
Image Feature Extraction Techniques

Basic image processing
Group operators

Piotr Fulmański

Theory

Convolution
Definition
Convolution is a mathematical operation on two functions (and) that produces a
third function () that expresses how the shape of one is modified by the other.

It is defined as the integral of the product of the two functions after one is reversed
and shifted. The integral is evaluated for all values of shift, producing the convolution
function:

The convolution formula can be described as the area under the function weighted
by the function shifted by amount .

The term convolution refers to both the result function and to the process of
computing it.

f g
f * g

(f * g)(t) = ∫
∞

−∞
f(τ)g(t − τ) dτ

f(τ)
g(−τ) t

Convolution
Definition
A common engineering notational convention is:

.

Properties:

• Commutativity: 
 

• Associativity: 
 

• Distributivity: 
 

• Associativity with scalar multiplication: 
 

 
 
for any complex number .

f(t) * g(t) := ∫
∞

−∞
f(τ)g(t − τ) dτ

(f*g)(t)

f * g = g * f

f * (g * h) = (f * g) * h

f * (g + h) = (f * g) + (f * h)

a(f * g) = (af) * g

a

Convolution
Definition
Convolution is a mathematical operation on two functions (and) that produces a
third function () that expresses how the shape of one is modified by the other.

It is defined as the integral of the product of the two functions after one is reversed
and shifted. The integral is evaluated for all values of shift, producing the convolution
function:

The convolution formula can be described as the area under the function weighted
by the function shifted by amount .

The term convolution refers to both the result function and to the process of
computing it.

f g
f * g

(f * g)(t) = ∫
∞

−∞
f(τ)g(t − τ) dτ = ∫

∞

−∞
f(t − τ)g(τ) dτ

f(τ)
g(−τ) t

Convolution
Visual explanation [2]

Convolution
Discrete convolution

For complex-valued functions , defined on the set of
integers, the discrete convolution of f and g is given by:

or equivalently (because of commutativity) by:

.

f g Z

(f * g)[n] =
∞

∑
k=−∞

f [k]g[n − k]

(f * g)[n] =
∞

∑
k=−∞

f [n − k]g[k]

Discrete convolution
Example - direct approach using convolution sum

f = [1, 2, 3, 2, 1]  
g = [3, 2, 1, 1, 1]

n 0 1 2 3 4  
f[n] 1 2 3 2 1  
g[n] 3 2 1 1 1

y[n] = (f * g)[n] =
∞

∑
m=−∞

f [m]g[n − m]

Discrete convolution
Example - direct approach using convolution sum

f = [1, 2, 3, 2, 1]  
g = [3, 2, 1, 1, 1]

n 0 1 2 3 4 -4-3-2-1 0 1 2 3 4  
f[n] 1 2 3 2 1 1 2 3 2 1  
g[n] 3 2 1 1 1 1 1 1 2 3 <- matrix inversion

  
  
 
 
  
  
  
  
  
  
  

 
  
  
  
 
  
 

y[n] = (f * g)[n] =
∞

∑
m=−∞

f [m]g[n − m]

Discrete convolution
Example - direct approach using convolution sum

f = [1, 2, 3, 2, 1]  
g = [3, 2, 1, 1, 1]

n 0 1 2 3 4 -4-3-2-1 0 1 2 3 4  
f[n] 1 2 3 2 1 1 2 3 2 1  
g[n] 3 2 1 1 1 1 1 1 2 3 <- matrix inversion

  
  
y[0] = ... + f[-1]g[0+1] + f[0]g[0-0] + f[1]g[0-1] + ...  
 = 3  
  
  
  
  
  
  
  

 
  
  
  
 
  
 

y[n] = (f * g)[n] =
∞

∑
m=−∞

f [m]g[n − m]

Discrete convolution
Example - direct approach using convolution sum

f = [1, 2, 3, 2, 1]  
g = [3, 2, 1, 1, 1]

n 0 1 2 3 4 -4-3-2-1 0 1 2 3 4  
f[n] 1 2 3 2 1 1 2 3 2 1  
g[n] 3 2 1 1 1 1 1 1 2 3

  
 
y[0] = ... + f[-1]g[0+1] + f[0]g[0-0] + f[1]g[0-1] + ...  
 = 3  
y[1] = ... + f[-1]g[1+1] + f[0]g[1-0] + f[1]g[1-1] + f[2]g[1-2] + ...  
 = 2 + 6 = 8  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

y[n] = (f * g)[n] =
∞

∑
m=−∞

f [m]g[n − m]

Discrete convolution
Example - direct approach using convolution sum

f = [1, 2, 3, 2, 1]  
g = [3, 2, 1, 1, 1]

n 0 1 2 3 4 -4-3-2-1 0 1 2 3 4  
f[n] 1 2 3 2 1 1 2 3 2 1  
g[n] 3 2 1 1 1 1 1 1 2 3

  
 
y[0] = ... + f[-1]g[0+1] + f[0]g[0-0] + f[1]g[0-1] + ...  
 = 3  
y[1] = ... + f[-1]g[1+1] + f[0]g[1-0] + f[1]g[1-1] + f[2]g[1-2] + ...  
 = 2 + 6 = 8  
y[2] = ... + f[-1]g[2+1] + f[0]g[2-0] + f[1]g[2-1] + f[2]g[2-2] + f[3]g[2-3] + ...  
 = 1 + 4 + 9 = 14  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

y[n] = (f * g)[n] =
∞

∑
m=−∞

f [m]g[n − m]

Discrete convolution
Example - direct approach using convolution sum

f = [1, 2, 3, 2, 1]  
g = [3, 2, 1, 1, 1]

n 0 1 2 3 4 -4-3-2-1 0 1 2 3 4  
f[n] 1 2 3 2 1 1 2 3 2 1  
g[n] 3 2 1 1 1 1 1 1 2 3

