
Teoria i praktyka programowania gier
komputerowych

Wst¦p

Piotr Fulma«ski

Wydziaª Matematyki i Informatyki,
Uniwersytet �ódzki, Polska

13 pa¹dziernika 2011

Spis tre±ci

1 Structure of a typical game team

2 Game

3 Game engine

4 Engine di�erences across genres

5 Game engine survey

6 Runtime engine architecture

Structure of a typical game team

Game studios are usually composed of �ve basic disciplines:

engineers

artists

game designers

producers

other stu�

testers

Structure of a typical game team
Engineers

The engineers design and implement the software that makes the game,
and the tools, work. Engineers are often categorized into two basic
groups:

runtime programmers (who work on the engine and the game
itself)

tools programmers (who work on the o�-line tools that allow the
rest of the development team to work e�ectively).

On both sides of the runtime/tools line, engineers have various
specialties.

Some engineers focus their careers on a single engine system, such
as rendering, arti�cial intelligence, audio, or collision and physics.

Some focus on gameplay programming and scripting,

while others prefer to work at the systems level and not get too
involved in how the game actually plays.

Structure of a typical game team
Artists

Concept artists produce sketches and paintings that provide the
team with a vision of what the �nal game willlook like.

3D modelers produce the three-dimensional geometry for
everything in the virtual game world. This discipline is typically
divided into two subdisciplines:

foreground modelers � create objects, characters, vehicles, weapons,
and the other objects that populate the game world;
background model � build the world's static background geometry
(terrain, buildings, bridges, etc.).

Texture artists create the two-dimensional images known as
textures, which are applied to the surfaces of 3D models in order to
provide detail and realism.

Lighting artists lay out all of the light sources in the game world,
both static and dynamie, and work with color, intensity, and light
direction to maximize the artfulness and emotional impact of each
scene.

Structure of a typical game team
Artists

Animators imbue the characters and objects in the game with
motion.

Motion capture actors are often used to provide a rough set of
motion data, which are then cleaned up and tweaked by the
animators before being integrated into the game.

Sound designers work closely with the engineers in order to
produce and mix the sound e�ects and music in the game.

Voice actors provide the voices of the characters in many games.

Composers who compose an original score for the game.

Structure of a typical game team
Game designers

The game designers' job is to design the interactive portion of the
player's experience, typically known as gameplay. Di�erent kinds of
designers work at di�erent levels of detail.

Some (usually senior) game designers work at the macro level,
determining the story arc, the overall sequence of chapters or levels,
and the high-level goals and objectives of the player.

Other designers work on individual levels or geographical areas
within the virtual game world, laying out the static background
geometry, determining where and when enemies will emerge, placing
supplies like weapons and health packs, designing puzzle elements,
and so on.

Still other designers operate at a highly technical level, working
closely with gameplay engineers and/or writing code (often in a
high-level scripting language). Some game designers are
ex-engineers, who decided they wanted to play a more active role in
determining how the game will play.

Structure of a typical game team
Producers

Structure of a typical game team
Other stu�

Structure of a typical game team
Testers

What is a game?
Intuition

We probably all have a pretty good intuitive notion of what a game is.

What is a game?
De�nition

According to Wikipedia
(http://en.wikipedia.org/wiki/Video_game)

De�nition

A video game is an electronic game that involves interaction with a user
interface to generate visual feedback on a video device.

Better de�nition

De�nition

Game is an interactive experience that provides the player with an
increasingly challenging sequence of patterns which he or she learns and
eventually masters.

According to this, activities of learning and mastering are at the heart of
what we call fun in case of computer games.

http://en.wikipedia.org/wiki/Video_game

What is a game?
De�nition

According to Wikipedia
(http://en.wikipedia.org/wiki/Video_game)

De�nition

A video game is an electronic game that involves interaction with a user
interface to generate visual feedback on a video device.

Better de�nition

De�nition

Game is an interactive experience that provides the player with an
increasingly challenging sequence of patterns which he or she learns and
eventually masters.

According to this, activities of learning and mastering are at the heart of
what we call fun in case of computer games.

http://en.wikipedia.org/wiki/Video_game

What is a game?
Our focus � the purposes of this lecture

For the purposes of this lecture, we'll focus on the subset of games that
comprise two- and three-dimensional virtual worlds with a small number
of players (between one and 16 or thereabouts). Our primary focus will be
on game engines capable of producing �rst-person shooters, third-person
action/platform games, racing games, �ghting games, and the like.

What is a game?
Video game as a soft real-time simulations

Most two- and three-dimensional video games are examples of what
computer scientists would call soft real-time interactive agent-based
computer simulations. Let's break this phrase down in order to better
understand what it means.

