
Constraint satisfaction problems
In which we see how treating states as more than just little black
boxes leads to the invention of a range of powerful new search
methods and a deeper understanding of problem structure and

complexity.

Piotr Fulma«ski

Wydziaª Matematyki i Informatyki,
Uniwersytet �ódzki, Polska

April 8, 2010

Spis tre±ci

1 Introduction to lecture

2 Idea � examples in R

3 De�nition

4 Examples

5 Constraint propagation: inference in CSPs

6 Backtracking search for CSP

7 Local search for CSP

8 From constrained to unconstrained

Introduction to lecture

From factored representation to constraint

In lecture Solving problems by searching and Beyond classical search

we explored the idea that problems can be solved by searching in a
space of states.

These states can be evaluated by domain-speci�c heuristics and
tested to see whether they are goal states.

From the point of view of the search algorithm, however, each state
is atomic � its internal structure is hidden.

Now we use a factored representation.

For each state we de�ne a set of variables, each of which has a value.

Next we set constraints on those variables.

Introduction to lecture

From factored representation to constraint

In lecture Solving problems by searching and Beyond classical search

we explored the idea that problems can be solved by searching in a
space of states.

These states can be evaluated by domain-speci�c heuristics and
tested to see whether they are goal states.

From the point of view of the search algorithm, however, each state
is atomic � its internal structure is hidden.

Now we use a factored representation.

For each state we de�ne a set of variables, each of which has a value.

Next we set constraints on those variables.

Introduction to lecture

From factored representation to constraint

In lecture Solving problems by searching and Beyond classical search

we explored the idea that problems can be solved by searching in a
space of states.

These states can be evaluated by domain-speci�c heuristics and
tested to see whether they are goal states.

From the point of view of the search algorithm, however, each state
is atomic � its internal structure is hidden.

Now we use a factored representation.

For each state we de�ne a set of variables, each of which has a value.

Next we set constraints on those variables.

Introduction to lecture

From factored representation to constraint

In lecture Solving problems by searching and Beyond classical search

we explored the idea that problems can be solved by searching in a
space of states.

These states can be evaluated by domain-speci�c heuristics and
tested to see whether they are goal states.

From the point of view of the search algorithm, however, each state
is atomic � its internal structure is hidden.

Now we use a factored representation.

For each state we de�ne a set of variables, each of which has a value.

Next we set constraints on those variables.

Introduction to lecture

From factored representation to constraint

In lecture Solving problems by searching and Beyond classical search

we explored the idea that problems can be solved by searching in a
space of states.

These states can be evaluated by domain-speci�c heuristics and
tested to see whether they are goal states.

From the point of view of the search algorithm, however, each state
is atomic � its internal structure is hidden.

Now we use a factored representation.

For each state we de�ne a set of variables, each of which has a value.

Next we set constraints on those variables.

Introduction to lecture

From factored representation to constraint

In lecture Solving problems by searching and Beyond classical search

we explored the idea that problems can be solved by searching in a
space of states.

These states can be evaluated by domain-speci�c heuristics and
tested to see whether they are goal states.

From the point of view of the search algorithm, however, each state
is atomic � its internal structure is hidden.

Now we use a factored representation.

For each state we de�ne a set of variables, each of which has a value.

Next we set constraints on those variables.

Introduction to lecture

From factored representation to constraint

In lecture Solving problems by searching and Beyond classical search

we explored the idea that problems can be solved by searching in a
space of states.

These states can be evaluated by domain-speci�c heuristics and
tested to see whether they are goal states.

From the point of view of the search algorithm, however, each state
is atomic � its internal structure is hidden.

Now we use a factored representation.

For each state we de�ne a set of variables, each of which has a value.

Next we set constraints on those variables.

Introduction to lecture

From factored representation to constraint

A problem is solved when each variable has a value that satis�es all
the constraints on the variable.

A problem described this way is called a constraint satisfaction
problem (CSP).

Rather than problem-speci�c, CSP search algorithms use
general-purpose heuristics.

Taking advantage of the structure of states enable the solution of
complex problems.

