
Image Feature Extraction Techniques

Basic image processing
Group operators 

Piotr Fulmański



Theory



Convolution
Definition
Convolution is a mathematical operation on two functions (  and ) that produces a 
third function ( ) that expresses how the shape of one is modified by the other.


It is defined as the integral of the product of the two functions after one is reversed 
and shifted. The integral is evaluated for all values of shift, producing the convolution 
function:





The convolution formula can be described as the area under the function weighted 
by the function  shifted by amount . 


The term convolution refers to both the result function and to the process of 
computing it.

f g
f * g

( f * g)(t) = ∫
∞

−∞
f(τ)g(t − τ) dτ

f(τ)
g(−τ) t



Convolution
Definition
A common engineering notational convention is: 

. 

Properties: 

• Commutativity: 
 




• Associativity: 
 




• Distributivity: 
 




• Associativity with scalar multiplication: 
 

 
 
for any complex number .

f(t) * g(t) := ∫
∞

−∞
f(τ)g(t − τ) dτ

( f*g)(t)

f * g = g * f

f * (g * h) = ( f * g) * h

f * (g + h) = ( f * g) + ( f * h)

a( f * g) = (af ) * g

a



Convolution
Definition
Convolution is a mathematical operation on two functions (  and ) that produces a 
third function ( ) that expresses how the shape of one is modified by the other.


It is defined as the integral of the product of the two functions after one is reversed 
and shifted. The integral is evaluated for all values of shift, producing the convolution 
function:





The convolution formula can be described as the area under the function weighted 
by the function  shifted by amount . 


The term convolution refers to both the result function and to the process of 
computing it.

f g
f * g

( f * g)(t) = ∫
∞

−∞
f(τ)g(t − τ) dτ = ∫

∞

−∞
f(t − τ)g(τ) dτ

f(τ)
g(−τ) t



Convolution
Visual explanation [2]



Convolution
Discrete convolution

For complex-valued functions ,  defined on the set  of 
integers, the discrete convolution of f and g is given by:





or equivalently (because of commutativity) by:


.


f g Z

( f * g)[n] =
∞

∑
k=−∞

f [k]g[n − k]

( f * g)[n] =
∞

∑
k=−∞

f [n − k]g[k]



Discrete convolution
Example - direct approach using convolution sum




f = [1, 2, 3, 2, 1]  
g = [3, 2, 1, 1, 1]

n    0 1 2 3 4  
f[n] 1 2 3 2 1  
g[n] 3 2 1 1 1

y[n] = ( f * g)[n] =
∞

∑
m=−∞

f [m]g[n − m]



Discrete convolution
Example - direct approach using convolution sum




f = [1, 2, 3, 2, 1]  
g = [3, 2, 1, 1, 1]

n    0 1 2 3 4  -4-3-2-1 0 1 2 3 4  
f[n] 1 2 3 2 1           1 2 3 2 1  
g[n] 3 2 1 1 1   1 1 1 2 3          <- matrix inversion

  
  
 
 
  
  
  
  
  
  
  
 

 
  
  
  
 
  
 
 

 

y[n] = ( f * g)[n] =
∞

∑
m=−∞

f [m]g[n − m]



Discrete convolution
Example - direct approach using convolution sum




f = [1, 2, 3, 2, 1]  
g = [3, 2, 1, 1, 1]

n    0 1 2 3 4  -4-3-2-1 0 1 2 3 4  
f[n] 1 2 3 2 1           1 2 3 2 1  
g[n] 3 2 1 1 1   1 1 1 2 3          <- matrix inversion

  
  
y[0] = ... + f[-1]g[0+1] + f[0]g[0-0] + f[1]g[0-1] + ...  
     = 3  
  
  
  
  
  
  
  
 

 
  
  
  
 
  
 
 

 

y[n] = ( f * g)[n] =
∞

∑
m=−∞

f [m]g[n − m]



Discrete convolution
Example - direct approach using convolution sum




f = [1, 2, 3, 2, 1]  
g = [3, 2, 1, 1, 1]

n    0 1 2 3 4  -4-3-2-1 0 1 2 3 4  
f[n] 1 2 3 2 1           1 2 3 2 1  
g[n] 3 2 1 1 1     1 1 1 2 3