  
 
y[0] = ... + f[-1]g[0+1] + f[0]g[0-0] + f[1]g[0-1] + ...  
 = 3  
y[1] = ... + f[-1]g[1+1] + f[0]g[1-0] + f[1]g[1-1] + f[2]g[1-2] + ...  
 = 2 + 6 = 8  
y[2] = ... + f[-1]g[2+1] + f[0]g[2-0] + f[1]g[2-1] + f[2]g[2-2] + f[3]g[2-3] + ...  
 = 1 + 4 + 9 = 14  
y[3] = ... + f[-1]g[3+1] + f[0]g[3-0] + f[1]g[3-1] + f[2]g[3-2] + f[3]g[3-3] + f[4]g[3-4] + ...  
 = 1 + 2 + 6 + 6 = 15  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

y[n] = (f * g)[n] =
∞

∑
m=−∞

f [m]g[n − m]

Discrete convolution
Example - direct approach using convolution sum

f = [1, 2, 3, 2, 1]  
g = [3, 2, 1, 1, 1]

n 0 1 2 3 4 -4-3-2-1 0 1 2 3 4  
f[n] 1 2 3 2 1 1 2 3 2 1  
g[n] 3 2 1 1 1 1 1 1 2 3

  
 
y[0] = ... + f[-1]g[0+1] + f[0]g[0-0] + f[1]g[0-1] + ...  
 = 3  
y[1] = ... + f[-1]g[1+1] + f[0]g[1-0] + f[1]g[1-1] + f[2]g[1-2] + ...  
 = 2 + 6 = 8  
y[2] = ... + f[-1]g[2+1] + f[0]g[2-0] + f[1]g[2-1] + f[2]g[2-2] + f[3]g[2-3] + ...  
 = 1 + 4 + 9 = 14  
y[3] = ... + f[-1]g[3+1] + f[0]g[3-0] + f[1]g[3-1] + f[2]g[3-2] + f[3]g[3-3] + f[4]g[3-4] + ...  
 = 1 + 2 + 6 + 6 = 15  
y[4] = ... + f[-1]g[4+1] + f[0]g[4-0] + f[1]g[4-1] + f[2]g[4-2] + f[3]g[4-3] + f[4]g[4-4] + f[5]g[4-5] + ...  
 = 1 + 2 + 3 + 4 + 3 = 13  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

y[n] = (f * g)[n] =
∞

∑
m=−∞

f [m]g[n − m]

Discrete convolution
Example - direct approach using convolution sum

f = [1, 2, 3, 2, 1]  
g = [3, 2, 1, 1, 1]

n 0 1 2 3 4 -4-3-2-1 0 1 2 3 4 5  
f[n] 1 2 3 2 1 1 2 3 2 1  
g[n] 3 2 1 1 1 1 1 1 2 3

  
 
y[0] = ... + f[-1]g[0+1] + f[0]g[0-0] + f[1]g[0-1] + ...  
 = 3  
y[1] = ... + f[-1]g[1+1] + f[0]g[1-0] + f[1]g[1-1] + f[2]g[1-2] + ...  
 = 2 + 6 = 8  
y[2] = ... + f[-1]g[2+1] + f[0]g[2-0] + f[1]g[2-1] + f[2]g[2-2] + f[3]g[2-3] + ...  
 = 1 + 4 + 9 = 14  
y[3] = ... + f[-1]g[3+1] + f[0]g[3-0] + f[1]g[3-1] + f[2]g[3-2] + f[3]g[3-3] + f[4]g[3-4] + ...  
 = 1 + 2 + 6 + 6 = 15  
y[4] = ... + f[-1]g[4+1] + f[0]g[4-0] + f[1]g[4-1] + f[2]g[4-2] + f[3]g[4-3] + f[4]g[4-4] + f[5]g[4-5] + ...  
 = 1 + 2 + 3 + 4 + 3 = 13  
y[5] = ... + f[-1]g[5+1] + f[0]g[5-0] + f[1]g[5-1] + f[2]g[5-2] + f[3]g[5-3] + f[4]g[5-4] + f[5]g[5-5] + ...  
 = 2 + 3 + 2 + 2 = 9  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

y[n] = (f * g)[n] =
∞

∑
m=−∞

f [m]g[n − m]

Discrete convolution
Example - direct approach using convolution sum

f = [1, 2, 3, 2, 1]  
g = [3, 2, 1, 1, 1]

n 0 1 2 3 4 -4-3-2-1 0 1 2 3 4 5 6  
f[n] 1 2 3 2 1 1 2 3 2 1  
g[n] 3 2 1 1 1 1 1 1 2 3

  
 
y[0] = ... + f[-1]g[0+1] + f[0]g[0-0] + f[1]g[0-1] + ...  
 = 3  
y[1] = ... + f[-1]g[1+1] + f[0]g[1-0] + f[1]g[1-1] + f[2]g[1-2] + ...  
 = 2 + 6 = 8  
y[2] = ... + f[-1]g[2+1] + f[0]g[2-0] + f[1]g[2-1] + f[2]g[2-2] + f[3]g[2-3] + ...  
 = 1 + 4 + 9 = 14  
y[3] = ... + f[-1]g[3+1] + f[0]g[3-0] + f[1]g[3-1] + f[2]g[3-2] + f[3]g[3-3] + f[4]g[3-4] + ...  
 = 1 + 2 + 6 + 6 = 15  
y[4] = ... + f[-1]g[4+1] + f[0]g[4-0] + f[1]g[4-1] + f[2]g[4-2] + f[3]g[4-3] + f[4]g[4-4] + f[5]g[4-5] + ...  
 = 1 + 2 + 3 + 4 + 3 = 13  
y[5] = ... + f[-1]g[5+1] + f[0]g[5-0] + f[1]g[5-1] + f[2]g[5-2] + f[3]g[5-3] + f[4]g[5-4] + f[5]g[5-5] + ...  
 = 2 + 3 + 2 + 2 = 9  
y[6] = ... + f[-1]g[6+1] + f[0]g[6-0] + f[1]g[6-1] + f[2]g[6-2] + f[3]g[6-3] + f[4]g[6-4] + f[5]g[6-5] + ...  
 = 3 + 2 + 1 = 6  
 
 
 
 
 
 
 
 
 
 
 
 

y[n] = (f * g)[n] =
∞

∑
m=−∞

f [m]g[n − m]

