
Collision detection

Piotr Fulma«ski

Wydziaª Matematyki i Informatyki,
Uniwersytet �ódzki, Polska

19 pa¹dziernika 2015

Table of contents

Collision in games

Algorithms to detect collision in games depend on the type of shapes
that can collide (e.g. rectangle to rectangle, rectangle to circle, circle to
circle). Generally we have a simple generic shape known as a "hitbox"
that covers somehow the entity so even though collision may not be pixel
perfect, it will look good enough and be performant across multiple
entities.

Collision in games
Di�erent hitbox: bounding sphere

Collision in games
Di�erent hitbox: axis aligned bounding boxes (AABB)

Collision in games
Di�erent hitbox: oriented bounding boxes (OBB)

Collision in games
Di�erent hitbox: capsule

Collision in games
Di�erent hitbox: convex polygon

Collision in games
Di�erent hitbox: concave polygon

Collision in games
Di�erent hitbox: concave polygon

A simple polygon that is not convex is called concave or non-convex
(sometimes also reentrant). It is always possible to partition a concave
polygon into a set of convex polygons1.

1A polynomial-time algorithm for �nding a decomposition into as few convex

polygons is described in: Chazelle, Bernard; Dobkin, David P., Optimal convex

decompositions, in Toussaint, G.T., Computational Geometry, Elsevier 1985, pp.

63�133.

Collision in games
Di�erent hitbox: concave polygon

Collision in games
Multiple levels of collision

It's also worth noting that it's not uncommon for games to have multiple
levels of collision geometry per object. This way, a simple collision check
(such as with spheres) can be performed �rst to check whether there's
any possibility whatsoever that two objects collided. If the simple collision
check says there might be a collision, we can then perform calculations
with more complex collision geometry.

Collision in games
Sphere versus sphere intersection

Two spheres intersect if the distance between their center points is less
than the sum of their radii. However, computing a distance requires the
use of a square root, so to avoid the square root, it is common instead to
check the distance squared against the sum of the radii squared.

Collision in games
Sphere versus sphere intersection

The algorithm for this is only a couple of lines of code. It's also extremely
e�cient, which is what makes using spheres a very popular basic collision
detection option.

function SphereIntersection(BoundingSphere a, BoundingSphere b)

// Construct a vector between centers, and get length squared

Vector3 centerVector = b . center - a . center

// Recall that the length squared of v is the same as v dot v

float distSquared = DotProduct(centerVector, centerVector)

// Is distSquared < sum of radii squared?

if distSquared < ((a.radius+b.radius)*(a.radius+b.radius))

return true

else

return false

end

end

Collision in games
AABB versus AABB intersection

As with spheres, AABB intersection is not very expensive, even for 3D
games.

Collision in games
AABB versus AABB intersection

In 2D case when checking for intersection between two AABBs, rather
than trying to test the cases where the two AABBs do intersect, it's
easier to test the four cases where two AABBs de�nitely cannot intersect.

Collision in games
AABB versus AABB intersection

function AABBIntersection(AABB2D a, AABB2D b)

bool test = (a.max.x < b.min.x) || (b.max.x < a.min.x) ||

(a.max.y < b.min.y) || (b.max.y < a.min.y)

return !test

end

Separating Axis Theorem (SAT)
Introduction

The Separating Axis Theorem, SAT for short, is a method to determine if
two convex shapes are intersecting. The algorithm can also be used to
�nd the minimum penetration vector. SAT is a fast generic algorithm
that can remove the need to have collision detection code for each shape
type pair thereby reducing code and maintenance.

Separating Axis Theorem
Only for convex

SAT can only handle convex shapes, but this is not a problem because as
we have see non-convex shapes can be represented by a combination of
convex shapes (called a convex decomposition). We can then test each
convex shape to determine collision for the whole shape.

Separating Axis Theorem (SAT)
An idea of projection

The concept that SAT uses is projection. Imagine that you have a light
source whose rays are all parallel. If you shine that light at an object it
will create a shadow on a surface. A shadow is a two dimensional
projection of a three dimensional object. The projection of a two
dimensional object is a one dimensional "shadow".

