
Introduction to Unity
Step 4: more scripting

Piotr Fulma«ski

Wydziaª Matematyki i Informatyki,
Uniwersytet �ódzki, Polska

November 18, 2015

Table of contents

Preliminaries
Clean up a mess

1 Open the previous project (scene intro_03).

2 Duplicate the scene we have been working on so far by saving it as
intro_04 File | Save Scene As.

Preliminaries
Prepare assets

1 Create a new folder called introduction_04, inside the Assets
folder.

2 Find / prepare red, orange, green and black texture for health bar.

3 Find / prepare the gun sound (for example:
http://soundbible.com/2091-MP5-SMG-9mm.html) and name it
gunshot.

4 Find / prepare the crosshair texture and name it
texture_croshair.

http://soundbible.com/2091-MP5-SMG-9mm.html

Preliminaries
Prepare assets

Create folder for the scripts

1 Select the folder introduction_04 and from the Project window,
select Create | Folder.

2 Rename this folder scripts.

Create the health bar
Create a new script

1 Check if the folder scripts is selected.

2 From the top menu, select Assets | Create | JavaScript.

3 Doing so should create a new JavaScript script within the folder
labeled scripts.

4 Rename this script health_bar.

Create the health bar
Add the code

private var currentHealth: int = 50;

private var currentColor: Texture2D;

public var style: GUIStyle;

public var textureRed: Texture2D;

public var textureGreen: Texture2D;

public var textureOrange: Texture2D;

public var textureBlack: Texture2D;

Create the health bar
Add the code

function OnGUI()

{

if (currentHealth >= 67)

currentColor = textureGreen;

else if (currentHealth >= 34)

currentColor = textureOrange;

else

currentColor = textureRed;

style.normal.background = textureBlack;

GUI.Box(Rect(0, 25, 100, 20), "", style);

style.normal.background = currentColor;

GUI.Box(Rect(0, 25, currentHealth, 20), "", style);

}

Create the health bar
Create an empty object, link it to the script and bind textures

1 Create an empty object and rename it healthBar.

2 Attach the script healthBar that we created previously to this
object.

3 Locate the Red texture by selecting to Assets | chapter4.

4 Select the object healthBar in the Hierarchy view, and
drag-and-drop the Red texture to the right of the variable called
Texture Red in the component called Health Bar (Script).

5 Repeat the previous two steps for the textures Green, Orange, and
Black.

Create the health bar
Create an empty object, link it to the script and bind textures

Create the health bar
Update the health bar when med pack is collected

1 Add the following function to the healthBar script

public function setHealth(updatedValue: int)

{

currentHealth = updatedValue;

}

2 Modify the collision_detection script with highlighted lines

if (c.gameObject.tag == "medpack")

{

health = 100;

GameObject.Find("healthBar")

.GetComponent(health_bar)

.setHealth(health);

}

Create the health bar
Update the health bar when med pack is collected

Create the health bar
Update the health bar when med pack is collected

Create a mini-map of the level
Add a camera for a top-down view of the game world

1 Create a new camera (Game Object | Camera).

2 Rename this camera cameraTopDown.

3 Rotate this camera about 90 degrees around the X axis, so that its
rotation properties are (x=90, y=0, z=0), and change its position
to (x=0, y=30, z=0).

4 If we click on this camera in the Hierarchy view, and look at the
camera preview (the small rectangle in the bottom-right corner of
the Scene view), we should see the game world from above.

Create a mini-map of the level
Add a camera for a top-down view of the game world

Create a mini-map of the level
Make top view as a part of the user interface

1 Click once on the camera labeled cameraTopDown.

2 Look at the Inspector window and click on the arrow to the left of
the camera component to show its properties.

3 Change the attribute Normalized View Port Rect, as follows:
x=0.75, y=0.75, w=0.25, and h=0.25.

4 Change the attribute Depth to 1.

5 Delete the components Audio Listener, GUILayer, and Flare
Layer (right-click on the component and select Remove
Component from the contextual menu).

6 Play the scene. Test di�erent settings for Normalized View Port
Rect.

Create a mini-map of the level
Make top view as a part of the user interface

Working with layers

1 Click on the object cameraTopDown from the Hierarchy window.

2 In the Inspector window, click on the drop-down menu to the right
of the Layer.

3 Select the option Add Layer from the drop-down menu. This should
open a Tags & Layers tab, where in Layers section the series of
built-in layers (for example, Builtin Layer 0) as well as user layers
(for example, User Layer 8) would be listed.

4 Modify the �rst user layer by clicking on to the right of the label
User Layer 8, type topView and press Enter.

5 Select the object cameraTopDown in Hierarchy.

6 In the Inspector window, within the component camera, modify the
attribute Culling Mask, so that only the layer labeled topView is
selected.