What is a game?
Video game as a soft real-time simulations

soft real-time INTERACTIVE agent-based computer simulations

All interactive video games are temporal simulations, meaning that the
virtual game world model is dynamic � the state of the game world
changes over time as the game's events and story unfold. A video game
must also respond to unpredictable inputs from its human player(s)�thus
interactive temporal simulations.

What is a game?
Video game as a soft real-time simulations

soft REAL-TIME interactive agent-based computer simulations

As the �nal word about interactivity we can say that, most video games
present their stories and respond to, player input in real-time, making
them interactive real-time simulation.

What is a game?
Video game as a soft real-time simulations

SOFT REAL-TIME interactive agent-based computer simulations

At the core of every real-time system is the concept of a deadline. An
obvious example in video games is the requirement that the screen be
updated at least 24 times per second in order to provide the illusion of
motion. A soft real-time system is one in which missed deadlines are not
catastrophic. Hence all video games are soft real-time systems � if the
frame rate dies, the human player generally doesn't! Contrast this with a
hard real-time system, in which a missed deadline could mean severe
injury to or even the death of a human operator.

What is a game?
Video game as a soft real-time simulations

soft real-time interactive AGENT-BASED computer simulations

An agent-based simulation is one in which a number of distinct entities
known as agents interact. This �ts the description of most
three-dimentsional computer games very well, where the agents are
vehicles, characters, �reballs, and so on.

What is a game?
Video game as a soft real-time simulations

soft real-time interactive agent-based COMPUTER SIMULATIONS

In most video games, some subset of the real world (or an imaginary
world) is modeled mathematically so that it can be manipulated by a
computer. The model is an approximation to and a simpli�cation of
reality (even if it's an imaginary reality), because it is c1early impractical
to include every detail down to the level of atoms or quarks. Hence, the
mathematical model is a simulation of the real or imagined game world.
Approximation and simpli�cation are two of the game developer's most
powerful tools.

What is a game engine?
Intuition

A game engine is a system designed for the creation and development of
video games. There are many game engines that are designed to work on
video game consoles and personal computers. The core functionality
typically provided by a game engine includes a

rendering engine (�renderer�) for 2D or 3D graphics,

a physics engine or collision detection (and collision response),

sound,

scripting,

animation,

arti�cial intelligence,

networking,

streaming,

memory management, threading, localization support, and a scene
graph.1

1http://en.wikipedia.org/wiki/Game_engine

http://en.wikipedia.org/wiki/Game_engine

The term �game engine�

The term �game engine� arose in the mid-1990s, especially in connection
with 3D games such as �rst-person shooters (FPS). Such was the
popularity of Id Software's Doom and Quake games that, rather than
work from scratch, other developers licensed the core portions of the
software and designed their own graphics, characters, weapons and levels
- the �game content� or �game assets�. Separation of game-speci�c rules
and data from basic concepts like collision detection and game entity
meant that teams could grow and specialize.
Later games, such as Quake III Arena and Epic Games's 1998 Unreal
were designed with this approach in mind, with the engine and content
developed separately. The practice of licensing such technology has
proved to be a useful auxiliary revenue stream for some game developers.
Reusable engines make developing game sequels faster and easier, which
is a valuable advantage in the competitive video game industry.

Game engine

The line between a game and its engine is often blurry. Some engines
make a reasonably clear distinction, while others make almost no attempt
to separate the two.
Arguably a data-driven architecture is what di�erentiates a game engine
from a piece of software that is a game but not an engine. When a game
contains hard-coded logic or game rules, or employs special-case code to
render speci�c types of game objects, it becomes di�cult or impossible to
reuse that software to make a di�erent game. We should reserve the
term game engine for software that is extensible and can be used
as the foundation for many di�erent games without major
modi�cation.

Engine di�erences across genres
FPS (First-Person Shooters)

The �rst-person shooter (FPS) genre is typi�ed by games like Quake,
Unreal Tournament, Half-Life, Counter-Strike, and Call of Duty.
First-person games are typically some of the most technologically
challenging to build, probably rivaled in complexity only by third-person
shooter/action/platformer games and massively multiplayer games. This
is because �rst-person shooters aim to provide their players with the
illusion of being immersed in a detailed, hyperrealistic world. It is not
surprising that many of the game industry's big technological innovations
arose out of the games in this genre.
First-person shooters typically focus on technologies, such as

e�cient rendering of large 3D virtual worlds;

a responsive camera control/aiming mechanic;

high-�delity animations of the player's virtual arms and weapons;

high-�delity animations and arti�cial intelligence for the non-player
characters (the player's enemies and allies);

small-scale online multiplayer capabilities (typically supporting up to
64 simultaneous players), and the ubiquitous �death match�
gameplay mode.