Separating Axis Theorem (SAT)
Theorem

Theorem (Separating Axis Theorem (SAT))

If two disjoint convex sets in n-dimensional Euclidean space sets are

closed and at least one of them is compact, then there is a hyperplane in

between them and even two parallel hyperplanes in between them

separated by a gap.

We can refolmulate this a little bit mathematical statement into more
readable version

Theorem (Separating Axis Theorem (SAT))

If two convex objects are not collide, there exists an axis for which the

projection of the objects will not overlap.

Separating Axis Theorem (SAT)
Theorem

Separating Axis Theorem (SAT)
Analogy for SAT

Imagine taking a torch and shining it on the two shapes we are testing

from di�erent angles.

Separating Axis Theorem (SAT)
Analogy for SAT

If we work our way around the shapes and never �nd a gap in the
shadows then the objects must be touching. If we �nd a gap, then they

are clearly not touching.

Separating Axis Theorem (SAT)
Obtaining the separating axes

From a programming point of view it would be to intensive to check
every possible angle. Luckily, due to the nature of the polygons, there is
only a few key angles we need to check.
The number of angles we need to check are the same as the
number of sides of the polygons. This means that the maximum
number of angles to check is the sum of the number of sides the two
shapes we are testing have.

Separating Axis Theorem (SAT)
Obtaining the separating axes

From a programming point of view it would be to intensive to check
every possible angle. Luckily, due to the nature of the polygons, there is
only a few key angles we need to check.
The number of angles we need to check are the same as the
number of sides of the polygons. This means that the maximum
number of angles to check is the sum of the number of sides the two
shapes we are testing have.

Separating Axis Theorem (SAT)
Obtaining the separating axes

Separating Axis Theorem (SAT)
Obtaining the separating axes

Separating Axis Theorem (SAT)
Obtaining the separating axes

Separating Axis Theorem (SAT)
Obtaining the separating axes

From the programmer point of view, the axes we must test are the

normals of each shape's edges.

Separating Axis Theorem (SAT)
Normals

The normals of the edges can be easily obtained by �ipping the

coordinates and negating one.

Separating Axis Theorem (SAT)
Determine that the shapes are not intersecting

SAT may test many axes for overlap, however, the �rst axis where the
projections are not overlapping, the algorithm can immediately exit
determining that the shapes are not intersecting. Because of this early
exit, SAT is ideal for applications that have many objects but few
collisions.

Separating Axis Theorem (SAT)
Determine that the shapes are intersecting

If, for all axes, the shape's projections overlap, then we can conclude that
the shapes are intersecting. Note that to determine intersection, all
axes must be tested for overlap.

Separating Axis Theorem (SAT)
Determine that the shapes are intersecting

Separating Axis Theorem (SAT)
Projecting a shape onto an axis

When we know how to obtain the separating axes another question is
how to project a shape onto an axis. Fortunately to project a polygon
onto an axis is relatively simple. It is enought to loop over all the vertices
performing the dot product with the axis and storing the minimum and
maximum.

Separating Axis Theorem (SAT)
Projecting a shape onto an axis

Separating Axis Theorem (SAT)
Projecting a shape onto an axis

As we have seen, SAT is a simple but repetitive method. Here we have
one iteration of it, step by step:

1 Take one side from one of the polygons we are testing and �nd the
normal (perpendicular) vector from it. This will be the `axis'.

2 Loop through every point on the �rst polygon and project it onto
the axis. Keep track of the highest and lowest values found for this
polygon.

3 Do the same for the second polygon.

4 Check the values you found and see if they overlap.

If there is no gap, then polygons might be touching and we have to keep
checking until we have gone through every side of both polygons. If we
get through them all without �nding a gap then they collide.

Separating Axis Theorem (SAT)
Circle case

Testing a circle against a polygon in SAT is a little bit strange but it can
be done.
The main thing to note is that a circle does not have any sides so
there is no obvious axis that we can test against. Other words, there
are in�nitely many axis we should take into account. There is one
'not so obvious' axis we do need to test however. This is the axis that
runs from the centre of the circle to the closest vertex on the polygon.

