
Introduction to Unity
Step 3: introduce some �activities� to the game world with

scripts

Piotr Fulma«ski

Wydziaª Matematyki i Informatyki,
Uniwersytet �ódzki, Polska

November 17, 2016

Table of contents

Scripting

Scripts make it possible to add logic and more interactivity to our games,
as well as customize interaction based on the players' actions.
As we have mentioned in a �rst part of this tutorial, we can create scripts
using both JavaScript and C#. While JavaScript is usually considered an
easy and accessible scripting language, C# is usually favored by
intermediate and advanced programmers, as it facilitates the
programming work�ow and makes it possible to develop more complex
programs.

Preliminaries
Clean up a mess

1 Open the previous project (scene intro_02).

2 Duplicate the scene we have been working on so far by saving it as
intro_03 File | Save Scene As.

3 Create a container for all objects we created for the game world in
the previous step:

1 Create an empty object Game Object | Create Empty and change its
name to maze_land.

2 Change its position to (x=0, y=0, z=0).
3 In the Hierarchy window, select all objects which creates land maze

(maze_land), and drag-and-drop these objects on the object labeled
maze.

4 With the same method create containers for other object if you need
it.

Preliminaries
Prepare assets

1 Create a new folder called introduction_03, inside the Assets
folder.

2 Find / prepare texture for medical package (we will call this:
medpack) object.

3 Find / prepare texture for key object.

4 Find / prepare texture for gun object.

5 Find / prepare sound for collecting things (for example:
http://soundbible.com/2084-Glass-Ping.html).

6 Find the font you want to use as user interface font (for example:
www.dafont.com, Techno / LCD / Open 24 Display ST by
Southype) and download the font and unzip it (you should see the
*.ttf �le).

http://soundbible.com/2084-Glass-Ping.html
www.dafont.com

Preliminaries
Import textures

1 Select the current project folder introduction_03.

2 Select Assets | Import New Asset.

3 Browse to the folder where we downloaded the textures.

4 Select one of the texture saved before and click on Import.

5 Repeat above steps for the rest of textures.

Create folder for the scripts

1 Select the folder introduction_03 and from the Project window,
select Create | Folder.

2 Rename this folder scripts.

Create a new script

1 Check if the folder scripts is selected.

2 From the top menu, select Assets | Create | JavaScript.

3 Doing so should create a new JavaScript script within the folder
labeled scripts.

4 Rename this script timer.

Edit a script

1 When the script has been created, we can see its content in the
Inspector window.

2 Double-click on the script labeled timer. Doing so should open the
default editor for Unity3D scripts: MonoDevelop1.

3 Once in MonoDevelop, we can see that there are two functions
created in the timer script by default:

The Start function is called when the script is �rst called. For
example, if this script is linked to an object, this function will be
called when the object is created or added to the scene.
The Update function is called every frame (that is, when the screen
is refreshed).

4 Modify the timer script as follows (see next slide):

1We could have changed Unity3D's preferences accordingly in Edit | Preferences |
External Tool.

Edit a script

private var time: float;

function Start ()

{

}

function Update ()

{

time++;

print(time);

}

Attached script to an object

1 Create an empty object Game Object | Empty Object and rename
it timer.

2 Attach the script by either

dragging-and-dropping the script from the scripts folder to the
timer object, or
by selecting the object labeled timer and selecting Component |
Scripts | timer from the top menu.

3 Now, if we click once on the timer object, the Inspector will reveal
an additional component for this object, a script labeled timer.

4 Open the Console window (Ctrl + Shift + C) and play the scene
(Ctrl + P). We can see that the counter is displayed and that its
value increases over time.

Change script to use seconds not frames

We will use a built-in variable called Time.deltaTime to deal with
seconds not framse. What a deltaTime is shuld be clear as we have
talked about this in lecture Game loop and time.

