
Solution for AI
based on: Kevin Dill, Denis Papp, A Goal-Based Architecture for

Opposing Player AI,

http://www.gameai.com/papers.php

Piotr Fulma«ski

Wydziaª Matematyki i Informatyki,
Uniwersytet �ódzki, Polska

20 grudnia 2012

http://www.gameai.com/papers.php


Spis tre±ci

1 Overview

2 Architecture

3 The strategic AI

4 The Reactive AI

5 Cheating



Overview
Objectives

To create AI players for two simultaneously developed real-time strategy
games.

Previous projects that required large amounts of custom-written AI code
for each decision made.

Objectives:

primary: to provide a single, easily extensible source for all high-level
decisions;

provide a solid challenge against a human player on a random map,
with no economic or military advantage and no visible cheating;

support for di�erent AI personalities, user-created AIs, limited
teamwork between allied AIs, and the ability for human players to
use team commands to in�uence the actions of allied AIs.



Overview
The engine � an overview

To accomplish these goals, a two-layered architecture was developed.

The strategic AI uses our goal engine to make broad decisions
which outline the overall strategy to be followed. It is
computationally expensive, but uses a time-sliced architecture and
only needs to think occasionally.

The reactive AI then �lls in the second-to-second decisions involved
in implementing that strategy.



Overview
The general philosophy

The general philosophy throughout this project was that it is much
better to give the AI the ability to make its own decisions about what to
do based on the current situation rather than hard coding or scripting the
AIs decisions.
That would make the AI far more e�ective than anything we might script
but there are situations in which the designer knows best. Particularly in
the early game, there are certain steps which should be reproduced

every time in order to give the AI a strong opening.



Overview
The general philosophy

The general philosophy throughout this project was that it is much
better to give the AI the ability to make its own decisions about what to
do based on the current situation rather than hard coding or scripting the
AIs decisions.
That would make the AI far more e�ective than anything we might script
but there are situations in which the designer knows best. Particularly in
the early game, there are certain steps which should be reproduced

every time in order to give the AI a strong opening.



Architecture
The basic building blocks: goals

Goals - the basic building blocks of this architecture. Every action that a
player might make is described as a goal, which can be assigned a priority
which indicates the importance of executing that action given the current
situation. A simpli�ed set of goal types might include:

ATTACK � attack an enemy player;

DEFEND � defend your own or an allied position against enemy
attack;

RECOVER � retreat a damaged actor to a safe location where it
can be repaired;

EXPLORE � explore the map, either to discover new locations or
to scout for new enemy construction in areas you've already seen;

RECRUIT � build new military or civilian actors;

CONSTRUCT � build new buildings;

GIVE � give money or actors to an allied player;

DESTROY � sell a building or disband an actor.



Architecture
About goal

The vast majority of the logic is placed in the goal itself, rather than in
the engine, so that custom goals can be written which generate their
priority based on whatever information seems appropriate.

each goal type can have many instances,

goal instances can be dynamically generated and destroyed.

You might have one ATTACK goal for each enemy actor, dynamically
creating and destroying these goals as targets enter and exit the game
world.



Architecture
Goal descriptor

Goals are implemented by subclassing from a base class. The subclass
must include code to determine whether the

state (active, selected, �nished),

base priority,

current priority,

sorts of resources required for execution.



Architecture
Goals � examples

Examples for state

A goal is active if it is currently reasonable to execute it. Consider, for
example, the RECOVER goal. This goal allows an actor to recover when
it is damaged, with a priority that depends on the amount of damage the
actor has taken.
A goal is �nished if, for one reason or another, we can get rid of it
entirely. For example an ATTACK goal is �nished if we successfully
destroy the target actor.



Architecture
Goals � examples

Examples for base priority

The base priority is the relative priority of that goal compared to all
others given the current game environment but assuming some
reasonable allocation of resources. For example, the base priority of the
ATTACK and DEFEND goals assumes that the total friendly strength
assigned to the goal is 1.2 times the total enemy strength in the region (a
tweakable setting de�ned for each AI personality). Similarly, the
CONSTRUCT and RECRUIT goals assume that su�cient resources can
be reserved to pay for the actor being created.