Discrete convolution
Example - direct approach using convolution sum

f = [1, 2, 3, 2, 1]  
g = [3, 2, 1, 1, 1]

n 0 1 2 3 4 -4-3-2-1 0 1 2 3 4 5 6 7  
f[n] 1 2 3 2 1 1 2 3 2 1  
g[n] 3 2 1 1 1 1 1 1 2 3

  
 
y[0] = ... + f[-1]g[0+1] + f[0]g[0-0] + f[1]g[0-1] + ...  
 = 3  
y[1] = ... + f[-1]g[1+1] + f[0]g[1-0] + f[1]g[1-1] + f[2]g[1-2] + ...  
 = 2 + 6 = 8  
y[2] = ... + f[-1]g[2+1] + f[0]g[2-0] + f[1]g[2-1] + f[2]g[2-2] + f[3]g[2-3] + ...  
 = 1 + 4 + 9 = 14  
y[3] = ... + f[-1]g[3+1] + f[0]g[3-0] + f[1]g[3-1] + f[2]g[3-2] + f[3]g[3-3] + f[4]g[3-4] + ...  
 = 1 + 2 + 6 + 6 = 15  
y[4] = ... + f[-1]g[4+1] + f[0]g[4-0] + f[1]g[4-1] + f[2]g[4-2] + f[3]g[4-3] + f[4]g[4-4] + f[5]g[4-5] + ...  
 = 1 + 2 + 3 + 4 + 3 = 13  
y[5] = ... + f[-1]g[5+1] + f[0]g[5-0] + f[1]g[5-1] + f[2]g[5-2] + f[3]g[5-3] + f[4]g[5-4] + f[5]g[5-5] + ...  
 = 2 + 3 + 2 + 2 = 9  
y[6] = ... + f[-1]g[6+1] + f[0]g[6-0] + f[1]g[6-1] + f[2]g[6-2] + f[3]g[6-3] + f[4]g[6-4] + f[5]g[6-5] + ...  
 = 3 + 2 + 1 = 6  
y[7] = ... + f[-1]g[7+1] + f[0]g[7-0] + f[1]g[7-1] + f[2]g[7-2] + f[3]g[7-3] + f[4]g[7-4] + f[5]g[7-5] + ...  
 = 2 + 1 = 3  
 
 
 
 
 
 
 

y[n] = (f * g)[n] =
∞

∑
m=−∞

f [m]g[n − m]

Discrete convolution
Example - direct approach using convolution sum

f = [1, 2, 3, 2, 1]  
g = [3, 2, 1, 1, 1]

n 0 1 2 3 4 -4-3-2-1 0 1 2 3 4 5 6 7 8  
f[n] 1 2 3 2 1 1 2 3 2 1  
g[n] 3 2 1 1 1 1 1 1 2 3

  
 
y[0] = ... + f[-1]g[0+1] + f[0]g[0-0] + f[1]g[0-1] + ...  
 = 3  
y[1] = ... + f[-1]g[1+1] + f[0]g[1-0] + f[1]g[1-1] + f[2]g[1-2] + ...  
 = 2 + 6 = 8  
y[2] = ... + f[-1]g[2+1] + f[0]g[2-0] + f[1]g[2-1] + f[2]g[2-2] + f[3]g[2-3] + ...  
 = 1 + 4 + 9 = 14  
y[3] = ... + f[-1]g[3+1] + f[0]g[3-0] + f[1]g[3-1] + f[2]g[3-2] + f[3]g[3-3] + f[4]g[3-4] + ...  
 = 1 + 2 + 6 + 6 = 15  
y[4] = ... + f[-1]g[4+1] + f[0]g[4-0] + f[1]g[4-1] + f[2]g[4-2] + f[3]g[4-3] + f[4]g[4-4] + f[5]g[4-5] + ...  
 = 1 + 2 + 3 + 4 + 3 = 13  
y[5] = ... + f[-1]g[5+1] + f[0]g[5-0] + f[1]g[5-1] + f[2]g[5-2] + f[3]g[5-3] + f[4]g[5-4] + f[5]g[5-5] + ...  
 = 2 + 3 + 2 + 2 = 9  
y[6] = ... + f[-1]g[6+1] + f[0]g[6-0] + f[1]g[6-1] + f[2]g[6-2] + f[3]g[6-3] + f[4]g[6-4] + f[5]g[6-5] + ...  
 = 3 + 2 + 1 = 6  
y[7] = ... + f[-1]g[7+1] + f[0]g[7-0] + f[1]g[7-1] + f[2]g[7-2] + f[3]g[7-3] + f[4]g[7-4] + f[5]g[7-5] + ...  
 = 2 + 1 = 3  
y[8] = ... + f[-1]g[8+1] + f[0]g[8-0] + f[1]g[8-1] + f[2]g[8-2] + f[3]g[8-3] + f[4]g[8-4] + f[5]g[8-5] + ...  
 = 1  
 
 
 
 
 

y[n] = (f * g)[n] =
∞

∑
m=−∞

f [m]g[n − m]

Discrete convolution
Example - direct approach using convolution sum

f = [1, 2, 3, 2, 1]  
g = [3, 2, 1, 1, 1]

n 0 1 2 3 4  
f[n] 1 2 3 2 1  
g[n] 3 2 1 1 1

  
 