  
 
y[0] = ... + f[-1]g[0+1] + f[0]g[0-0] + f[1]g[0-1] + ...  
     = 3  
y[1] = ... + f[-1]g[1+1] + f[0]g[1-0] + f[1]g[1-1] + f[2]g[1-2] + ...  
     = 2 + 6 = 8  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

y[n] = ( f * g)[n] =
∞

∑
m=−∞

f [m]g[n − m]



Discrete convolution
Example - direct approach using convolution sum




f = [1, 2, 3, 2, 1]  
g = [3, 2, 1, 1, 1]

n    0 1 2 3 4  -4-3-2-1 0 1 2 3 4  
f[n] 1 2 3 2 1           1 2 3 2 1  
g[n] 3 2 1 1 1       1 1 1 2 3

  
 
y[0] = ... + f[-1]g[0+1] + f[0]g[0-0] + f[1]g[0-1] + ...  
     = 3  
y[1] = ... + f[-1]g[1+1] + f[0]g[1-0] + f[1]g[1-1] + f[2]g[1-2] + ...  
     = 2 + 6 = 8  
y[2] = ... + f[-1]g[2+1] + f[0]g[2-0] + f[1]g[2-1] + f[2]g[2-2] + f[3]g[2-3] + ...  
     = 1 + 4 + 9 = 14  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

y[n] = ( f * g)[n] =
∞

∑
m=−∞

f [m]g[n − m]



Discrete convolution
Example - direct approach using convolution sum




f = [1, 2, 3, 2, 1]  
g = [3, 2, 1, 1, 1]

n    0 1 2 3 4  -4-3-2-1 0 1 2 3 4  
f[n] 1 2 3 2 1           1 2 3 2 1  
g[n] 3 2 1 1 1         1 1 1 2 3

  
 
y[0] = ... + f[-1]g[0+1] + f[0]g[0-0] + f[1]g[0-1] + ...  
     = 3  
y[1] = ... + f[-1]g[1+1] + f[0]g[1-0] + f[1]g[1-1] + f[2]g[1-2] + ...  
     = 2 + 6 = 8  
y[2] = ... + f[-1]g[2+1] + f[0]g[2-0] + f[1]g[2-1] + f[2]g[2-2] + f[3]g[2-3] + ...  
     = 1 + 4 + 9 = 14  
y[3] = ... + f[-1]g[3+1] + f[0]g[3-0] + f[1]g[3-1] + f[2]g[3-2] + f[3]g[3-3] + f[4]g[3-4] + ...  
     = 1 + 2 + 6 + 6 = 15  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

y[n] = ( f * g)[n] =
∞

∑
m=−∞

f [m]g[n − m]



Discrete convolution
Example - direct approach using convolution sum




f = [1, 2, 3, 2, 1]  
g = [3, 2, 1, 1, 1]

n    0 1 2 3 4  -4-3-2-1 0 1 2 3 4  
f[n] 1 2 3 2 1           1 2 3 2 1  
g[n] 3 2 1 1 1           1 1 1 2 3

  
 
y[0] = ... + f[-1]g[0+1] + f[0]g[0-0] + f[1]g[0-1] + ...  
     = 3  
y[1] = ... + f[-1]g[1+1] + f[0]g[1-0] + f[1]g[1-1] + f[2]g[1-2] + ...  
     = 2 + 6 = 8  
y[2] = ... + f[-1]g[2+1] + f[0]g[2-0] + f[1]g[2-1] + f[2]g[2-2] + f[3]g[2-3] + ...  
     = 1 + 4 + 9 = 14  
y[3] = ... + f[-1]g[3+1] + f[0]g[3-0] + f[1]g[3-1] + f[2]g[3-2] + f[3]g[3-3] + f[4]g[3-4] + ...  
     = 1 + 2 + 6 + 6 = 15  
y[4] = ... + f[-1]g[4+1] + f[0]g[4-0] + f[1]g[4-1] + f[2]g[4-2] + f[3]g[4-3] + f[4]g[4-4] + f[5]g[4-5] + ...  
     = 1 + 2 + 3 + 4 + 3 = 13  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

y[n] = ( f * g)[n] =
∞

∑
m=−∞

f [m]g[n − m]



Discrete convolution
Example - direct approach using convolution sum




f = [1, 2, 3, 2, 1]  
g = [3, 2, 1, 1, 1]

n    0 1 2 3 4  -4-3-2-1 0 1 2 3 4 5  
f[n] 1 2 3 2 1           1 2 3 2 1  
g[n] 3 2 1 1 1             1 1 1 2 3