The main idea is to eliminate large portions of the search space all
at once by identifying variable-value combinations that violate the
constraints.

Introduction to lecture

From factored representation to constraint

A problem is solved when each variable has a value that satis�es all
the constraints on the variable.

A problem described this way is called a constraint satisfaction
problem (CSP).

Rather than problem-speci�c, CSP search algorithms use
general-purpose heuristics.

Taking advantage of the structure of states enable the solution of
complex problems.

The main idea is to eliminate large portions of the search space all
at once by identifying variable-value combinations that violate the
constraints.

Introduction to lecture

From factored representation to constraint

A problem is solved when each variable has a value that satis�es all
the constraints on the variable.

A problem described this way is called a constraint satisfaction
problem (CSP).

Rather than problem-speci�c, CSP search algorithms use
general-purpose heuristics.

Taking advantage of the structure of states enable the solution of
complex problems.

The main idea is to eliminate large portions of the search space all
at once by identifying variable-value combinations that violate the
constraints.

Introduction to lecture

From factored representation to constraint

A problem is solved when each variable has a value that satis�es all
the constraints on the variable.

A problem described this way is called a constraint satisfaction
problem (CSP).

Rather than problem-speci�c, CSP search algorithms use
general-purpose heuristics.

Taking advantage of the structure of states enable the solution of
complex problems.

The main idea is to eliminate large portions of the search space all
at once by identifying variable-value combinations that violate the
constraints.

Introduction to lecture

From factored representation to constraint

A problem is solved when each variable has a value that satis�es all
the constraints on the variable.

A problem described this way is called a constraint satisfaction
problem (CSP).

Rather than problem-speci�c, CSP search algorithms use
general-purpose heuristics.

Taking advantage of the structure of states enable the solution of
complex problems.

The main idea is to eliminate large portions of the search space all
at once by identifying variable-value combinations that violate the
constraints.

Introduction to lecture

From factored representation to constraint

A problem is solved when each variable has a value that satis�es all
the constraints on the variable.

A problem described this way is called a constraint satisfaction
problem (CSP).

Rather than problem-speci�c, CSP search algorithms use
general-purpose heuristics.

Taking advantage of the structure of states enable the solution of
complex problems.

The main idea is to eliminate large portions of the search space all
at once by identifying variable-value combinations that violate the
constraints.

Idea

Example 1

Find minimum for function f (x), x ∈ R

f (x) = x2 + 2x + 4

with constraint
h(x) = x2 − 4 = 0

Idea

Example 1

Find minimum for function f (x), x ∈ R

f (x) = (x + 3)(x + 1)(x − 1)(x − 3)

with constraint

g1(x) : −x3 − 2x2 ≤ 0

g2(x) : 2x3 − 4x2 ≤ 0

De�nition

De�nition

A constraint satisfaction problem consist of three components

X � a set of variables, {x1, . . . , xn}
D � a set of domains, {D1, . . . ,Dn}
C � a set of constraints that specify allowable combinations of
values.

Each domain Di consist of a set of allowable values, {v1, . . . , vk} for
variable Xi . Each constraint Ci consist of a pair {V ,R}, where V is a
tuple of variables that participate in the constraint and R is a relation
that de�nes the values that those variables can take on. A relation can
be represented as an explicit list of all tuples of values that satisfy the
constraint, or as an abstract relation that supports two operations:
testing if a tuple is a member of the relation and enumerating the
members of the relation. A discrete domain can be in�nite. With in�nite
domains, it is no longer possible to describe constraints by enumerating
all allowed combinations of values.

De�nition

De�nition

A constraint satisfaction problem consist of three components

X � a set of variables, {x1, . . . , xn}
D � a set of domains, {D1, . . . ,Dn}
C � a set of constraints that specify allowable combinations of
values.

Each domain Di consist of a set of allowable values, {v1, . . . , vk} for
variable Xi . Each constraint Ci consist of a pair {V ,R}, where V is a
tuple of variables that participate in the constraint and R is a relation
that de�nes the values that those variables can take on. A relation can
be represented as an explicit list of all tuples of values that satisfy the
constraint, or as an abstract relation that supports two operations:
testing if a tuple is a member of the relation and enumerating the
members of the relation. A discrete domain can be in�nite. With in�nite
domains, it is no longer possible to describe constraints by enumerating
all allowed combinations of values.