y[0] = ... + f[-1]g[0+1] + f[0]g[0-0] + f[1]g[0-1] + ...  
 = 3  
y[1] = ... + f[-1]g[1+1] + f[0]g[1-0] + f[1]g[1-1] + f[2]g[1-2] + ...  
 = 2 + 6 = 8  
y[2] = ... + f[-1]g[2+1] + f[0]g[2-0] + f[1]g[2-1] + f[2]g[2-2] + f[3]g[2-3] + ...  
 = 1 + 4 + 9 = 14  
y[3] = ... + f[-1]g[3+1] + f[0]g[3-0] + f[1]g[3-1] + f[2]g[3-2] + f[3]g[3-3] + f[4]g[3-4] + ...  
 = 1 + 2 + 6 + 6 = 15  
y[4] = ... + f[-1]g[4+1] + f[0]g[4-0] + f[1]g[4-1] + f[2]g[4-2] + f[3]g[4-3] + f[4]g[4-4] + f[5]g[4-5] + ...  
 = 1 + 2 + 3 + 4 + 3 = 13  
y[5] = ... + f[-1]g[5+1] + f[0]g[5-0] + f[1]g[5-1] + f[2]g[5-2] + f[3]g[5-3] + f[4]g[5-4] + f[5]g[5-5] + ...  
 = 2 + 3 + 2 + 2 = 9  
y[6] = ... + f[-1]g[6+1] + f[0]g[6-0] + f[1]g[6-1] + f[2]g[6-2] + f[3]g[6-3] + f[4]g[6-4] + f[5]g[6-5] + ...  
 = 3 + 2 + 1 = 6  
y[7] = ... + f[-1]g[7+1] + f[0]g[7-0] + f[1]g[7-1] + f[2]g[7-2] + f[3]g[7-3] + f[4]g[7-4] + f[5]g[7-5] + ...  
 = 2 + 1 = 3  
y[8] = ... + f[-1]g[8+1] + f[0]g[8-0] + f[1]g[8-1] + f[2]g[8-2] + f[3]g[8-3] + f[4]g[8-4] + f[5]g[8-5] + ...  
 = 1  
 

f[n]*g[n] = [3, 8, 14, 15, 13, 9, 6, 3, 1]

y[n] = (f * g)[n] =
∞

∑
m=−∞

f [m]g[n − m]

Discrete convolution
Example - direct approach using convolution sum

f = [1, 2, 3, 2, 1]  
g = [3, 2, 1, 1, 1]

n 0 1 2 3 4  
f[n] 1 2 3 2 1  
g[n] 3 2 1 1 1

y[-1] = ... + f[-1]g[-1+1] + f[0]g[-1-0] + f[1]g[-1-1] + ...  
 = 0  
y[0] = ... + f[-1]g[0+1] + f[0]g[0-0] + f[1]g[0-1] + ...  
 = 3  
y[1] = ... + f[-1]g[1+1] + f[0]g[1-0] + f[1]g[1-1] + f[2]g[1-2] + ...  
 = 2 + 6 = 8  
y[2] = ... + f[-1]g[2+1] + f[0]g[2-0] + f[1]g[2-1] + f[2]g[2-2] + f[3]g[2-3] + ...  
 = 1 + 4 + 9 = 14  
y[3] = ... + f[-1]g[3+1] + f[0]g[3-0] + f[1]g[3-1] + f[2]g[3-2] + f[3]g[3-3] + f[4]g[3-4] + ...  
 = 1 + 2 + 6 + 6 = 15  
y[4] = ... + f[-1]g[4+1] + f[0]g[4-0] + f[1]g[4-1] + f[2]g[4-2] + f[3]g[4-3] + f[4]g[4-4] + f[5]g[4-5] + ...  
 = 1 + 2 + 3 + 4 + 3 = 13  
y[5] = ... + f[-1]g[5+1] + f[0]g[5-0] + f[1]g[5-1] + f[2]g[5-2] + f[3]g[5-3] + f[4]g[5-4] + f[5]g[5-5] + ...  
 = 2 + 3 + 2 + 2 = 9  
y[6] = ... + f[-1]g[6+1] + f[0]g[6-0] + f[1]g[6-1] + f[2]g[6-2] + f[3]g[6-3] + f[4]g[6-4] + f[5]g[6-5] + ...  
 = 3 + 2 + 1 = 6  
y[7] = ... + f[-1]g[7+1] + f[0]g[7-0] + f[1]g[7-1] + f[2]g[7-2] + f[3]g[7-3] + f[4]g[7-4] + f[5]g[7-5] + ...  
 = 2 + 1 = 3  
y[8] = ... + f[-1]g[8+1] + f[0]g[8-0] + f[1]g[8-1] + f[2]g[8-2] + f[3]g[8-3] + f[4]g[8-4] + f[5]g[8-5] + ...  
 = 1  
y[9] = ... + f[-1]g[9+1] + f[0]g[9-0] + f[1]g[9-1] + f[2]g[9-2] + f[3]g[9-3] + f[4]g[9-4] + f[5]g[9-5] + ...  
 = 0

f[n]*g[n] = [3, 8, 14, 15, 13, 9, 6, 3, 1]

y[n] = (f * g)[n] =
∞

∑
m=−∞

f [m]g[n − m]

Discrete convolution
Example - direct approach using convolution sum

f = [1, 2, 3, 2, 1]  
g = [3, 2, 1, 1, 1]

n 0 1 2 3 4  
f[n] 1 2 3 2 1  
g[n] 3 2 1 1 1

y[-1] = ... + f[-1]g[-1+1] + f[0]g[-1-0] + f[1]g[-1-1] + ...  
 = 0  
y[0] = ... + f[-1]g[0+1] + f[0]g[0-0] + f[1]g[0-1] + ...  
 = 3  
y[1] = ... + f[-1]g[1+1] + f[0]g[1-0] + f[1]g[1-1] + f[2]g[1-2] + ...  
 = 2 + 6 = 8  
y[2] = ... + f[-1]g[2+1] + f[0]g[2-0] + f[1]g[2-1] + f[2]g[2-2] + f[3]g[2-3] + ...  
 = 1 + 4 + 9 = 14  
y[3] = ... + f[-1]g[3+1] + f[0]g[3-0] + f[1]g[3-1] + f[2]g[3-2] + f[3]g[3-3] + f[4]g[3-4] + ...  
 = 1 + 2 + 6 + 6 = 15  
y[4] = ... + f[-1]g[4+1] + f[0]g[4-0] + f[1]g[4-1] + f[2]g[4-2] + f[3]g[4-3] + f[4]g[4-4] + f[5]g[4-5] + ...  
 = 1 + 2 + 3 + 4 + 3 = 13  
y[5] = ... + f[-1]g[5+1] + f[0]g[5-0] + f[1]g[5-1] + f[2]g[5-2] + f[3]g[5-3] + f[4]g[5-4] + f[5]g[5-5] + ...  
 = 2 + 3 + 2 + 2 = 9  
y[6] = ... + f[-1]g[6+1] + f[0]g[6-0] + f[1]g[6-1] + f[2]g[6-2] + f[3]g[6-3] + f[4]g[6-4] + f[5]g[6-5] + ...  
 = 3 + 2 + 1 = 6  
y[7] = ... + f[-1]g[7+1] + f[0]g[7-0] + f[1]g[7-1] + f[2]g[7-2] + f[3]g[7-3] + f[4]g[7-4] + f[5]g[7-5] + ...  
 = 2 + 1 = 3  
y[8] = ... + f[-1]g[8+1] + f[0]g[8-0] + f[1]g[8-1] + f[2]g[8-2] + f[3]g[8-3] + f[4]g[8-4] + f[5]g[8-5] + ...  
 = 1  
y[9] = ... + f[-1]g[9+1] + f[0]g[9-0] + f[1]g[9-1] + f[2]g[9-2] + f[3]g[9-3] + f[4]g[9-4] + f[5]g[9-5] + ...  
 = 0