  
 
y[0] = ... + f[-1]g[0+1] + f[0]g[0-0] + f[1]g[0-1] + ...  
     = 3  
y[1] = ... + f[-1]g[1+1] + f[0]g[1-0] + f[1]g[1-1] + f[2]g[1-2] + ...  
     = 2 + 6 = 8  
y[2] = ... + f[-1]g[2+1] + f[0]g[2-0] + f[1]g[2-1] + f[2]g[2-2] + f[3]g[2-3] + ...  
     = 1 + 4 + 9 = 14  
y[3] = ... + f[-1]g[3+1] + f[0]g[3-0] + f[1]g[3-1] + f[2]g[3-2] + f[3]g[3-3] + f[4]g[3-4] + ...  
     = 1 + 2 + 6 + 6 = 15  
y[4] = ... + f[-1]g[4+1] + f[0]g[4-0] + f[1]g[4-1] + f[2]g[4-2] + f[3]g[4-3] + f[4]g[4-4] + f[5]g[4-5] + ...  
     = 1 + 2 + 3 + 4 + 3 = 13  
y[5] = ... + f[-1]g[5+1] + f[0]g[5-0] + f[1]g[5-1] + f[2]g[5-2] + f[3]g[5-3] + f[4]g[5-4] + f[5]g[5-5] + ...  
     = 2 + 3 + 2 + 2 = 9  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

y[n] = ( f * g)[n] =
∞

∑
m=−∞

f [m]g[n − m]



Discrete convolution
Example - direct approach using convolution sum




f = [1, 2, 3, 2, 1]  
g = [3, 2, 1, 1, 1]

n    0 1 2 3 4  -4-3-2-1 0 1 2 3 4 5 6  
f[n] 1 2 3 2 1           1 2 3 2 1  
g[n] 3 2 1 1 1               1 1 1 2 3

  
 
y[0] = ... + f[-1]g[0+1] + f[0]g[0-0] + f[1]g[0-1] + ...  
     = 3  
y[1] = ... + f[-1]g[1+1] + f[0]g[1-0] + f[1]g[1-1] + f[2]g[1-2] + ...  
     = 2 + 6 = 8  
y[2] = ... + f[-1]g[2+1] + f[0]g[2-0] + f[1]g[2-1] + f[2]g[2-2] + f[3]g[2-3] + ...  
     = 1 + 4 + 9 = 14  
y[3] = ... + f[-1]g[3+1] + f[0]g[3-0] + f[1]g[3-1] + f[2]g[3-2] + f[3]g[3-3] + f[4]g[3-4] + ...  
     = 1 + 2 + 6 + 6 = 15  
y[4] = ... + f[-1]g[4+1] + f[0]g[4-0] + f[1]g[4-1] + f[2]g[4-2] + f[3]g[4-3] + f[4]g[4-4] + f[5]g[4-5] + ...  
     = 1 + 2 + 3 + 4 + 3 = 13  
y[5] = ... + f[-1]g[5+1] + f[0]g[5-0] + f[1]g[5-1] + f[2]g[5-2] + f[3]g[5-3] + f[4]g[5-4] + f[5]g[5-5] + ...  
     = 2 + 3 + 2 + 2 = 9  
y[6] = ... + f[-1]g[6+1] + f[0]g[6-0] + f[1]g[6-1] + f[2]g[6-2] + f[3]g[6-3] + f[4]g[6-4] + f[5]g[6-5] + ...  
     = 3 + 2 + 1 = 6  
 
 
 
 
 
 
 
 
 
 
 
 

y[n] = ( f * g)[n] =
∞

∑
m=−∞

f [m]g[n − m]



Discrete convolution
Example - direct approach using convolution sum




f = [1, 2, 3, 2, 1]  
g = [3, 2, 1, 1, 1]

n    0 1 2 3 4  -4-3-2-1 0 1 2 3 4 5 6 7  
f[n] 1 2 3 2 1           1 2 3 2 1  
g[n] 3 2 1 1 1                 1 1 1 2 3