Architecture
Goals � examples

Examples for current priority

The current priority is the priority of the goal with the resources actually
assigned. For example the ATTACK and DEFEND goals will have higher
priority if you assign more strength to them, and lower priority if you
assign less strength. Likewise, the priority of the EXPLORE goal will vary
depending on the location of the scout actor assigned.



The strategic AI
The Think Cycle

High-level strategic decisions are made by periodically running through
the goal engine's "think" process. Goals selected during one think will
remain active at least until the next time the goal engine thinks.
The vast majority of thinks are scheduled approximately 30 seconds
apart, but we also support for certain event-driven thinks1.

1Generally an event-driven is used only early in the game, when it is essential that

no time be wasted if we are to remain competitive with human players.



The strategic AI
The Think Cycle � the �rst step

The �rst step of the think cycle is to

go through all of the goals and �nd those which are either �nished
or currently inactive.

determine the base priority of each candidate goal. To this we add a
random fuzzy factor, and if the goal was selected in the previous
think cycle we also add a bonus for goal inertia. The goal inertia
bonus is generally larger than the fuzzy factor, and is intended to
prevent the AI from �ip-�opping between two similarly attractive
actions.



The strategic AI
The Think Cycle � the second step

The second step � standard resource allocation problem. We need to
allocate resources to each goal in such a way as to optimize the total
priority of all selected goals. This problem is made more complicated by
the fact that the priority of a goal may vary depending on the

resources assigned to that goal.



The strategic AI
The Think Cycle � the third step

In the third step, the goals are sorted by priority and an initial resource
assignment to each one is generated. For each goal we assign just enough
resources to have a reasonable chance of success � in general, this is the
same as the resource assignment assumed when the base priority is
calculated.
For goals which require money, such as CONSTRUCT or GIVE, we apply
the notion of goal commitment. The general idea is that we want to be
able to save up su�cient money to execute the more expensive goals as
long as that money can be obtained within a reasonable amount of time.
To do this all lower priority goals which require monetary resources are
marked as inactive for this think cycle in order to prevent them from
using resources needed for this goal.



The strategic AI
The Think Cycle � the fourth step (1/3)

Actors optimization

We go through all the goals which require military actors (such as
ATTACK and DEFEND goals) and calculate the change in overall priority
if we move actors between them. In certain cases it might be
advantageous to launch one extremely strong attack, for example, while
in other cases you might have enough forces to launch two or more
weaker attacks.



The strategic AI
The Think Cycle � the fourth step (2/3)

Actors commitment

Similar to goal commitment, we found some cases where it was
advantageous to lock actors onto a goal. This is an issue which needs to
be approached cautiously, since it violates our basic philosophy that it is
better to let the AI make its own decisions rather than hard-coding
behavior. In almost all cases you want the AI to retain the �exibility to be
able to change its mind when the situation changes, but there are a few
speci�c circumstances where it was necessary to override that.



The strategic AI
The Think Cycle � the fourth step (3/3)

Actors lock

There are two situations in which we lock actors.

The second situation is if an actor is assigned to an ATTACK goal
and it has already engaged the enemy forces it is targeting. It
appears like a mistake for that actor to leave in the middle of the
attack to ful�ll another goal (unless it is forced to retreat, of course).
Even if this reassignment is the correct course of action (which is
extremely rare), the player perceives that the AI has made an error.

The second situation is when an actor is on a RECOVER goal, we
lock it until it has reached full strength (assuming there is a safe
location available for recovery).



The Reactive AI

The RAI runs on a one second think cycle, and makes decisions such as
selecting formations, coordinating arrival of actors, ordering damaged
actors to retreat, and selecting targets for military actors in combat.
Unlike the SAI it is lightweight enough that it doesn't require interruption
during its decision cycle.