De�nition

De�nition

A constraint satisfaction problem consist of three components

X � a set of variables, {x1, . . . , xn}
D � a set of domains, {D1, . . . ,Dn}
C � a set of constraints that specify allowable combinations of
values.

Each domain Di consist of a set of allowable values, {v1, . . . , vk} for
variable Xi . Each constraint Ci consist of a pair {V ,R}, where V is a
tuple of variables that participate in the constraint and R is a relation
that de�nes the values that those variables can take on. A relation can
be represented as an explicit list of all tuples of values that satisfy the
constraint, or as an abstract relation that supports two operations:
testing if a tuple is a member of the relation and enumerating the
members of the relation. A discrete domain can be in�nite. With in�nite
domains, it is no longer possible to describe constraints by enumerating
all allowed combinations of values.

De�nition

De�nition

A constraint satisfaction problem consist of three components

X � a set of variables, {x1, . . . , xn}
D � a set of domains, {D1, . . . ,Dn}
C � a set of constraints that specify allowable combinations of
values.

Each domain Di consist of a set of allowable values, {v1, . . . , vk} for
variable Xi . Each constraint Ci consist of a pair {V ,R}, where V is a
tuple of variables that participate in the constraint and R is a relation
that de�nes the values that those variables can take on. A relation can
be represented as an explicit list of all tuples of values that satisfy the
constraint, or as an abstract relation that supports two operations:
testing if a tuple is a member of the relation and enumerating the
members of the relation. A discrete domain can be in�nite. With in�nite
domains, it is no longer possible to describe constraints by enumerating
all allowed combinations of values.

De�nition

De�nition

A constraint satisfaction problem consist of three components

X � a set of variables, {x1, . . . , xn}
D � a set of domains, {D1, . . . ,Dn}
C � a set of constraints that specify allowable combinations of
values.

Each domain Di consist of a set of allowable values, {v1, . . . , vk} for
variable Xi . Each constraint Ci consist of a pair {V ,R}, where V is a
tuple of variables that participate in the constraint and R is a relation
that de�nes the values that those variables can take on. A relation can
be represented as an explicit list of all tuples of values that satisfy the
constraint, or as an abstract relation that supports two operations:
testing if a tuple is a member of the relation and enumerating the
members of the relation. A discrete domain can be in�nite. With in�nite
domains, it is no longer possible to describe constraints by enumerating
all allowed combinations of values.

De�nition

De�nition

A constraint satisfaction problem consist of three components

X � a set of variables, {x1, . . . , xn}
D � a set of domains, {D1, . . . ,Dn}
C � a set of constraints that specify allowable combinations of
values.

Each domain Di consist of a set of allowable values, {v1, . . . , vk} for
variable Xi . Each constraint Ci consist of a pair {V ,R}, where V is a
tuple of variables that participate in the constraint and R is a relation
that de�nes the values that those variables can take on. A relation can
be represented as an explicit list of all tuples of values that satisfy the
constraint, or as an abstract relation that supports two operations:
testing if a tuple is a member of the relation and enumerating the
members of the relation. A discrete domain can be in�nite. With in�nite
domains, it is no longer possible to describe constraints by enumerating
all allowed combinations of values.

De�nition

De�nition

A constraint satisfaction problem consist of three components

X � a set of variables, {x1, . . . , xn}
D � a set of domains, {D1, . . . ,Dn}
C � a set of constraints that specify allowable combinations of
values.

Each domain Di consist of a set of allowable values, {v1, . . . , vk} for
variable Xi . Each constraint Ci consist of a pair {V ,R}, where V is a
tuple of variables that participate in the constraint and R is a relation
that de�nes the values that those variables can take on. A relation can
be represented as an explicit list of all tuples of values that satisfy the
constraint, or as an abstract relation that supports two operations:
testing if a tuple is a member of the relation and enumerating the
members of the relation. A discrete domain can be in�nite. With in�nite
domains, it is no longer possible to describe constraints by enumerating
all allowed combinations of values.