f[n]*g[n] = [3, 8, 14, 15, 13, 9, 6, 3, 1]

y[n] = (f * g)[n] =
∞

∑
m=−∞

f [m]g[n − m]

Multidimensional discrete
convolution

Multidimensional discrete convolution
Definition
The convolution of two complex-valued functions on is a complex-valued function on , defined by:

.

An -dimensional convolution would be written as:

Similar to the one-dimensional case, an asterisk is used to represent the convolution operation. The number
of dimensions in the given operation is reflected in the number of asterisks.

You can consider multidimensional discrete convolution which is directly computed via the following formula:

Two-dimensional convolution is given by:

which is quite similar to one-dimensional case mentioned earlier:

.

Rn Rn

(f * g)(t) = ∫Rn

f(τ)g(t − τ) dτ = ∫Rn

f(t − τ)g(τ) dτ

n

y(t1, t2, . . . , tn) = f(t1, t2, . . . , tn) * n⋯ * g(t1, t2, . . . , tn)

∞

∑
τ1=−∞

∞

∑
τ2=−∞

. . .
∞

∑
τn=−∞

f(τ1, τ2, . . . , τn)g(t1 − τ1, t2 − τ2, . . . , tn − τn)

(f * g)[n1][n2] =
∞

∑
k1=−∞

∞

∑
k2=−∞

f [k1][k2]g[n1 − k1][n2 − k2]

(f * g)[n] =
∞

∑
k=−∞

f [k]g[n − k]

Two-dimensional discrete convolution
Example - direct approach using convolution sum
Let's try to compute the pixel value of the output data
resulting from the convolution of 5×5 sized data matrix
with the kernel of size , shown below:

 0 1 2 3 4  
 0 [1, 2, 3, 4, 5] 0 1 2  
 1 [6, 7, 8, 9, 9] 0 [1, 2, 3]  
f = 2 [8, 7, 6, 5, 4] g = 1 [4, 5, 6]  
 3 [3, 2, 1, 1, 2] 2 [7, 8, 9]  
 4 [3, 4, 5, 6, 7]  

f
g 3 × 3

Two-dimensional discrete convolution
Example - direct approach using convolution sum

  
 0 1 2 3 4 0 1 2 3 4  
 0 [1, 2, 3, 4, 5] 0 1 2 0 1  
 1 [6, 7, 8, 9, 9] 0 [1, 2, 3] 1  
f = 2 [8, 7, 6, 5, 4] g = 1 [4, 5, 6] 2  
 3 [3, 2, 1, 1, 2] 2 [7, 8, 9] 3  
 4 [3, 4, 5, 6, 7] 4  
 
 
y[0][0] =  
... + f[-1][-1]g[0+1][0+1] + f[-1][0]g[0+1][0-0] + f[-1][1]g[0+1][0-1] + ...  
... + f[0][-1]g[0-0][0+1] + f[0][0]g[0-0][0-0] + f[0][1]g[0-0][0-1] + ...  
... + f[1][-1]g[0-1][0+1] + f[1][0]g[0-1][0-0] + f[1][1]g[0-1][0-1] + ...  
=  
... + f[-1][-1]g[0+1][0+1] + f[-1][0]g[0+1][0-0] + f[-1][1]g[0+1][0-1] + ...  
... + f[0][-1]g[0-0][0+1] + f[0][0]g[0-0][0-0] + f[0][1]g[0-0][0-1] + ...  
... + f[1][-1]g[0-1][0+1] + f[1][0]g[0-1][0-0] + f[1][1]g[0-1][0-1] + ...  
=  
f[0][0]g[0-0][0-0]  
=  
1*1  
=  
1  

(f * g)[n1][n2] =
∞

∑
k1=−∞

∞

∑
k2=−∞

f [k1][k2]g[n1 − k1][n2 − k2]

Two-dimensional discrete convolution
Example - mechanical approach using sliding inverted matrix
Instead of using direct approach and computing convolution sum
from formula, you can apply "mechanical" or "manual" procedure
similar to the inversion and shift method applied in one-dimensional
case.

To do this, first you have to find kernel matrix inversion. You do this
exactly the same way as you do it for one-dimensional case: you
flip the kernel along, rows followed by a flip along columns (order is
not important):

 
 initial flip flip  
 by row by column  
 
 [1, 2, 3] [7, 8, 9] [9, 8, 7]  
g = [4, 5, 6] g = [4, 5, 6] g = [6, 5, 4]  
 [7, 8, 9] [1, 2, 3] [3, 2, 1]  
 

Two-dimensional discrete convolution
Example - mechanical approach using sliding inverted matrix
Now you can move inverted kennel matrix over data matrix

 
 
 1 2 3 4 5  
 6 7 8 9 9 9 8 7  
f = 8 7 6 5 4 g = 6 5 4  
 3 2 1 1 2 3 2 1  
 3 4 5 6 7  
 
 
 
 
 
 
 
 
 

 
 

Two-dimensional discrete convolution
Example - mechanical approach using sliding inverted matrix
Now you can move inverted kennel matrix over data matrix

 
 
 1 2 3 4 5  
 6 7 8 9 9  
f = 8 7 6 5 4  
 3 2 1 1 2  
 3 4 5 6 7  
 
 1 ? ? ? ? ? ?  
 