1 Modify the script

function Update ()

{

time = time + Time.deltaTime;

print(time);

}

2 Play the scene.

Change script to display minutes and seconds

1 Modify the script

private var time: float;

private var minutes: int;

private var seconds: int;

function Start ()

{

}

function Update ()

{

time = time + Time.deltaTime;

minutes = time/60;

seconds = time%60;

print(minutes + ":" + seconds);

}

2 Play the scene.

Displays the time on the screen
Create a UI.Text object

1 Create a UI.Text object: select GameObject | UI | Text. This
should add Canvas with Text subelement and EventSystem object
to our project (see Hierarchy window).

2 Rename Text object UI_timer.

3 Select UI_timer object and in Inspector window expand Rect
Transform and select as a reference point middle-center and set
(Pos X = 0, Pos Y = 0, Pos Z = 0).

4 If we switch to the game view, we should now see the default text
New Text in the middle of the screen.

5 Change position so that New Text would be displayed at the
bottom-left corner and use bigger font ().

Displays the time on the screen
Changing the font

1 Select the folder introduction_03, and import the font you have
prepared at the beginning into Unity3D (Assets | Import New
Asset).

2 Select the UI.Text object labeled UI_timer.

3 In the Inspector window, click on the small circle to the right of the
label Font.

4 This should open a window labeled Select font that includes the
new font you have just downloaded. Select this font and close the
font selection window. The new font should now appear in the Font
property of the previous object.

Displays the time on the screen
Link timer script to the UI.Text

We get an access to the object UI_timer and its GUIText component,
and modify its attribute text. Add the following text at the end of the
Update function

function Update() {

... some existing code ...

... add the following at the end of the Update ...

var textToDisplay:String = minutes+":"+seconds;

GameObject.Find("UI_timer")

.GetComponent(UI.Text)

.text = textToDisplay;

}

Displays the time on the screen
Code tuning

1 Change the timer.js script code as follow

#pragma strict

private var time: float;

private var minutes: int;

private var seconds: int;

//private var uiTextToDisplayTime: GameObject;

private var uiTextToDisplayTime: UI.Text;

private var textTime: String;

function Start () {

//uiTextToDisplayTime = GameObject.Find("UI_timer");

uiTextToDisplayTime = GameObject.Find("UI_timer")

.GetComponent(UI.Text);

}

2 To be continued � see next slide.

Displays the time on the screen
Code tuning � continuation

. . . continuation of the previous slide

1 Change the timer.js script code as follow (continuation)

function Update () {

time = time + Time.deltaTime;

minutes = time/60;

seconds = time%60;

textTime = minutes + ":" + seconds;

//uiTextToDisplayTime.GetComponent(UI.Text)

.text = textToDisplay;

uiTextToDisplayTime.text = textTime;

}

2 Play the scene and check that our code works properly.

Collecting objects
Preliminaries

1 Create a new cube, rename it medpack, then change its position
somewhere in the middle of the land maze (in my case: position
(x=-7, y=0.5, z=1), and its scale (x=1, y=1, z=1)).

2 Apply medpack texture to the cube.

3 Create a new script inside the folder introduction_03 | Scripts

and rename it rotate_medpack.

4 Open this script and add the following code to Update function:

function Update ()

{

transform.Rotate(Vector3(0,1,0), 90*Time.deltaTime);

}

5 Link the script to the object labeled medpack, play the scene and
check that the med pack is rotating.

Collecting objects
Detect collisions

Add a tag so we will have an information on the collider involved in the
collision.

1 Select the object labeled medpack in the Hierarchy window.

2 In the Inspector window, click on the drop-down menu to the right
of the label Tag.

3 From the drop-down menu, select the option Add tag.

4 This should open a Tags & Layers tab. This will display a list of
elements (or tags) available.

5 Click the plus at the bottom of the tags list, type medpack, and
press Enter. This will create a new tag named medpack.

6 To apply this tag, click on the object labeled medpack in the
Hierarchy window and click on the drop-down menu to the right of
the label Tag in the Inspector window. This time the new tag
medpack should appear.