Engine di�erences across genres
Platformers and other third-person games

This genre is typi�ed by games like
Platformer is the term applied to third-person character-based action
games where jumping from platform to platform is the primary gameplay
mechanic.
Same of the technologies speci�cally focused on by games in this genre
include

moving platforms, ladders, ropes, trellises, and other interesting
locomotion modes;

puzzle-like environmental elements;

a third-person follow camera which stays focused on the player
character and whose rotation is typically controlled by the human
player ;

a complex camera collision system for ensuring that the view point
never �clips� through background geometry or dynamic foreground .

Engine di�erences across genres
Fighting games

This genre is typi�ed by games like
Since the 3D world in these games is small and the camera is centered on
the action at all times, historically these games have had little or no need
for world subdivision or occlusion culling. They would likewise not be
expected to employ advanced three-dimensional audio propagation
models, for example.
Same of the technologies speci�cally focused on by games in this genre
include

a rich set of �ghting animations;

accurate hit detection;

a user input system capable of detecting complex button and
joystick combinations;

crowds, but otherwise relatively static backgrounds;

high-de�nition character graphics, including realistic skin shaders
with subsurface scattering and sweat e�ects;

high-�delity character animations;

physics-based cloth and hair simulations for the characters.

Engine di�erences across genres
Racing games

This genre is typi�ed by games like
The racing genre encompasses all games whose primary task is driving a
car ar other vehicle on some kind of track. Additionaly some kart racing
games, for example, o�er modes in which players shoot at one another,
collect loot, or engage in a variety of other timed and untimed tasks.
A racing game is often very linear, much like older FPS games. However,
travel speed is generally much faster than in a FPS. Therefore more focus
is placed on very long corridor-based tracks, or looped tracks, sometimes
with various alternate routes and secret short-cuts. Racing games usually
focus all their graphic detail on the vehicles, track, and immediate
surroundings. However, kart racers also devote signi�cant rendering and
animation bandwidth to the characters driving the vehic1es.

Engine di�erences across genres
RTS (Real-Time Strategy)

This genre is typi�ed by games like Dune II: The Building of a Dynasty,
Syndicate, Warcraft, Command & Conquer, Age of Empires, Starcraft.
In this genre, the player deploys the battle units in his or her arsenal
strategically across a large playing �eld in an attempt to overwhelm his ar
her opponent. The game world is typically displayed at an oblique
top-down viewing angle. The RTS player is usually prevented from
signi�cantly changing the viewing angle.
Older games in the genre employed a grid-based (cell-based) world
construction, and an orthographic projection was used to greatly simplify
the renderer. Modern RTS games sometimes use perspective projection
and a true 3D world, but they may still employ a grid layout system to
ensure that units and background elements, such as buildings, align with
one another properly.

Engine di�erences across genres
MMOG (Massively Multiplayer Online Games)

This genre is typi�ed by games like ...
An MMOG is de�ned as any game that supports huge numbers of
simultaneous players (from thousands to hundreds of thousands), usually
all playing in one very large, persistent virtual world (i.e., a world whose
internal state persists for very long periods of time, far beyond that of
any one player's gameplay session).

Game engine survey

Runtime engine architecture

Hardware layer

Device driver layer

Operating system layer

Third party SDKs and middleware

Most game engines leverage a number of third-party software
development kits and middleware for

data structires and algorithms,

graphics,

collision and physics,

character animation,

arti�cial intelligence,

etc.

Platform independence layer

Most game engines are required to be capable of running on more than
one hardware platform. Therefore, most game engines are architected
with a platform independence layer. This layer sits atop the hardware,
drivers, operating system, and other third-party software and shields the
rest of the engine from the majority of knowledge of the underlying
platform.

Core systems

Every game engine (as really every large, complex C ++ software
application) requires a grab bag of useful software utilities. Here are a
few examples of the facilities the core layer usually provides.

Memory management. Virtually every game engine implements its
own custom memory allocation system(s) to ensure high-speed
allocations and deallocations and to limit the negative e�ects of
memory fragmentation.

Math library.

Custom data structures and algorithms. Unless an engine's
designers decided to rely entirely on a third-party package such as
STL, a suite of tools for managing fundamental data structures
(linked lists, dynamic arrays, binary trees, hash maps, etc.) and
algorithms (search, sort, etc.) is usually required. These are often
hand-coded to minimize or eliminate dynarnic memory allocation and
to ensure optimal runtime performance on the target platform(s).

Resource manager

Present in every game engine in some form, the resource manager
provides a uni�ed interface (or suite of interfaces) for accessing any and
all types of game assets and other engine input data.

Rendering engine

The rendering engine is one of the largest and most complex components
of any game engine. Renderers can be architected in many di�erent ways.
There is no one accepted way to do it, although most modern rendering
engines share some fundamental design philosophies, driven in large part
by the design of the 3D graphics hardware upon which they depend.

