
Ćw3 Programowanie BPMK - etykiety i rejestr flagowy.

Omawiane zagadnienia j.w.

Recall last code from previous part -- code to compute the dot product of two vectors:

Address Instruction
0001 10 ; Address of the first component of vector 1
0002 20 ; Address of the first component of vector 2
0003 0 ; Result
0004 10 ; n - length of vector
...
0010 1 ; First component of vector 1
...
0019 10 ; Last component of vector 1
0020 10 ; First component of vector 2
...
0029 1 ; Last component of vector 2

0030 CPA 4
0031 BRZ 40
0032 CPA [1]
0033 MUL [2]
0034 ADD 3
0035 STO 3
0036 INC 1
0037 INC 2
0038 DEC 4
0039 BRA 30
0040 HLT

Assume now that you want to reallocate the code to a different area of your memory, for

Materials

Improvements, part II: labels

Problem with code reallocation

example you want to start the code not at address 1 but 101 ("shift" all the code by
100). You may want to simply enumerate all addresses like this:

Address Instruction
0101 ; Address of the first component of vector 1
0102 ; Address of the first component of vector 2
0103 ; Result
0104 ; n - length of vector
...
0110 ; First component of vector 1
...
0119 ; Last component of vector 1
0120 ; First component of vector 2
...
0129 ; Last component of vector 2

0130 CPA 104
0131 BRZ 140
0132 CPA [101]
0133 MUL [102]
0134 ADD 103
0135 STO 103
0136 INC 101
0137 INC 102
0138 DEC 104
0139 BRA 130
0140 HLT

Initial solution is correct, but when the code is reallocated into other place in the memory,
instruction names, mnemonics, stays the same, but their binary code changes significantly
and in consequences addresses are not correct because it's not enough to shift all of them
by 100.

Explanation is as follow: the same instruction may have different length in bytes depending
on the values of their operands. Code:

CPA [1]

generates machine code different than:

CPA [101]

In the first case you have:

Address Value Instruction
x 94101 CPA [1]

while in the second instruction CPA requires two bytes:

Address Value Instruction
x 95100 CPA [101]
x+1 00101

In consequence the binary code changes (but the assembler stays the same, except
addresses you use):

Address Value Instruction
0101 00010 ; Address of the first component of vector 1
0102 00020 ; Address of the first component of vector 2
0103 00000 ; Result
0104 00010 ; n - length of vector
...
0110 xxxxx ; First component of vector 1
...
0119 xxxxx ; Last component of vector 1
0120 xxxxx ; First component of vector 2
...
0129 xxxxx ; Last component of vector 2

0130 10004 CPA 104
0131 80040 BRZ 142 ; Must be 142 not 140!!!
0132 94100 CPA [101]
0133 00101 ; "Extra" byte
0134 94700 MUL [102]
0135 00102 ; "Extra" byte
0136 30003 ADD 103
0137 20003 STO 103
0138 01001 INC 101
0139 01002 INC 102
0140 02004 DEC 104
0141 60030 BRA 130
0142 00000 HLT

The source of the problem with variable length instructions is that you have to use real
addresses in menmonics, like CPA [101] . Solution seems to be quite natural: stop using
explicit addresses. Instead use, labels to indicate locations in the memory and let the
compiler to translate your set of assembler mnemonic instruction into adequate machine
code and (re)calculate all required addresses.

With label you may code initial solution as:

Address Instruction
.data 1 ; Start data block at address 0
v1: xxxxx ; First component of vector 1
 ...
 xxxxx ; Last component of vector 1
v2: xxxxx ; First component of vector 2
 ...
 xxxxx ; Last component of vector 2
a_v1: v1 ; Address of the first component of vector 1
a_v2: v2 ; Address of the first component of vector 2
result: 0 ; Result
vec_len: 10 ; n - length of vector

.code 30 ; Start code block at address 30

begin: CPA vec_len
 BRZ end
 CPA [a_v1]
 MUL [a_v2]
 ADD result
 STO result
 INC a_v1
 INC a_v2
 DEC vec_len
 BRA begin
end: HLT

"Shifted" version of this code is:

Address Instruction
.data 101 ; Start data block at address 0
v1: xxxxx ; First component of vector 1
 ...
 xxxxx ; Last component of vector 1
v2: xxxxx ; First component of vector 2
 ...
 xxxxx ; Last component of vector 2
a_v1: v1 ; Address of the first component of vector 1
a_v2: v2 ; Address of the first component of vector 2
result: 0 ; Result
vec_len: 10 ; n - length of vector

.code 130 ; Start code block at address 130

begin: CPA vec_len
 BRZ end
 CPA [a_v1]
 MUL [a_v2]
 ADD result
 STO result
 INC a_v1
 INC a_v2
 DEC vec_len
 BRA begin
end: HLT

As you can see, the only thing which has changed is:

.data 1 -> .data 101

.code 30 -> .code 130

The job of recalculating addresses and generating correct machine code has been
transferred to compiler.

Now it is instructive to write again some of the program from previous chapters but replacing
raw addresses with labels.

Solution of xxx from chapter yyy

Improvements, part III: flag register

Consider now a following sequence of instructions:

DEC counter
CPA counter
BRN end

The idea behind this is very simple: decrease variable (an iterator) and if it is negative (or
zero if you use BRZ) then jump somewhere. The odd thing is that after you decrease your
counter with DEC instruction you have to load it with CPA into accumulator because
jump instructions can work only on values stored in accumulator.

You can solve this if you take a following agreement: every numerical instruction (INC ,
DEC , ADD , SUB , MUL) after execution sets some dedicated memory cells (registers) -

- called flags -- located in CPU (like accumulator is located in CPU):

ZF : Zero Flag this flag is set to 1 if last instruction's result is equal to zero, othervise
is set to 0;
NF : Negative Flag this flag is set to 1 if last instruction's result is neqative, othervise

is set to 0.

Now you can introduce new set of jump instructions:

BRNF : jump if NF flag is set (is equal to 1);
BRZF : jump if ZF flag is set.

Having them sequence:

DEC counter CPA counter BRN end

can be replace by more intuitive sequence:

DEC counter
BRNF end