 
 
 
 
 
 

 
 

9 8 7  
6 5 4  
3 2 1

Two-dimensional discrete convolution
Example - mechanical approach using sliding inverted matrix
Now you can move inverted kennel matrix over data matrix

 
 
 1 2 3 4 5  
 6 7 8 9 9  
f = 8 7 6 5 4  
 3 2 1 1 2  
 3 4 5 6 7  
 
 1 4 ? ? ? ? ?  
 
 
 
 
 
 
 

 
 

9 8 7  
6 5 4  
3 2 1

Two-dimensional discrete convolution
Example - mechanical approach using sliding inverted matrix
Now you can move inverted kennel matrix over data matrix

 
 
 1 2 3 4 5  
 6 7 8 9 9  
f = 8 7 6 5 4  
 3 2 1 1 2  
 3 4 5 6 7  
 
 1 4 10 ? ? ? ?  
 
 
 
 
 
 
 

 
 

9 8 7  
6 5 4  
3 2 1

Two-dimensional discrete convolution
Example - mechanical approach using sliding inverted matrix
Now you can move inverted kennel matrix over data matrix

 
 
 1 2 3 4 5  
 6 7 8 9 9  
f = 8 7 6 5 4  
 3 2 1 1 2  
 3 4 5 6 7  
 
 1 4 10 16 ? ? ?  
 
 
 
 
 
 
 

 
 

9 8 7  
6 5 4  
3 2 1

Two-dimensional discrete convolution
Example - mechanical approach using sliding inverted matrix
Now you can move inverted kennel matrix over data matrix

 
 
 1 2 3 4 5  
 6 7 8 9 9  
f = 8 7 6 5 4  
 3 2 1 1 2  
 3 4 5 6 7  
 
 1 4 10 16 22 ? ?  
 
 
 
 
 
 
 

 
 

9 8 7  
6 5 4  
3 2 1

Two-dimensional discrete convolution
Example - mechanical approach using sliding inverted matrix
Now you can move inverted kennel matrix over data matrix

 
 
 1 2 3 4 5  
 6 7 8 9 9  
f = 8 7 6 5 4  
 3 2 1 1 2  
 3 4 5 6 7  
 
 1 4 10 16 22 22 ?  
 
 
 
 
 
 
 

 
 

9 8 7  
6 5 4  
3 2 1

Two-dimensional discrete convolution
Example - mechanical approach using sliding inverted matrix
Now you can move inverted kennel matrix over data matrix

 
 
 1 2 3 4 5  
 6 7 8 9 9  
f = 8 7 6 5 4  
 3 2 1 1 2  
 3 4 5 6 7  
 
 1 4 10 16 22 22 15  
 
 
 
 
 
 
 

 
 

9 8 7  
6 5 4  
3 2 1

Two-dimensional discrete convolution
Example - mechanical approach using sliding inverted matrix
Now you can move inverted kennel matrix over data matrix

 
 
 1 2 3 4 5  
 6 7 8 9 9  
f = 8 7 6 5 4  
 3 2 1 1 2  
 3 4 5 6 7  
 
 1 4 10 16 22 22 15  
 10  
 
 
 
 
 
 

 
 

9 8 7  
6 5 4  
3 2 1

Two-dimensional discrete convolution
Example - mechanical approach using sliding inverted matrix
Now you can move inverted kennel matrix over data matrix

 
 
 1 2 3 4 5  
 6 7 8 9 9  
f = 8 7 6 5 4  
 3 2 1 1 2  
 3 4 5 6 7  
 
 1 4 10 16 22 22 15  
 10 32  
 
 
 
 
 
 

 
 

9 8 7  
6 5 4  
3 2 1

Two-dimensional discrete convolution
Example - mechanical approach using sliding inverted matrix
... many steps ... 
 
 
 
 
 
 
 
 
 

 
 

Two-dimensional discrete convolution
Example - mechanical approach using sliding inverted matrix
Now you can move inverted kennel matrix over data matrix

 
 
 1 2 3 4 5  
 6 7 8 9 9  
f = 8 7 6 5 4  
 3 2 1 1 2  
 3 4 5 6 7  
 
 1 4 10 16 22 22 15  
 10 32 ...  
 39  
 
 
 
 
 

 
 

9 8 7  
6 5 4  
3 2 1

Two-dimensional discrete convolution
Example - mechanical approach using sliding inverted matrix
Now you can move inverted kennel matrix over data matrix

 
 
 1 2 3 4 5  
 6 7 8 9 9  
f = 8 7 6 5 4  
 3 2 1 1 2  
 3 4 5 6 7  
 
 1 4 10 16 22 22 15  
 10 32 ...  
 39 103  
 
 
 
 
 

 
 

9 8 7  
6 5 4  
3 2 1

Two-dimensional discrete convolution
Example - mechanical approach using sliding inverted matrix
Now you can move inverted kennel matrix over data matrix

 
 
 1 2 3 4 5  
 6 7 8 9 9  
f = 8 7 6 5 4  
 3 2 1 1 2  
 3 4 5 6 7  
 
 1 4 10 16 22 22 15  
 10 32 ...  
 39 103193  
 
 
 
 
 

 
 

9 8 7  
6 5 4  
3 2 1

Two-dimensional discrete convolution
Example - mechanical approach using sliding inverted matrix
... many steps ... 
 
 
 
 
 
 
 
 
 

 
 

Two-dimensional discrete convolution
Example - mechanical approach using sliding inverted matrix
Now you can move inverted kennel matrix over data matrix

 
 
 1 2 3 4 5  
 6 7 8 9 9  
f = 8 7 6 5 4  
 3 2 1 1 2  
 3 4 5 6 7  
 
  
 
 
 1, 4, 10, 16, 22, 22, 15  
 10, 32, 68, 89,109, 94, 57  
 39,103,193,226,255,198,111  
 77,173,287,291,291,210,111  
 71,146,224,195,175,125, 69  
 33, 69,108,106,119, 96, 60  
 21, 52, 94,118,142,110, 63  
 
 

9 8 7  
6 5 4  
3 2 1

Group operators

Group operators
Very general definition
Group operations calculate new pixel values from a pixel’s
neighbourhood by using a various "grouping" process.

