Podstawy grafiki 2D

Podstawowe transformacje

Piotr Fulmański

Wydział Matematyki i Informatyki, Uniwersytet Łódzki, Polska

1 grudnia 2014

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Spis treści

(ロ)、(型)、(E)、(E)、 E のQで

Rotations

◆□ > < 個 > < E > < E > E 9 < 0</p>

$$\left[\begin{array}{c} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right]$$

Scaling

◆□ > < 個 > < E > < E > E 9 < 0</p>

$$\left[\begin{array}{cc} sx & 0\\ 0 & sy \end{array}\right] \left[\begin{array}{c} x\\ y \end{array}\right] = \left[\begin{array}{c} sx \cdot x\\ sy \cdot y \end{array}\right]$$

Shearing

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ - のへで

$\left[\begin{array}{cc}1&a\\0&1\end{array}\right]\left[\begin{array}{c}x\\y\end{array}\right] = \left[\begin{array}{c}x+ay\\y\end{array}\right]$

General transformation

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

$$\left[\begin{array}{c}a & b\\c & d\end{array}\right]\left[\begin{array}{c}x\\y\end{array}\right] = \left[\begin{array}{c}ax+by\\cx+dy\end{array}\right]$$

Inverse matrix for 2x2 matrix

(ロ)、(型)、(E)、(E)、 E のQで

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Finding the matrix for a transformation – definition of the problem

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

We have the following problem: given independent vectors u_1 and u_2 and any two vectors v_1 and v_2 , find a linear transformation, in matrix form, that sends u_1 to v_1 and u_2 to v_2 .

Finding the matrix for a transformation – solution of the problem; step 1

Let M be the matrix whose columns are u_1 and u_2 . Then

 $T: x \to Mx$

sends e_1 to u_1 and e_2 to u_2 . Therefore

$$T^{-1}: x \rightarrow M^{-1}x$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

sends u_1 to e_1 and u_2 to e_2 .

Finding the matrix for a transformation – solution of the problem; step 2

Let K be the matrix whose columns are v_1 and v_2 . Then

 $R: x \to Kx$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

sends e_1 to v_1 and e_2 to v_2 .

Finding the matrix for a transformation – solution of the problem; step 3

Applying first T^{-1} and then R to vector u_1 we send it to v_1 (via e_1). Smilarly for u_2 .

$$R(T^{-1}): x \to KM^{-1}x$$

Thus, the matrix for the transformation sending the vectors u to the v is just KM^{-1} .

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Transformations and coordinate systems

ション ふゆ アメリア メリア しょうくしゃ

In the special case where we want to go from the usual coordinates on a vector to its coordinates in some coordinate system with basis vectors u_1 , u_2 , which are

- unit vectors
- and mutually perpendicular,

the transformation matrix is one whose rows are the transposes of u_1 and u_2

Transformations and coordinate systems – example

For example, if	$u_1 = \left[\begin{array}{c} \frac{3}{5} \\ \frac{4}{5} \end{array}\right]$
and	$u_2 = \left[egin{array}{c} -rac{4}{5} \ rac{3}{5} \end{array} ight],$
then the vector	$v = \left[egin{array}{c} 4 \ 2 \end{array} ight],$
expressed in u-coordinates, is	
	$\begin{bmatrix} \frac{3}{5} & \frac{4}{5} \\ -\frac{4}{5} & \frac{3}{5} \end{bmatrix} \begin{bmatrix} 4 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\ -2 \end{bmatrix}.$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Change of basis (very important!!!)

Any child-space position vector p_C can be transformed into a parent-space position vector p_P as follows

$$p_P = M_{C \to P} p_C$$

where transformation matrix

$$M_{C \to P} = \begin{bmatrix} i_C & j_C & t_C \end{bmatrix}$$

and

- *i*_C is the unit basis vector along the child space X-axis, expressed **in parent space coordinates**;
- *j_C* is the unit basis vector along the child space *Y*-axis, in parent space;
- *t_C* is the translation of the child coordinates system relative **to parent space**.

Change of basis – example

Translation

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

We'll consider transformations of the form

$$\left[\begin{array}{ccc} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{array}\right] \left[\begin{array}{c} x \\ y \\ 1 \end{array}\right] = \left[\begin{array}{c} ax + by + c \\ dx + ey + f \\ 1 \end{array}\right]$$

If we examine the special case where the upper-left corner is a 2×2 identity matrix, we get

$$\begin{bmatrix} 1 & 0 & c \\ 0 & 1 & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x+c \\ y+f \\ 1 \end{bmatrix}$$

Now it's clear that if we pay attention only to the x- and y-coordinates, this is a translation.