7 Click on this tag to select it for the object.

Collecting objects
Detect collisions

1 Create a new script inside the folder Assets | introduction_03 |
scripts and rename it collision_detection.

2 Add the following code to the script:

function OnControllerColliderHit(c : ControllerColliderHit)

{

print("collided with " + c.gameObject.tag);

}

3 Attach the script to the First Person Controller object, open the
Console window (Shift + Ctrl + C) and test the scene (Ctrl + P).
After colliding with the med pack, we should see a message in the
Console window saying collided with medpack.

Collecting objects
Detect collisions � some remarks

Because the player is constantly walking (and colliding with the ground),
and that the ground has no tag assigned yet, the Console window will
display the message collided with untagged. Because this collision
happens constantly (unless the player is jumping), the Console window
may be �ooded with messages. We may enable the option collapse in the
Console window (button located at the top-left corner of the Console
window); this will prevent messages from being displayed repeatedly and
collapse identical messages accordingly.

Collecting objects
Destroy the med pack

We will now modify the script to destroy the med pack.

1 Add the following code to the script:

if (c.gameObject.tag == "medpack") Destroy(c.gameObject);

Add more colliding object

Add keys object (box).

Add gun object (box).

Add. . . what you want.

Attach the script labeled rotate to all of them.

Creating and displaying an inventory system

In our game, in addition to med packs, we will be able to collect other
types of objects. We will then need to keep track of these objects using
variables and graphical representations. This can be done using a basic
inventory system. Some objects will have an e�ect on the player (for
example, increase health), while other objects will be used at a later
stage. To keep track of these objects we will need to create
corresponding variables, update these variables when the corresponding
objects have been collected, display a graphical representation of the
object(s) collected, and modify the players' attributes (for example, its
health). We will be working with the script collision_detection.
First, let's create variables for the objects to be collected and add the
following lines at the start of the script:

private var hasKey : boolean;

private var hasGun : boolean;

... variables for other object ...

private var health : int;

Creating and displaying an inventory system
Create tags for new colliding objects

1 Add tags for all object you have just added as we did it before for
medpack.

Creating and displaying an inventory system
Di�erent actions for di�erent objects

function OnControllerColliderHit(c : ControllerColliderHit)

{

if (c.gameObject.tag == "medpack"

|| c.gameObject.tag == "key"

|| c.gameObject.tag == "gun")

{

print("collided with " + c.gameObject.tag);

Destroy(c.gameObject);

if (c.gameObject.tag == "medpack"){

health = 100;

}

else if (c.gameObject.tag == "key"){

hasKey = true;

}

else if (c.gameObject.tag == "gun"){

hasGun = true;

}

}

}

Creating and displaying an inventory system
Code for displaying noti�cation message for a few seconds

Now we will create a script named display_message_to_user that will
display a noti�cation message about new object on the screen and hide it
after few seconds. Add the following code to the script:

private var timer: float;

private var displayTime: float;

private var timerIsActive: boolean;

private var message: String;

private var uiText: UI.Text;

function startTimer()

{

timer = 0.0f;

uiText.text = message;

timerIsActive = true;

displayTime = 3.0f;

}

Creating and displaying an inventory system
Code for displaying noti�cation message for a few seconds � continuation

. . . continuation of the previous slide

function Start () {

// We can do this either as we did it before

//uiText = GameObject.Find("UI_displayMessageToUser")

// .GetComponent(UI.Text);

// or like this

uiText = GetComponent(UI.Text);

}

Creating and displaying an inventory system
Code for displaying noti�cation message for a few seconds � continuation

. . . continuation of the previous slide

function Update()

{

if (timerIsActive)

{

timer += Time.deltaTime;

if (timer > displayTime){

timerIsActive = false;

uiText.text = "";

}

}

}

function displayText(mes:String)

{

message = mes;

startTimer();

}

Creating and displaying an inventory system
Code for displaying noti�cation message for a few seconds

1 Create a UI.Text object.

2 Rename it UI_displayMessageToUser.

3 Change its position to be displayed in the centre of the screen. You
can also change other attributes like font, color etc.

