
Ćw2 Programowanie BPMK -- różne rodzaje adresowania.

Omawiane zagadnienia j.w.

Instruction list missed instruction to increment or decrement given value. Without this,
instead of one instruction, three have to be used, sequence like:

It seems to be a detail but this type of operation is very, very common and that's why it's
good to extend instruction list with two instructions:

where address is coded on three digits xxx in machine instruction.

For example:

means: increas value at address 34 by 1.

In this case I intentionaly avoid the number 9 as the first digit in the code (having in mind that
9 was reserved for extensions) to get more "handy" pattern for instructon numbering -- see

Materials

Improvements, part I: various addressing
modes

Extend set of instructions by INC and DEC

CPA X ; X - address of the value to increment
ADD Y ; add value from address Y (very often simply equal to 1)
STO X ; store X incremented by Y

1
2
3

01xxx INC address
02xxx DEC address

1
2

0101 01034 ; INC 341

next part of this chapter.

Addressing mode used so far is a type of direct addressing e.g addressing which uses
operand as a value of memory address where actual argument is stored:

In the example above instruction ADD adds value 35 at the address 0123 . In other
words, operand points to a memory cell and to execute this type of instruction two memory
accesses are needed: one to get instruction and second to get value.

There are situation when it is useful to treat operand not as memory address but as value.
For example, when you want to add 5 to value in accumulator, instead of:

more intuitive is to write:

The question is:

How to distinguish between these two variants of ADD instruction?
When operand treat as address and when as value?

To overcome this difficulties you will use the following convention is. Notation:

means: executing instruction mnemonic as a value (as an argument) use number taken

Introduce immediate addressing

+-code for ADD
|
| +-operand (0123)
| |
| | Address Value
30123 ... | |
 | (0122) | |
 +-------> (0123) | 00035 |
 (0124) | |
 ... | |

1
2
3
4
5
6
7
8
9
10

ADD 35 ; Assume that value 5 is stored at address 351

ADD 5 ; 5 is not an address but value1

mnemonic operand1

from the address operand, while notation:

means: executing instruction mnemonic as a value (as an argument) use number operand.

This leads to the second type of addressing -- addressing when value is "in" instruction and
is accessible immediately just after instruction read is complete -- so called immediate
addressing.

Introducing this type of addressing entails new codes for instruction because computers, like
humans, have to distinguisg variants of addressing:

Notice that value 5 is stored "in" instruction and there is no need of an extra memory
access -- it means that this type of instruction is faster.

Unfortunately immediate addressing solves one problem and at the same time generates a
new one -- what about instruction like:

It is not possible to "squeeze" value 128 and put "into" instruction like it was in case of value

mnemonic (operand)1

+-code for ADD
|
| +-operand (0123) - value of the argument
| |
| |
30123

1
2
3
4
5
6

 Direct addressing Immediate addressing
Human ADD 35 ADD (5)

Computer 30035 92305

9xxxx - to indicate extension of basic instruction set
x2xxx - addressing mode (2 for immediate, 1 byte length)
xx3xx - code for addition in basic instructions set
xxx05 - immediate value - notice that this value is stored "in" instruction

1
2
3
4
5
6
7
8
9

Two bytes instructions

ADD (128)1

5.

The solution for this is to put another code for addition which assumes that value of the
argument is put just after instruction, like in the following example:

This is in some sens a mixture of direct and immediate addresing: you have two memory
access (one for instruction and the second to get value) but argument is always located next
to instruction (after instruction) -- you could say that you (almost) immediately know where
the argument is. If you take into account that modern CPU reads always few memory cell at
once, it may turn out that when first number (instruction) 93300 is read, 00128 will also
be read and will be available for CPU just after it finish processing instruction.