De�nition

De�nition

A constraint satisfaction problem consist of three components

X � a set of variables, {x1, . . . , xn}
D � a set of domains, {D1, . . . ,Dn}
C � a set of constraints that specify allowable combinations of
values.

Each domain Di consist of a set of allowable values, {v1, . . . , vk} for
variable Xi . Each constraint Ci consist of a pair {V ,R}, where V is a
tuple of variables that participate in the constraint and R is a relation
that de�nes the values that those variables can take on. A relation can
be represented as an explicit list of all tuples of values that satisfy the
constraint, or as an abstract relation that supports two operations:
testing if a tuple is a member of the relation and enumerating the
members of the relation. A discrete domain can be in�nite. With in�nite
domains, it is no longer possible to describe constraints by enumerating
all allowed combinations of values.

Examples

Map coloring

Examples

Job-shop scheduling

The whole job is composed of tasks.

We can model each task as a variable.

The value of each variable is the time that the task starts, expressed
as an integer number of minutes.

Constraints can assert that one task must occure before another.

Constraints can also specify that a task takes a certain amount of
time to complete.

Examples

Job-shop scheduling

The whole job is composed of tasks.

We can model each task as a variable.

The value of each variable is the time that the task starts, expressed
as an integer number of minutes.

Constraints can assert that one task must occure before another.

Constraints can also specify that a task takes a certain amount of
time to complete.

Examples

Job-shop scheduling

The whole job is composed of tasks.

We can model each task as a variable.

The value of each variable is the time that the task starts, expressed
as an integer number of minutes.

Constraints can assert that one task must occure before another.

Constraints can also specify that a task takes a certain amount of
time to complete.

Examples

Job-shop scheduling

The whole job is composed of tasks.

We can model each task as a variable.

The value of each variable is the time that the task starts, expressed
as an integer number of minutes.

Constraints can assert that one task must occure before another.

Constraints can also specify that a task takes a certain amount of
time to complete.

Examples

Job-shop scheduling

The whole job is composed of tasks.

We can model each task as a variable.

The value of each variable is the time that the task starts, expressed
as an integer number of minutes.

Constraints can assert that one task must occure before another.

Constraints can also specify that a task takes a certain amount of
time to complete.

Examples

Job-shop scheduling

The whole job is composed of tasks.

We can model each task as a variable.

The value of each variable is the time that the task starts, expressed
as an integer number of minutes.

Constraints can assert that one task must occure before another.

Constraints can also specify that a task takes a certain amount of
time to complete.

Job-shop scheduling

Variables de�nition

X =

Job-shop scheduling

Domain de�nition

D =

Job-shop scheduling

Precedence constraints

C =

Examples

A cryptarithmetics problem

TWO + TWO = FOUR

A cryptarithmetics problem

Variables de�nition

X =

A cryptarithmetics problem

Domain de�nition

D =

A cryptarithmetics problem

Precedence constraints

C =

Constraint propagation: inference in CSPs

Constraint propagation: inference in CSPs

In regular state-space search, an algorithm can do only one thing: search.
In CSPs there is a choice: an algorithm can search (choose a new
variable assignment from several possibilities) or do a speci�c type of
inference called constraint propagation: using the constraints to reduce
the number of legal values for a variable, which in turn can reduce the
legal values for another variable, and so on.
Constraint propagation can be intertwined with search, or it may be done
as a preprocessing step, before search starts. Sometimes this
preprocessing can solve the whole problem, so no search is required at all.

Constraint propagation: inference in CSPs

Constraint propagation: inference in CSPs

In regular state-space search, an algorithm can do only one thing: search.
In CSPs there is a choice: an algorithm can search (choose a new
variable assignment from several possibilities) or do a speci�c type of
inference called constraint propagation: using the constraints to reduce
the number of legal values for a variable, which in turn can reduce the
legal values for another variable, and so on.
Constraint propagation can be intertwined with search, or it may be done
as a preprocessing step, before search starts. Sometimes this
preprocessing can solve the whole problem, so no search is required at all.