The Reactive AI
Egos � distinct personalities

One important requirement of the system is that the designers want to
be able to create multiple distinct personalities for the AI.
For example we might have AIs that prefer

certain types of actors,

a rushing strategy,

to build a strong economic base before attacking,

and so forth,

or simply allow the players to create their own AIs

The vast majority of the data required to run the AI is contained in the
egos. A typical AI pro�le includes at least three egos (one for the early
game, one for when things are going well, and one for emergencies).



The Reactive AI
Ego speci�er: �lters

Each ego �rst contains a list of �lters which have to be satis�ed in order
for that ego to be activated.
The following are the most commonly statistics used to �lter egos

current monetary income,

number of cities controlled,

number of military actors available.



The Reactive AI
Ego speci�er: templates

Constuction templates

Construction templates simply provide a bonus to the construct goal �
it is up to the designer to determine whether that bonus should be large
(making it a mandate) or small (making it a suggestion).

The ego can include construction templates, which give it sets of
buildings which should be built together in cities to ensure that we
have a city which can build strong military actors.

Another commonly used construction template encourages strong
economic development in the remaining cities.

Military templates

Military templates, tell the ego which military actors to use together. For
example we might have an ego that prefers to mix infantry and ranged
actors, or one which likes to use a mix of light and heavy cavalry. Again,
these can be mandates or suggestions, and we can also control what
portion of our total actors will be in�uenced by these templates.



The Reactive AI
Ego speci�er: parameters (1/2)

Di�erent values used to tune the priorities for each goal type as well as
the RAI.

Additive and multiplicative bonuses, which can be used to scale any
numerical value depending on its importance to the ego.

Exponents, which can be used to curve the range of values. For
example when you have insu�cient strength to launch an attack, the
goal is still given some priority but that priority drops o�
exponentially based on the ratio between your strength and the
enemy's strength.

Minimum and maximum values.

Inversion. In some cases, certain egos want a value to be large while
others want it to be small. For example, some egos prefer to explore
close to known territory while others prefer to explore distant areas
�rst.



The Reactive AI
Ego speci�er: parameters (2/2)

Repeat penalties. For example, we might have a repeat penalty for
recruiting certain actor types. We apply the penalty once for each
existing actor of that type. If we have so many actors of that type
that the total priority is less than zero, then we won't recruit any
more.

One time bonuses. These are similar to repeat penalties but are only
applied if we don't have any actors of the speci�ed type. For
example we might have a one time bonus to build a structure which
allows us to recruit certain types of actors. By using one time
bonuses with di�erent values we can exert a high level of control
over the order in which the ego constructs its initial structures.

Fuzzy factors. In many cases we need a bit of extra randomness.



Cheating

The original goal was to create an AI that did not cheat at all.
In very limited circumstances we did �nd that it was useful to provide the
AI with information that it technically should not possess, but which
would often be available to a human player through intuition and

meta-knowledge of how random map generation works.



Cheating
AI with perfect knowledge of enemy strengths

Our �rst cheat was to provide the AI with perfect knowledge of enemy
strengths (but not actual troop locations). We did not provide the AI
with speci�c knowledge of actors or allow it to attack actors (or
buildings) that it could not see. While the information provided is
technically more than a human would have, we �nd that a moderately
experienced player actually has a fairly good intuition of enemy strengths.



Cheating
AI with a small bonus to explore areas with �interesting� items

Our second cheat was in the domain of exploration. Quite simply, we
found that occasionally the AI would simply fail to �nd the enemy (or
anything else of interest) until fairly late in the game, and therefore would
never get o� the ground. Obviously, an AI which doesn't present any
challenge in this way isn't a lot of fun to play against. In order to do this,
we provided the AI with a small bonus to explore areas with �interesting�
items (such as monster lairs, resource points, enemy buildings, etc).
Exactly how large the bonus was and which sorts of items the AI would
look for depended on the ego. We found that experienced players are able
to predict with a fair level of accuracy where these interesting areas are
likely to be based on past observation of randomly created maps, so this
seemed like reasonable information to give to the AI as well.


	Overview
	Architecture
	The strategic AI
	The Reactive AI
	Cheating