The group operation is usually expressed in terms of
template convolution where the template is a set of
weighting coefficients.

Convolution
Practical approach
• The template is usually square.

• Its size is usually odd (for example or) to ensure that the
result positioned precisely on a pixel.

• For reasons of speed, the most common sizes are , and
.

• This template is used to calculate new pixel value for every pixel.

• New pixel values are calculated by placing the template (its central
point) at the point of interest.

• Source image pixel values are multiplied by the corresponding
weighting coefficient and added to an overall sum. The sum
(usually) evaluates a new value for the centre pixel (where the
template is centered), and this becomes the pixel in the new
image, the output image.

3 × 3 5 × 5

3 × 3 5 × 5
7 × 7

Convolution
Formula
Template convolution of input (source) image and weight
template is given by the following formula:

where:

• and are the numbers of columns (width) and rows (height),

• and ,

• is a weighting coefficient at point of weight template,

• is a width and is a height of a template,

• and are the coordinates of image points laying within the
template area "centered" at .

p(x, y)
w(i, j)

q(x, y) = ∑
i = 1,…, W
j = 1,…, H

w(i, j) ⋅ p(x(i), y(j))

w h

x ∈ {1,…, w} y ∈ {1,…, h}

w(i, j) (i, j)

W H

x(i) y(j)
(x, y)

Convolution
Example

 = 5, = 4, , , , w h W = 3 H = 3 x = 3 y = 2

Input image:

1 2 3 4 5  
6 7 8 9 1  
2 3 4 5 6  
7 8 9 1 2

Weights:

9 8 7  
6 5 4  
3 2 1

Pixel for which you make calculations

(image reference point)

Template center point

(template reference point)

q(3,2) = ∑
i = 1,…,3
j = 1,…,3

w(i, j) ⋅ p(x(i), y(j))

= w(1,1) ⋅ p(x(1), y(1)) + w(2,1) ⋅ p(x(2), y(1)) + w(3,1) ⋅ p(x(3), y(1))
+w(1,2) ⋅ p(x(1), y(2)) + w(2,2) ⋅ p(x(2), y(2)) + w(3,2) ⋅ p(x(3), y(2))
+w(1,3) ⋅ p(x(1), y(3)) + w(2,3) ⋅ p(x(2), y(3)) + w(3,3) ⋅ p(x(3), y(3))
= w(1,1) ⋅ p(1,2) + w(2,1) ⋅ p(2,2) + w(3,1) ⋅ p(3,2)
+w(1,2) ⋅ p(1,3) + w(2,2) ⋅ p(2,3) + w(3,2) ⋅ p(3,3)
+w(1,3) ⋅ p(1,4) + w(2,3) ⋅ p(2,4) + w(3,3) ⋅ p(3,4)
= 9 ⋅ 6 + 8 ⋅ 7 + 7 ⋅ 8
+6 ⋅ 2 + 5 ⋅ 3 + 4 ⋅ 4
+3 ⋅ 7 + 2 ⋅ 8 + 1 ⋅ 9

1 2 3 4 5  
6 7 8 9 1  
2 3 4 5 6  
7 8 9 1 2

9 8 7  
6 5 4  
3 2 1

Convolution
Problem with borders
Note that we cannot ascribe values to the picture’s borders.

To calculate values for the border pixels, we have three
choices, but please keep in mind that none of them is
optimal:

• Set the border to black (or deliver a smaller picture).

• Assume (as in Fourier) that the image replicates to infinity
along both dimensions and calculate new values by cyclic
shift from the far border.

• Calculate the border pixel value from a smaller area.

Convolution
Applications

In digital image processing convolutional filtering plays an
important role in many algorithms such as edge detection,
blurring and related processes.

Basic group methods

Averaging operator
Definition
For an averaging operator, the template weighting function
is unity.

To avoid constraining you can use as a weighting
function - in this case the result of averaging pixels will not
exceed upper range (255).

The averaging operator is then simply:

.

1/(w ⋅ h)

q(x, y) =
1

w ⋅ h ∑
i = 1,…, W
j = 1,…, H

p(x(i), y(j))

Averaging operator
Examples
[tutu examples]

Averaging operator
Conclusions
The effect of averaging is to reduce noise, which is its
advantage.

Disadvantage is that averaging causes blurring which
reduces details in an image. It is also

The effect of larger averaging operators is to smooth the
image more, to remove more detail whilst giving greater
emphasis to the large structures.

Gaussian averaging operator
Definition
The template for the Gaussian operator has values set by the Gaussian
relationship. The Gaussian function at coordinates is controlled by the
variance according to:

.

More generally we can consider general form of Gaussian function (here given for
one variable):

,

where for , and are arbitrary real constants (of course must be non-zero).

In effect, the Gaussian function essentially removes the influence of points greater
than in (radial) distance from the centre of the template.

The size of the template essentially dictates appropriate choice of the variance.
The variance is chosen to ensure that template coefficients drop to near zero at
the template’s edge.

g (x, y)
σ2

g(x, y, σ) =
1

2πσ2
e− x2 + y2

2σ2

f(x) = a ⋅ exp (−
(x − b)2

2c2)
a b c c

3σ

Gaussian averaging operator
Examples
[tutu examples and comparision with averaging operator]

Gaussian averaging operator
Conclusions
The Gaussian averaging operator has been considered to
be optimal for image smoothing because more features are
retained whilst the noise is removed.

Median filter
Definition
The median is the value separating the higher half from the lower half of a data
sample, a population, or a probability distribution. For a data set, it may be
thought of as "the middle" value.

The median filter is usually computed from a pixels taken from an area of input
image laying within the template area centered on the point of interest. What is
different in this case is that template has no weights - it is used only to delimit
the area of interest. That is why you should think about it rather as a window
through which you observe image data.

