -- minimax
	Optimal decisions in games -- alpha-beta cutoff
	Imperfect real-time decisions
	Stochastic games
	Partially observable games