When you use assembler, you simply write in your code:

and you don't have to care about all low level details. The compiler translates your code into
machine code. Even though both instructions mean adding in the same addressing mode,
each will have a different machine code generated:

Calculate the dot product (sometimes scalar product or inner product) of two vectors of
length N (for simplicity you can assume for example N=10 or N=30 but in general it
could be any natural number).

address value
x 93300 - add
x + 1 00128 - value for add of code 9230

9xxxx - to indicate extension of basic instruction set
x3xxx - addressing mode (3 for immediate, 2 byte length)
xx3xx - code for addition in basic instructions set

1
2
3
4
5
6
7

ADD (7)
ADD (342)
ADD (9)

1
2
3

address value
x 92307 ADD (7)
x + 1 93300 ADD (342)
x + 2 00342
x + 3 92309 ADD (9)

1
2
3
4
5

Excercise 1

The solution is possible however it's not very sophisticated with multiple code repeated:

Solution 1.1

0010 ? ; a1
0011 ? ; a2
...
0019 ? ; a10
0020 ? ; b1
0021 ? ; b2
...
0029 ? ; b10
0030 ? ; result
...
0050 CPA 10 ; a1 * b1
0051 MUL 20
0052 STO 30
0053 CPA 11 ; a2 * b2
0054 MUL 21
0055 ADD 30
0056 STO 30
0057 CPA 12 ; a3 * b3
0058 MUL 22
0059 ADD 30
0060 STO 30
0061 CPA 13 ; a4 * b4
0062 MUL 23
0063 ADD 30
0064 STO 30
0065 CPA 14 ; a5 * b5
0066 MUL 24
0067 ADD 30
0068 STO 30
0069 CPA 15 ; a6 * b6
0070 MUL 25
0071 ADD 30
0072 STO 30
0073 CPA 16 ; a7 * b7
0074 MUL 26
0075 ADD 30
0076 STO 30
0077 CPA 17 ; a8 * b8
0078 MUL 27
0079 ADD 30
0080 STO 30
0081 CPA 18 ; a9 * b9
0082 MUL 28

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

The problem of calculating dot product seems to be unsolvable in satisfactory way without
concept of memory indirect addressing.

Notation:

means: executing instruction mnemonic as an address of the argument use operand ,
while notation:

means: executing instruction mnemonic as an address of the argument use value taken
from the address operand .

This leads to the third type of addressing -- addressing when value is "pointed" by value at
given address -- so called indirect addressing:

0083 ADD 30
0084 STO 30
0085 CPA 19 ; a10 * b10
0086 MUL 29
0087 ADD 30
0088 STO 30
0089 HLT

44
45
46
47
48
49
50

Introduce indirect addressing

mnemonic operand1

mnemonic [operand]1

You can think about [] "operator" as an substitution: having instruction
mnemonic [operand] take first value from the address operand , name it val ,

substitute [operand] by val and finally execute instruction mnemonic val .

To execute instruction in this addressing mode three memory accesses are needed: first
to get instruction, second to get address and third to get value at that address.

So this is the "slowest" instruction because it requires the most references to memory of all
addressing known so far. On the other hand, it gives you possibility to access much wider
memory space because to point an address you can use a full number stored in memory cell
(00009 -- five-digit number in example above), while in direct addressing one digit is
reserved for instruction number (so you can specify only four-digit numbers). Other words in
direct addressing you can specify addresses from 0000 to 9999 , while in indirect
addressing from 00000 to 99999 .

+-code for ADD [x] ->--+
| +->-- finally: ADD [6] and it adds 123
| +-operand (6) -->--+ to acumulator
| |
| | Address Value
94306 ... | |
 | (0005) | |
 +------> (0006) | 00009 | ---+
 (0007) | | |
 ... | | |
 (0009) | 00123 | <--+
 ... | |

9xxxx - to indicate extension of basic instruction set
x4xxx - addressing mode (4 for indirect)
xx3xx - code for addition in basic instructions set

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

ADD [5] -> value at address 5 = 36 -> ADD 361

Solution 1.2 (second approach)

Address Value Instruction
0001 00010 ; Address of the first component of vector 1
0002 00020 ; Address of the first component of vector 2
0003 00000 ; Result
0004 00010 ; n - length of vector
...
0010 xxxxx ; First component of vector 1
...
0019 xxxxx ; Last component of vector 1
0020 xxxxx ; First component of vector 2
...
0029 xxxxx ; Last component of vector 2

0030 10004 CPA 4
0031 80040 BRZ 40
0032 94101 CPA [1]
0033 94502 MUL [2]
0034 30003 ADD 3
0035 20003 STO 3
0036 01001 INC 1
0037 01002 INC 2
0038 02004 DEC 4
0039 60030 BRA 30
0040 00000 HLT

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