Constraint propagation: inference in CSPs

Constraint propagation: inference in CSPs

In regular state-space search, an algorithm can do only one thing: search.
In CSPs there is a choice: an algorithm can search (choose a new
variable assignment from several possibilities) or do a speci�c type of
inference called constraint propagation: using the constraints to reduce
the number of legal values for a variable, which in turn can reduce the
legal values for another variable, and so on.
Constraint propagation can be intertwined with search, or it may be done
as a preprocessing step, before search starts. Sometimes this
preprocessing can solve the whole problem, so no search is required at all.

Constraint propagation: inference in CSPs

Constraint propagation: inference in CSPs

In regular state-space search, an algorithm can do only one thing: search.
In CSPs there is a choice: an algorithm can search (choose a new
variable assignment from several possibilities) or do a speci�c type of
inference called constraint propagation: using the constraints to reduce
the number of legal values for a variable, which in turn can reduce the
legal values for another variable, and so on.
Constraint propagation can be intertwined with search, or it may be done
as a preprocessing step, before search starts. Sometimes this
preprocessing can solve the whole problem, so no search is required at all.

Constraint propagation: inference in CSPs

Constraint propagation: inference in CSPs

In regular state-space search, an algorithm can do only one thing: search.
In CSPs there is a choice: an algorithm can search (choose a new
variable assignment from several possibilities) or do a speci�c type of
inference called constraint propagation: using the constraints to reduce
the number of legal values for a variable, which in turn can reduce the
legal values for another variable, and so on.
Constraint propagation can be intertwined with search, or it may be done
as a preprocessing step, before search starts. Sometimes this
preprocessing can solve the whole problem, so no search is required at all.

Constraint propagation: inference in CSPs

Constraint propagation: inference in CSPs

In regular state-space search, an algorithm can do only one thing: search.
In CSPs there is a choice: an algorithm can search (choose a new
variable assignment from several possibilities) or do a speci�c type of
inference called constraint propagation: using the constraints to reduce
the number of legal values for a variable, which in turn can reduce the
legal values for another variable, and so on.
Constraint propagation can be intertwined with search, or it may be done
as a preprocessing step, before search starts. Sometimes this
preprocessing can solve the whole problem, so no search is required at all.

Local consistency

Local consistency

The key idea is local consistency. If we treat each variable as a node in a
graph and each binary constraint as an arc, then the process of enforcing
local consistency in each part of the graph causes inconsistent values to
be eliminated throughout the graph. There are di�erent types of local
consistency, which we now cover in turn.

Local consistency

Node consistency

A single variable is node consistent if all the values in the variable's
domain satisfy the variable's unary constraints.

Example

Consider the constraint: X1,X2 ∈ N and X1 ≤ 10 and X2 ≤ 10

Local consistency

Node consistency

A single variable is node consistent if all the values in the variable's
domain satisfy the variable's unary constraints.

Example

Consider the constraint: X1,X2 ∈ N and X1 ≤ 10 and X2 ≤ 10

Local consistency

Arc consistency

A variable is arc consistent if every value in the domain satis�es the
variable's binary constraints.

Arc consistency

More formally, Xi is arc consistent with respect to another variable Xj if
for every value in the current domain Di there is some value in the
domain Dj that satis�es the binary constraint on the arc (Xi ,Xj)

Example

Consider the additional (to previous) constraint X2 = X 2
1 . We can write

this constraint explicitly as

{(X1,X2), {(0, 0), (1, 1), (2, 4), (3, 9)}}

To make X1 arc consistent with respect to X2, we reduce X1's domain to
{0, 1, 2, 3}. To make X2 arc consistent with respect to X1, we reduce
X2's domain to {0, 1, 4, 9}.

Local consistency

Arc consistency

A variable is arc consistent if every value in the domain satis�es the
variable's binary constraints.