Working with layers
Next, we will make sure that this top-view camera is always above the player

1 Drag-and-drop the camera cameraTopDown on the
FPSController.

2 Change its position to (x=0, y=30, z=0).

Working with layers
Next, we will make sure that this top-view camera is always above the player

Working with layers
Display a simpli�ed representation of the main character

1 Create a new sphere.

2 Change its scale to (x=2, y=2, z=2).

3 Rename this object dot_fpc.

4 Locate the texture labeled Green by selecting Assets |
introduction_04 and apply this texture to the sphere.

5 Drag sphere object (dot_fpc) on the FPSController as we did it
previously with the camera cameraTopDown.

6 Change its position to (x=0, y=0, z=0).

7 This will include the sphere as a child of the �rst-person controller.
Thanks to this, any transformation applied to the �rst-person
controller will be also applied to the sphere. As a result, the sphere
will move along with the character.

Working with layers
Display a simpli�ed representation of the main character

1 Click on the object dot_fpc in the Hierarchy window to select it.

2 In the Inspector window, click on the drop-down menu to the right
of the Layer label.

3 Select the option topView from the list.

4 In the Inspector window, right-click on the component Sphere
Collider for this object, and select the option Remove Component
from the contextual menu. This will remove the collider from the
sphere. We do this because we don't want the player to collide with
the sphere.

Working with layers
Display a simpli�ed representation of the main character regardless of the light around it

1 Select the object dot_fpc.

2 In the Inspector window, open the component Mesh Renderer,
and change its Shader property to Standard, Main Maps |
Metalic equal to 0 and Main Maps | Smoothness equal to 0.

3 Leave the other options as default.

Working with layers
Display a simpli�ed representation of the main character regardless of the light around it

Working with layers
Other objects: create the dots

1 Create a new sphere, change its scale to (x=2, y=2, z=2), and
rename it dot_medpack.

2 Locate the texture labeled Orange by selecting Assets |
introduction_04 and apply this texture to the sphere.

3 Change the shader property as we did it before.

4 Remove the SphereCollider component from this object.

5 Change the position of this object to (x=0, y=0, z=0).

6 Change its Layer property to topView.

7 Drag-and-drop the object (dot_medpack) on the object labeled
medpack.

8 Repeat the previous steps to create two other spheres named
dot_key and dot_gun for both the objects labeled key and gun.

Working with layers
Other objects: create the dots

Working with layers
Display part of the environment

1 Select one of the walls in the scene.

2 In the Inspector window, click on the drop-down menu to the right
of the label Layer.

3 From the drop-down menu, select the option Add Layer.

4 Create a layer, to the right of the label User Layer 9, that we will
label topAndMain.

Working with layers
Display part of the environment

1 Select all the walls in the level (or select them one-by-one if needed)
as well as all objects labeled block.

2 In the Inspector window, click on the drop-down menu to the right
of the label Layer.

3 From the drop-down menu, select topAndMain.

4 We may also apply this layer to other objects such as the rocks and
platforms in the water area.

Working with layers
Display part of the environment

Working with layers
Display part of the environment

1 Click on cameraTopDown.

2 In the Inspector window, change the Culling Mask attribute of its
Camera component so that it includes both the layers topView and
topAndMain.

3 Select the FPSController | First Person Character object.

4 Change the Culling Mask attribute of its Camera component so
that it displays everything but not the topView layer.

Working with layers
Change settings for top down camera (optional)

1 Click on cameraTopDown.

2 In the Inspector window, change the Projection attribute to
Orthographics.

3 Change the Size attribute to 20.

Working with layers
Change settings for top down camera (optional)

Working with layers
Change settings for top down camera (optional)

Working with layers
Change settings for top down camera (optional)

Create a gun

1 Create a new UI.RawImage, and rename it
UI_texture_crosshair.

2 Change its position so that it is displayed in the middle of the screen.

3 Drag-and-drop the texture labeled texture_crosshair by selecting
Assets | introduction_04 to the Raw Image | Texture
component of this object.

4 This should display the crosshair in the middle of the screen in the
game view.

Create a gun

Create a gun

Create a gun
Use ray casting to aim and �re a bullet

1 Create a new script by selecting Assets | introduction_04 |
Scripts and rename it fire_gun.

2 Modify the script as described in the following code

function Update ()

{

if (Input.GetButtonDown("Fire1"))

{

var hit : RaycastHit;

var ray = Camera.main

.ScreenPointToRay (Vector3(Screen.width/2,

Screen.height/2));

if(Physics.Raycast (ray, hit, 100))

{

print("You fired at the "+hit.collider.gameObject.tag);

}

}

}

3 Attach the script to UI_texture_crosshair object.

Create a gun
Use ray casting to aim and �re a bullet

Create a gun
Hide the mouse cursor

1 Open the script fire_gun.

2 Add the following line within the function Start

Cursor.visible = false;

3 Play the scene and check that the mouse cursor is hidden after the
�rst shot.

Create a gun
Display and update the number of ammunitions left

1 Open the script fire_gun.

2 Add the following line at the start of the script

public var nbBullets: int;

3 Add the following code inside the Start function

nbBullets = 0;

4 Modify the function Update as highlighted in the following code

... see next slide ...