4 Attach the script display_message_to_user to this object.

5 Call the function displayText whenever the player collects an item
� modify the script collision_detection and add the following
code after the line that starts with Destroy(c.gameObject):

GameObject.Find("UI_displayMessageToUser")

.GetComponent(display_message_to_user)

.displayText(c.gameObject.tag + " collected!");

6 Adding the following line of code in the Start function of the script
display_message_to_user.

uiText.text = "";

to remove default text beeing displayed.

Creating and displaying an inventory system
Create texture for icons

1 Create a new UI.RawImage object (GameObject | UI | Raw
Image) which we will use to hold texture.

2 Rename this UI.RawImage object UI_texture_key.

3 Locate the icon texture for key in the folder Assets |
introduction_03.

4 Check that the Inspector window of UI_texture_key object is
visible.

5 Drag-and-drop this texture in the Inspector window, to the right of
the label Texture in the Raw Image component of the object
UI_texture_key.

6 Using the Inspector, change the position of this object to display it
in the upper-left corner of the screen.

7 Repeat the previous steps for all other objects.

Creating and displaying an inventory system
Display icons

Add the following code to collision_detection script:

function changeUITexture(what: String, display: boolean){

GameObject.Find("UI_texture_" + what)

.GetComponent(UI.RawImage)

.enabled

= display;

}

Creating and displaying an inventory system
Display icons

Modify the code according to the following snippet:

function OnControllerColliderHit(c : ControllerColliderHit){

...

if (c.gameObject.tag == "medpack"){

health = 100;

}

else if (c.gameObject.tag == "key"){

hasKey = true;

changeUITexture("key", hasKey);

}

else if (c.gameObject.tag == "gun"){

hasGun = true;

changeUITexture("gun", hasGun);

}

...

Creating and displaying an inventory system
Hide icons at the start of the scene

function Start () {

hasGun = false;

hasKey = false;

health = 0;

changeUITexture("key", hasKey);

changeUITexture("gun", hasGun);

}

Finishing the game

1 Create a new tag titled exit_door.
2 Add the tag to the object named exit_door.
3 Modify the script collision_detection by adding the following

lines within the function OnControllerColliderHit:
function OnControllerColliderHit(c : ControllerColliderHit){

if (c.gameObject.tag == "medpack"){

...

}

else if (c.gameObject.tag == "exit_door"){

if (hasKey){

GameObject.Find("UI_displayMessageToUser")

.GetComponent(display_message_to_user)

.displayText("Great!!! You have just completed the game level!!!");

}

else {

GameObject.Find("UI_displayMessageToUser")

.GetComponent(display_message_to_user)

.displayText("Sorry, you need the key to open this door");

}

}

}

Adding audio

1 Open the script collision_detection.

2 Add / change the following lines at the start of the script

// use for old version

//@script RequireComponent (AudioSource)

#pragma strict

public var collecting_sound: AudioClip;

3 Import the sound �le to the folder Assets | introduction_03.

4 In the Hierarchy window, click on the FPSController object. In
the Inspector window, drag-and-drop the sound �le to the variable
collecting_sound in the component Collision_detection of the
object FPSController.

5 Check that the FPSController object is still selected.

6 Check if Audio Source component is available. If not, select
Component | Audio | Audio Source. This should add an Audio
Source component to the FPSController in the Inspector window.

7 Check that the option Play on Awake is not selected for this
component.

Adding audio
Play the sound on collision

1 Open the script collision_detection.

2 Add the following line to the script:

function OnControllerColliderHit(c : ControllerColliderHit){

if (c.gameObject.tag == "medpack"

|| c.gameObject.tag == "key"

|| c.gameObject.tag == "gun")

{

Destroy(c.gameObject);

var audio: AudioSource = GetComponent.<AudioSource>();

audio.clip = collecting_sound;

audio.Play();

...

Summary

You should know

how to create scripts using JavaScript,

how to detect collision.