Arc consistency

More formally, Xi is arc consistent with respect to another variable Xj if
for every value in the current domain Di there is some value in the
domain Dj that satis�es the binary constraint on the arc (Xi ,Xj)

Example

Consider the additional (to previous) constraint X2 = X 2
1 . We can write

this constraint explicitly as

{(X1,X2), {(0, 0), (1, 1), (2, 4), (3, 9)}}

To make X1 arc consistent with respect to X2, we reduce X1's domain to
{0, 1, 2, 3}. To make X2 arc consistent with respect to X1, we reduce
X2's domain to {0, 1, 4, 9}.

Local consistency

Arc consistency

A variable is arc consistent if every value in the domain satis�es the
variable's binary constraints.

Arc consistency

More formally, Xi is arc consistent with respect to another variable Xj if
for every value in the current domain Di there is some value in the
domain Dj that satis�es the binary constraint on the arc (Xi ,Xj)

Example

Consider the additional (to previous) constraint X2 = X 2
1 . We can write

this constraint explicitly as

{(X1,X2), {(0, 0), (1, 1), (2, 4), (3, 9)}}

To make X1 arc consistent with respect to X2, we reduce X1's domain to
{0, 1, 2, 3}. To make X2 arc consistent with respect to X1, we reduce
X2's domain to {0, 1, 4, 9}.

The arc consistency algorithm (AC3)

The arc consistency algorithm (AC3)

After applying, either every arc is arc consistent, or some variable has an
empty domain, indicating that the CSP cannot be solved.

The arc consistency algorithm (AC3)

input: a binary CSP with components (X,D,C)
local variables: queue, a queue of arcs, initially all the arcs in CSP

function AC3(csp) return false if an inconsistency is found and true otherwise
{

while (queue is not empty)
{

(X_{i},X_{j}) := removeFirst(queue)
if (revise(CSP,X_{i},X_{j})) then
{

if (size of D_{i} = 0) then
return false

for each X_{k} in X_{i}.neighbours - {X_{j}}
queue.add((X_{k},X_{i}))

}
}

}

function revise(csp,X_{i},X_{j}) return true iff we revise the domain of X_{i}
{

revise := false
for each x in D_{i}
{

if (no value y in D_{j} allows (x,y) to satisfy the constraint
between X_{i} and X_{j})

{
delete x from D_{i}
revise := true

}
}

}

Local consistency

Path consistency

A two variable set is {Xi ,Xj} is path consistent with respect to a third
variable Xm if, for every assignment {Xi = a,Xj = b} consistent with the
constraints on {Xi ,Xj}, there is an assignment to Xm that satis�es the
constraints on {Xi ,Xm} and {Xm,Xj}. This is called path consistency
because one can think of it as looking at a path from Xi to Xj with Xm

in the middle.

Local consistency

Sudoku example

Local consistency

Forward checking

AC3 algorithm can infer reductions in the domain of variables before we
begin search. But inference can be even more powerful in the course of
search: every time we make a choice of a value for a variable, we have a
brand-new opportunity to infer new domain reduction on the neighboring
variables.

Forward checking

One of the simplest form of inference is called forward checking.
Whenever a variable X is assigned, the forward-checking process
establishes arc consistency for it: for each unassigned variable Y that is
connected to X by a constraint, delete from Y 's domain any value that is
inconsistent with the value chosen for X . Because forward chcecking only
does arc consistency inferences, there is no reason to do forward checking
if we have already done arc consistency as a preprocessing step.

Local consistency

Forward checking

AC3 algorithm can infer reductions in the domain of variables before we
begin search. But inference can be even more powerful in the course of
search: every time we make a choice of a value for a variable, we have a
brand-new opportunity to infer new domain reduction on the neighboring
variables.

Forward checking

One of the simplest form of inference is called forward checking.
Whenever a variable X is assigned, the forward-checking process
establishes arc consistency for it: for each unassigned variable Y that is
connected to X by a constraint, delete from Y 's domain any value that is
inconsistent with the value chosen for X . Because forward chcecking only
does arc consistency inferences, there is no reason to do forward checking
if we have already done arc consistency as a preprocessing step.