Rendering engine
Low-level renderer

The low-level renderer encompasses all of the raw rendering facilities of
the engine. At this level, the design is focused on rendering a collection of
geometrie primitives as quickly and richly as possible, without much
regard for which portions of a scene may be visible. This component is
broken into various subcomponents, which are discussed below.
Graphics SDKs, such as DirectX and OpenGL, require a reasonable
amount of code to be written just to enumerate the available graphics
devices, initialize thern, set up render surfaces (back-bu�er, stencil bu�er
etc.), and so on. This is typically handled by a component that called the
graphics device interface (although every engine uses its own
terminology). The other components in the low-level renderer cooperate
in order to collect submissions of geometrie primitives, such as meshes,
line lists, point lists, partic1es, terrain patches, text strings, and whatever
else you want to draw, and render them as quickly as possible.

Rendering engine
Scene graph/culling optimizations

The low-level renderer draws all of the geometry submitted to it, without
much regard for whether or not that geometry is actually visible (other
than back-face culling and c1ipping triangles to the camera frustum). A
higher-level component is usually needed in order to limit the number of
primitives submitted for rendering, based on some form of visibility
determination.

Rendering engine
Visual e�ects

Modern game engines support a wide range of visual e�ects, including

particle systems (for smoke, �re, water splashes, etc.);

decal systems (for bullet hole s, foot prints, etc.);

light mapping and environment mapping;

dynamic shadows;

full-screen post e�ects, applied after the 3D scene has been rendered
to an o�screen bu�er

high dynamie range (HDR) lighting and bloom;
full-screen anti-aliasing (FSAA);
color correction and color-shift e�ects, inc1uding bleach bypass,
saturation and de-saturation e�ects, etc.

Rendering engine
Front end

Most games employ some kind of 2D graphics overlaid on the 3D scene
for various purposes. These include

the game's heads-up display (HUD);

in-game menus, a console, and/or other development tools, which
may or may not be shipped with the �nal product;

possibly an in-game graphical user interface (GUI), allowing the
player to manipulate his character's inventory, con�gure units for
battle, or perform other complex in-game tasks.

Pro�ling and debugging tools

Games are real-time systems and, as such, game engineers often need to
pro�le the performance of their games in order to optimize performance.
In addition, memory resources are usually scarce, so developers make
heavy use of memary analysis tools as well. The pro�ling and debugging
layer encompasses these tools and also includes in-game debugging
facilities, such as debug drawing, an in-game menu system or console,
and the ability to record and play back gameplay for testing and
debugging purposes.
However, most game engines also incorporate a suite of custom pro�ling
and debugging tools. For example, they might include one or more of the
following:

a mechanism for manually instrumenting the code, so that speci�c
sections of code can be timed;
a facility for displaying the pro�ling statistics on-screen while the
game is running;
a facility for dumping performance stats (for example to a text �le);
a facility for determining how much memory is being used by the
engine, and by each subsystem, including various on-screen displays;
the ability to dump memory usage, high-water mark, and leakage
stats when the game terminates and/ar during gameplay;
tools that allow debug print statements to be peppered throughout
the code, along with an ability to turn on or o� di�erent categories
of debug output and control the level of verbosity of the output;
the ability to record game events and then play them back.

Collision and physics

Animation

Any game that has organic ar semi-organic characters (humans, animals,
cartoon characters, or even robots) needs an animation system. There are
�ve basic types of animation used in games:

sprite/texture animation,

rigid body hierarchy animation,

skeletal animation,

vertex animation,

morph targets.

HID (Human Interface Devices)

Every game needs to process input from the player, obtained from various
human interface devices including the keyboard and mouse, a joypad, or
other specialized game controllers, like steering wheels, �shing rods,
dance pads, etc. We sometimes call this component the player I/O
component, because we may also provide output to the player through
the HID, such as force feedback/rumble on a joypad or the audio.

Audio

Online multiplayer/networking

Many games permit multiple human players to play within a single virtual
world. Multiplayer games come in at least four basie �avors.

Single-sereen multiplayer.

Split-sereen multiplayer.

Networked multiplayer.

Massively multiplayer online games (MMOG).

Gameplay foundation systems

The term gameplay refers to the action that takes place in the game, the
rules that govern the virtual world in which the game takes place, the
abilities of the player character(s) (known as player mechanies) and of
the other characters and objects in the world, and the goals and
objectives of the player(s). Gameplay is typically implemented either in
the native language in which the rest af the engine is written, or in a
high-level scripting language � or sometimes both. To bridge the gap
between the gameplay code and the low-level engine systems that we've
discussed thus far, most game engines introduce a layer we can call the
gameplay foundations layer (for lack of a standardized name). This layer
provides a suite of core facilities, upon which game-speci�c logic can be
implemented conveniently.

	Structure of a typical game team
	Game
	Game engine
	Engine differences across genres
	Game engine survey
	Runtime engine architecture