Separating Axis Theorem (SAT)
Circle case

Separating Axis Theorem (SAT)
Circle case

After that it is just a matter of going through the usual routine of looping
through every axis on the other polygon and checking for overlaps.
To project a circle onto the axis, we simply project the centre point of
the circle and then add and subtract the radius.

Separating Axis Theorem (SAT)
Finding the Minimum Translation Vector (MTV)

In addition to returning true or false depending on whether the two
shapes are intersecting SAT can return a Minimum Translation Vector
(MTV). The MTV is the minimum magnitude vector used to push the
shapes out of the collision. That axis which has the smallest overlap and
that overlap is the MTV, the axis being the vector portion, and the
overlap being the magnitude portion.
To determine if the shapes are intersecting we must loop over all the axes
from both shapes, so at the same time we can keep track of the minimum
overlap and axis to be able to return a MTV when the shapes intersect.

Collision in games
Bullet-through-paper problem

To this point, we have covered instantaneous collision detection
algorithms. This means the algorithm checks to see if the two objects
collide on the current frame. Although this can work in many cases, there
are some instances where it won't.

Collision in games
Bullet-through-paper problem

If a bullet is �red at a piece of paper, it's unlikely there will be a precise
frame where the bullet and the paper intersect with each other. That's
because the bullet is travelling so fast and the paper is so thin. This
problem is �ttingly known as the bullet-through-paper problem.

Collision in games
Swept sphere intersection

In order to solve this problem, we can use either form of continuous
collision detection (CCD) or simpler swept sphere intersection.
In swept sphere intersection, there are two moving spheres. The inputs
are the positions of both spheres during the last frame (t = 0) and the
current frame (t = 1). Given these values, we can determine whether or
not the two spheres collided at any point between the two frames. So
unlike the instantaneous sphere-sphere intersection, it won't miss out on
any intersections that occur between frames.

Collision in games
Swept sphere intersection

Collision in games
Swept sphere intersection

We might notice that a swept sphere looks a lot like a capsule. That's
because a swept sphere is a capsule. A swept sphere has a start point,
end point, and a radius, which is exactly like a capsule. So the algorithm
discussed for this case can also be used for "capsule versus capsule"
intersection.
Algorithm:

use SAT,

use dedicated algorithm like one described in: Sanjay Madhav, Game

Programming Algorithms and Techniques, Addison-Wesley, 2014, pp
141-145.

Collision performance
Broad and narrow phase

Although some of algorithms for collision detection are simple enough to
calculate, it can be a waste of time to test every entity with every other
entity. Usually games will split collision into two phases, broad and
narrow.

Broad Phase Broad phase should give us a list of entities that possibly
could be colliding. This can be implemented with a spacial
data structure that will give us a rough idea of where the
entity exists and what exist around it. Some examples of
spacial data structures are Quad Trees, R-Trees but we
can also try to use less sophisticated but not less e�ective
like spacial hashmap.

Narrow Phase When you have a small list of entities to check you will
want to use a narrow phase algorithm (like the ones listed
above) to provide a certain answer as to whether there is a
collision or not.

Hash table

A hash table (hash map) is a data structure used to implement an
associative array, a structure that can map keys to values. A hash table
uses a hash function to compute an index into an array of buckets or
slots, from which the desired value can be found.
The idea of hashing is to distribute the entries (key/value pairs) across
an array of buckets. Given a key, the algorithm computes an index that
suggests where the entry can be found.

Spatial Hashing

A spatial hash is a 2 or 3 dimensional extension of the hash table.
Typically the keys to a hash table would be strings, but in a spatial hash
we use 2 or 3 dimensional points as the keys. And here is where the twist
comes in: for a normal hash table, a good hash function distributes keys
as evenly as possible across the available buckets, in an e�ort to keep
lookup time short. The result of this is that keys which are very close
(lexicographically speaking) to each other, are likely to end up in distant
buckets. But in a spatial hash we are dealing with locations in space, and
locality is very important to us (especially for collision detection), so our
hash function will not change the distribution of the inputs.

Spatial Hashing

There are a few problems with inserting objects other than simple points
into the spatial hash:

the object may overlap several cells/buckets if it is near the edge of
a bucket,

an object may actually be larger than a single bucket.

To solve this problem we add the object to all relevant buckets.