Consider the typical square shape arrangement of template's pixels (but you can
consider any other alternative shapes like cross, horizontal or vertical line as
well). To get a value of resulting pixel you have to:

1. Collect all pixels constituting image area within template "centered" at
and put them into a list (or vector).

2. Sort list obtained in previous step.

3. The central component of the sorted list is the median value - this value is
returned as an effect of applying median filter at point of source image

.

q(x, y)

(x, y)

(x, y)
p(x, y)

Median filter
Examples
[tutu examples]

Median filter
Conclusions
• The median filter has a well-known ability to remove salt

and pepper noise.

• This form of noise is typical for decoding-like errors in
picture transmission systems and appears as isolated
white and black points within an image.

• It can also arise when rotating an image, when points
remain unspecified by a standard rotation operator.

When a median operator is applied, the salt and pepper
noise points will appear at either end of the rank-ordered
list and are removed by the median process.

• The median operator has practical advantage, due to its
ability to retain edges (the boundaries of shapes in
images) whilst suppressing the noise contamination.

Mode filter
Definition
The mode (pl. dominanta) is the value that appears most
often in a set of data values.

For small set of data the correct mode is very difficult to
determine. For example, it's not hard to imagine (it is highly
probable) that within a square template all 25 pixels
are different, so each could be considered to be the mode.

As such you are forced to estimate the mode with the
truncated median filter.

5 × 5

Mode filter
Truncated median filter - idea
The truncated median filter is based on the premise that for
many non-Gaussian distributions, the order of the mean, the
median and the mode is the same for many images, as
illustrated below:

[img_02_02]

Accordingly, if you truncate the distribution, which means
remove part of it, where the part selected to be removed is
from the region beyond the mean, then the median of the
truncated distribution will approach the mode of the original
distribution:

[img_02_03]

Mode filter
Truncated median filter - algorithm
1. In implementation the operator first finds the mean and the median of the current window.

2. The distribution of intensity of points within the current window is truncated on the side of
the mean so that the median now bisects the distribution of the remaining points.

So that the median bisects the remaining distribution:

A. If the median is less than the mean, the point at which the distribution is
truncated, upper, is: 
 

B. If the median is greater than the mean, then you need to truncate at a lower point
(before the mean), given by: 
 

3. The median of the truncated vector is the output of the truncated median filter at that point.
However, there can be several iterations at each position to ensure that the mode is
approached.

Notes:

• In practice only few iterations are usually required for the median to converge to the mode.

• The window size is usually large, say , or even more.

upper = 2 ⋅ median − min(distribution)

lower = 2 ⋅ median − max(distribution)

7 × 7 9 × 9

Mode filter
Truncated median filter - algorithm
Let the current window, of the size , contains the following values:

[50, 50, 230, 100, 70, 150, 70, 70, 150, 180, 70, 100, 70, 100,
100, 70, 100, 50, 70, 150, 70, 150, 180, 70, 50]

You can sort them:

[50, 50, 50, 50, 70, 70, 70, 70, 70, 70, 70, 70, 70, 100, 100,
100, 100, 100, 150, 150, 150, 150, 180, 180, 230]

and compute histogram:

[50 (4), 70 (9), 100 (5), 150 (4), 180 (2), 230 (1)]

1. In implementation the operator first finds the mean and the median of the current
window: 
 
mean: 100.8 
 
median: 70

Note: 
In this case it is possible to find mode directly and it is equal to 70 (you calculate it to
verify if proposed algorithm works). Generally you want to approximate this value.

5 × 5

Mode filter
Truncated median filter - algorithm
A. If the median is less than the mean, the point at which the distribution is

truncated, upper, is: 
 

 

 
So the vector should be truncated at 90 resulting truncated distribution of the
form: 
 
[50, 50, 230, 100, 70, 150, 70, 70, 150, 180, 70, 100, 70,
100, 100, 70, 100, 50, 70, 150, 70, 150, 180, 70, 50]  
 
You can sort them: 
 
[50, 50, 50, 50, 70, 70, 70, 70, 70, 70, 70, 70, 70, 100,
100, 100, 100, 100, 150, 150, 150, 150, 180, 180, 230]  
 
and compute histogram: 
 
[50 (4), 70 (9), 100 (5), 150 (4), 180 (2), 230 (1)] 
 

upper = 2 ⋅ median − min(distribution)
= 2 ⋅ 70 − 50
= 90

Mode filter
Truncated median filter - algorithm
Truncated vector: 
 
[50, 50, 50, 50, 70, 70, 70, 70, 70, 70, 70,
70]

3. The median of the truncated vector is the output of the
truncated median filter at that point: 
 
[50, 50, 50, 50, 70, 70, 70, 70, 70, 70,
70, 70, 70]  
 
median: 70. 
 
70 is an approximate value of mode (which is in
accordance with previous calculations).

Mode filter
Examples
[tutu examples]

Mode filter
Conclusions
• This has an ability to reduce noise whilst retaining feature

boundaries.

Bibliography

Bibliography

1. Convolution, Visual explanation, https://en.wikipedia.org/wiki/
Convolution#Visual_explanation

2. 2D Convolution in Image Processing, https://www.allaboutcircuits.com/technical-
articles/two-dimensional-convolution-in-image-processing/

3. Convolutions with OpenCV and Python, https://www.pyimagesearch.com/2016/07/25/
convolutions-with-opencv-and-python/

4. Image Filtering Using Convolution in OpenCV, https://learnopencv.com/image-
filtering-using-convolution-in-opencv/

5. Basics of Kernels and Convolutions with OpenCV, https://towardsdatascience.com/
basics-of-kernels-and-convolutions-with-opencv-c15311ab8f55

6. Convolution calculator, https://www.rapidtables.com/calc/math/convolution-
calculator.html

7. Online Multidimensional Convolution Calculator, https://leventozturk.com/
engineering/convolution/

https://en.wikipedia.org/wiki/Convolution#Visual_explanation
https://www.allaboutcircuits.com/technical-articles/two-dimensional-convolution-in-image-processing/
https://www.pyimagesearch.com/2016/07/25/convolutions-with-opencv-and-python/
https://learnopencv.com/image-filtering-using-convolution-in-opencv/
https://towardsdatascience.com/basics-of-kernels-and-convolutions-with-opencv-c15311ab8f55
https://www.rapidtables.com/calc/math/convolution-calculator.html
https://leventozturk.com/engineering/convolution/