Local consistency

Forward checking

Example

Backtracking search for CSP

Backtracking search for CSP

The term backtracking search is used for a depth-�rst search that
chooses values for one variable at a time and backtracks when a variable
has no legal values left to assign. Algorithm repeatedly chooses an
unassigned variable, and then tries all values in the domain variable in
turn, trying to �nd solution. If an inconsistency is detected then failure is
returned, causing the previous call to try another value.

Backtracking search (BS)

function BS(csp) return a solution, or failure
return backtrack({},csp)

function backtrack(assignment,csp) return solution, or failure
{

if (assignment is complete) then
return assignment

var := selectUnassignedVariable(csp)
for each value in orderDomainValues(var,assignment,csp)
{

if (value is consistent with assignment)
{

add {var = value} to assignment
inferences := inference(csp,var,value)
if inferences != failure
{

add inferences to assignment
result := backtrack(assignment,csp)
if (result != failure)
return result

}
}
remove {var = value} and inferences from assignment

}
return failure

}

Backtracking search for CSP

Backtracking search for CSP

By varing the function selectUnassignedVariable and orderDomainValues,
we can implement the general-purpose heuristics. The function
inference can optionally be used to impose node, arc, path consistency,
as desired.

Backtracking search for CSP

Example

Knight problem

Local search for CSP

Local search for CSP

In choosing a new value for a variable, the most obvious heuristic is to
select the value that results in the minimum number of con�icts with
other variables � the min-con�icts heuristics.

Example

Min-con�icts for an 8-queens problem.

Min-con�icts (MC)

conflicts - function counts the number of constraints violated by a particular value,
given the rest of the current assignment

function MC(csp,maxSteps) return a solution, or failure
{

current := an initial complete assignment for csp
for i := 1 to maxSteps
{

if (current is a solution for csp)
return current

var := a randomly chosen conflicted variable from csp.variables
value := the value v for var that minimizes conflicts(var,v,current,csp)
var := value in current

}
return failure

}

From constrained to unconstrained

Penalty methods

One way to solve the inequality-constrained minimization problem{
Minimize f (x) subject to
g1(x) ≤ 0, . . . , gm(x) ≤ 0

is to approximate this problem with an unconstrained minimization
problem

Minimize F (x)

where the objective function F (x) for the unconstrained problem is
constructed from the objective function f (x) and the constraints
hi (x) ≤ 0, i = 1, . . . ,m for the given constrained problem in such a way
that

F (x) includes a penalty term which increases the value of F (x)
whenever a constraint hi (x) ≤ 0 (one or more) is violated. Larger
violations results in larger increases.

The unconstrained minimizer xFmin
of F (x) is �near� a constrained

minimizer for the given constrained problem.

Penalty function

Penalty function

Using this approach, we hope that, as the size of the penalty term in
F (x) increases, the minimizer x∗F of F (x) will approach a point x∗ that is
feasible and a minimizer for the given constrained problem.
For a given constraint g(x) ≤ 0, note that the function g+(x) de�ned by

g+(x) =

{
0 if g(x) ≤ 0
g(x) if g(x) > 0

is zero for all x that satisfy the constraint and that it has a positive value
whenever this constraint is violated

Penalty function

Penalty function

Using this approach, we hope that, as the size of the penalty term in
F (x) increases, the minimizer x∗F of F (x) will approach a point x∗ that is
feasible and a minimizer for the given constrained problem.
For a given constraint g(x) ≤ 0, note that the function g+(x) de�ned by

g+(x) =

{
0 if g(x) ≤ 0
g(x) if g(x) > 0

is zero for all x that satisfy the constraint and that it has a positive value
whenever this constraint is violated

Penalty function

Penalty function

Using this approach, we hope that, as the size of the penalty term in
F (x) increases, the minimizer x∗F of F (x) will approach a point x∗ that is
feasible and a minimizer for the given constrained problem.
For a given constraint g(x) ≤ 0, note that the function g+(x) de�ned by

g+(x) =

{
0 if g(x) ≤ 0
g(x) if g(x) > 0

is zero for all x that satisfy the constraint and that it has a positive value
whenever this constraint is violated