Create a gun
Display and update the number of ammunitions left

1 Modify the function Update as highlighted in the following code
function Update ()

{

if (Input.GetButtonUp("Fire1"))

{

if (nbBullets > 0)

{

var hit : RaycastHit;

var ray = Camera.main

.ScreenPointToRay (Vector3(Screen.width/2,

Screen.height/2));

if(Physics.Raycast (ray, hit, 100))

{

print("You fired at the "+hit.collider.gameObject.tag);

}

nbBullets--;

print("You have " + nbBullets + " bullets");

}

}

}

Create a gun
Display and update the number of ammunitions left

Create a gun
Display and update the number of ammunitions left

1 Create a new UI.Text object, rename it UI_bullets and change its
position to right bottom corner.

2 Open the script fire_gun.

3 Add the following line to the start of the script

private var ui_bullets: GameObject;

4 Add the following line to the function Start

ui_bullets = GameObject.Find("UI_bullets").

GetComponent(UI.Text);

5 Add the following line of code to the function Update

ui_bullets.text= getTextForUIBullet(GameObject.

Find("UI_texture_crosshair").

GetComponent(fire_gun).

nbBullets);

6 Add the function

function getTextForUIBullet(nbBullets: int){

return "Bullets: " + nbBullets;

}

Create a gun
Display and update the number of ammunitions left

Create a gun
Fine tuning

1 Modify the Start function in fire_gun script adding

function Start ()

{

...

GameObject.Find("UI_texture_crosshair").

GetComponent(UI.RawImage).

enabled=false;

}

Create a gun
Fine tuning

1 Open the script collision_detection.
2 Add the highlighted code to the script in the section that detects

whether the gun has been collected
if (c.gameObject.tag == "gun")

{

hasGun = true;

changeGUITexture(true, "gun");

GameObject.Find("GUITexture_crosshair")

.guiTexture

.enabled = true;

GetComponent(shootBullet).nbBullets = 40;

hasGun = true;

changeUITexture("gun", hasGun);

GameObject.Find("UI_texture_crosshair").

GetComponent(UI.RawImage).

enabled=true;

GameObject.Find("UI_texture_crosshair").

GetComponent(fire_gun).

nbBullets = 50;

}

Create a gun
Fine tuning

Create a gun
Fine tuning

Create a gun
Add sound whenever the player �res a shot

1 Open the script fire_gun.

2 Add the following line at the start of the script

@script RequireComponent (AudioSource)

#pragma strict

public var fire_sound: AudioClip;

3 Add the following highlighted code

if (nbBullets >= 1)

{

var audio: AudioSource = GetComponent.<AudioSource>();

audio.clip = fire_sound;

audio.Play();

4 To be continued. . .

Create a gun
Add sound whenever the player �res a shot

. . . continued

1 Select the object UI_texture_corsshair in the Hierarchy window.

2 Locate the component �re_gun for this object in the Inspector
window.

3 Drag-and-drop the sound gunshot to the variable fire_sound
within the component �re_gun.

4 Press Add Componen button and select Audio | Audio source.

5 Test the scene and check that the sound is played when we �re the
gun.

Create a gun
Add sound whenever the player �res a shot

Create a gun
Prepare for a particle emitter

1 Include the following line at the start of the script fire_gun

public var flash: GameObject;

2 In the script fire_gun, add the highlighted lines

print ("You fired at the" + hit.collider.gameObject.tag):

var spark: GameObject = Instantiate(flash,

hit.point,

Quaternion.identity);

Create a gun
Find the prefab to simulate sparks

1 Select Assets | Import Package | ParticleSystems. This should
show a window labeled Importing package. As per previous
sections, it includes all built-in particles (including legacy particles)
that can be used in Unity.

2 Click on Import.

3 This will create a new folder labeled ParticleSystems in Assets |
Standard Assets.

4 If we select Assets | Standard Assets | ParticleSystems |
Prefabs, we can �nd many particle prefabs.

5 Select one of them, for example the prefab Explosion.

6 Drag-and-drop the prefab that we have found previously to the
variable called flash for the script fire_gun, which is a component
of the UI_texture_crosshair.

7 Test the scene: �re shots at objects, and check whether �ash appear
at the point of impact.

Create a gun
Find the prefab to simulate sparks

Task
Task 04_01: game world task

Modify game world with some new elements like

rotating walls,

moving �ors;

moving hot block (collision with hot block kills the player).

Task
Task 04_02: gun task

Add an automatic feature to the gun, so that the player can �re the gun
repeatedly by just holding the left mouse button down.

Summary

You should know

switch between and display multiple camera views

how to de�ne and apply layers to �lter content displayed by a
camera,

how to use special e�ects like sparks.