Penalty function

Penalty function

Using this approach, we hope that, as the size of the penalty term in
F (x) increases, the minimizer x∗F of F (x) will approach a point x∗ that is
feasible and a minimizer for the given constrained problem.
For a given constraint g(x) ≤ 0, note that the function g+(x) de�ned by

g+(x) =

{
0 if g(x) ≤ 0
g(x) if g(x) > 0

is zero for all x that satisfy the constraint and that it has a positive value
whenever this constraint is violated

Penalty function

Penalty function

Moreover, large violations in the constraint g(x) ≤ 0 result in large
values for g+(x). Thus, g+(x) has the penalty features we want relative
to the single constraint g(x) ≤ 0.

Approximating unconstrained program

Approximating unconstrained program

If we now turn to the original constrained minimization problem{
Minimize f (x) subject to
g1(x) ≤ 0, . . . , gm(x) ≤ 0

we see from the basic features of the function g+(x) that one reasonable
de�nition for the objective function for an approximating unconstrained
program is

Fk(x) = f (x) + k

m∑
i=1

g+
i (x),

where k is a positive integer.

Approximating unconstrained program

Approximating unconstrained program

The role of the positive integer k is obvious: as k increases, so does the
penalty associated with a given choice of x that violate one or more of
the constraints gi (x) ≤ 0 for i = 1, 2, . . . ,m. For this reason, we call k
the penalty parameter.

Approximating unconstrained program

Approximating unconstrained program

Our hope is that, for large k, the value of

k

m∑
i=1

g+
i (x∗k)

at a minimizer x∗k for Fk(x) should be small, x∗k should be near the

feasibility region for constrained minimization problem, and F
x∗
k

k should
be near a minimum for constrained minimization problem. This leads us
to hope that there might be at least a subsequence of {x∗k } that
converges to a minimizer x∗ for constrained minimization problem.

Approximating unconstrained program

Approximating unconstrained program

Our hope is that, for large k, the value of

k

m∑
i=1

g+
i (x∗k)

at a minimizer x∗k for Fk(x) should be small, x∗k should be near the

feasibility region for constrained minimization problem, and F
x∗
k

k should
be near a minimum for constrained minimization problem. This leads us
to hope that there might be at least a subsequence of {x∗k } that
converges to a minimizer x∗ for constrained minimization problem.

Approximating unconstrained program

Approximating unconstrained program

Our hope is that, for large k, the value of

k

m∑
i=1

g+
i (x∗k)

at a minimizer x∗k for Fk(x) should be small, x∗k should be near the

feasibility region for constrained minimization problem, and F
x∗
k

k should
be near a minimum for constrained minimization problem. This leads us
to hope that there might be at least a subsequence of {x∗k } that
converges to a minimizer x∗ for constrained minimization problem.

Approximating unconstrained program

Approximating unconstrained program

Our hope is that, for large k, the value of

k

m∑
i=1

g+
i (x∗k)

at a minimizer x∗k for Fk(x) should be small, x∗k should be near the

feasibility region for constrained minimization problem, and F
x∗
k

k should
be near a minimum for constrained minimization problem. This leads us
to hope that there might be at least a subsequence of {x∗k } that
converges to a minimizer x∗ for constrained minimization problem.

Approximating unconstrained program

Approximating unconstrained program

Our hope is that, for large k, the value of

k

m∑
i=1

g+
i (x∗k)

at a minimizer x∗k for Fk(x) should be small, x∗k should be near the

feasibility region for constrained minimization problem, and F
x∗
k

k should
be near a minimum for constrained minimization problem. This leads us
to hope that there might be at least a subsequence of {x∗k } that
converges to a minimizer x∗ for constrained minimization problem.

Approximating unconstrained program

Example

Consider the program{
Minimize f (x) = x2 subject to
g(x) = 1− x ≤ 0 x ∈ R

	Introduction to lecture
	Idea -- examples in R
	Definition
	Examples
	Constraint propagation: inference in CSPs
	Backtracking search for CSP
	Local search for CSP
	From constrained to unconstrained