  
 
y[0] = ... + f[-1]g[0+1] + f[0]g[0-0] + f[1]g[0-1] + ...  
     = 3  
y[1] = ... + f[-1]g[1+1] + f[0]g[1-0] + f[1]g[1-1] + f[2]g[1-2] + ...  
     = 2 + 6 = 8  
y[2] = ... + f[-1]g[2+1] + f[0]g[2-0] + f[1]g[2-1] + f[2]g[2-2] + f[3]g[2-3] + ...  
     = 1 + 4 + 9 = 14  
y[3] = ... + f[-1]g[3+1] + f[0]g[3-0] + f[1]g[3-1] + f[2]g[3-2] + f[3]g[3-3] + f[4]g[3-4] + ...  
     = 1 + 2 + 6 + 6 = 15  
y[4] = ... + f[-1]g[4+1] + f[0]g[4-0] + f[1]g[4-1] + f[2]g[4-2] + f[3]g[4-3] + f[4]g[4-4] + f[5]g[4-5] + ...  
     = 1 + 2 + 3 + 4 + 3 = 13  
y[5] = ... + f[-1]g[5+1] + f[0]g[5-0] + f[1]g[5-1] + f[2]g[5-2] + f[3]g[5-3] + f[4]g[5-4] + f[5]g[5-5] + ...  
     = 2 + 3 + 2 + 2 = 9  
y[6] = ... + f[-1]g[6+1] + f[0]g[6-0] + f[1]g[6-1] + f[2]g[6-2] + f[3]g[6-3] + f[4]g[6-4] + f[5]g[6-5] + ...  
     = 3 + 2 + 1 = 6  
y[7] = ... + f[-1]g[7+1] + f[0]g[7-0] + f[1]g[7-1] + f[2]g[7-2] + f[3]g[7-3] + f[4]g[7-4] + f[5]g[7-5] + ...  
     = 2 + 1 = 3  
 
 
 
 
 
 
 

y[n] = ( f * g)[n] =
∞

∑
m=−∞

f [m]g[n − m]



Discrete convolution
Example - direct approach using convolution sum




f = [1, 2, 3, 2, 1]  
g = [3, 2, 1, 1, 1]

n    0 1 2 3 4  -4-3-2-1 0 1 2 3 4 5 6 7 8  
f[n] 1 2 3 2 1           1 2 3 2 1  
g[n] 3 2 1 1 1                   1 1 1 2 3

  
 
y[0] = ... + f[-1]g[0+1] + f[0]g[0-0] + f[1]g[0-1] + ...  
     = 3  
y[1] = ... + f[-1]g[1+1] + f[0]g[1-0] + f[1]g[1-1] + f[2]g[1-2] + ...  
     = 2 + 6 = 8  
y[2] = ... + f[-1]g[2+1] + f[0]g[2-0] + f[1]g[2-1] + f[2]g[2-2] + f[3]g[2-3] + ...  
     = 1 + 4 + 9 = 14  
y[3] = ... + f[-1]g[3+1] + f[0]g[3-0] + f[1]g[3-1] + f[2]g[3-2] + f[3]g[3-3] + f[4]g[3-4] + ...  
     = 1 + 2 + 6 + 6 = 15  
y[4] = ... + f[-1]g[4+1] + f[0]g[4-0] + f[1]g[4-1] + f[2]g[4-2] + f[3]g[4-3] + f[4]g[4-4] + f[5]g[4-5] + ...  
     = 1 + 2 + 3 + 4 + 3 = 13  
y[5] = ... + f[-1]g[5+1] + f[0]g[5-0] + f[1]g[5-1] + f[2]g[5-2] + f[3]g[5-3] + f[4]g[5-4] + f[5]g[5-5] + ...  
     = 2 + 3 + 2 + 2 = 9  
y[6] = ... + f[-1]g[6+1] + f[0]g[6-0] + f[1]g[6-1] + f[2]g[6-2] + f[3]g[6-3] + f[4]g[6-4] + f[5]g[6-5] + ...  
     = 3 + 2 + 1 = 6  
y[7] = ... + f[-1]g[7+1] + f[0]g[7-0] + f[1]g[7-1] + f[2]g[7-2] + f[3]g[7-3] + f[4]g[7-4] + f[5]g[7-5] + ...  
     = 2 + 1 = 3  
y[8] = ... + f[-1]g[8+1] + f[0]g[8-0] + f[1]g[8-1] + f[2]g[8-2] + f[3]g[8-3] + f[4]g[8-4] + f[5]g[8-5] + ...  
     = 1  
 
 
 
 
 

y[n] = ( f * g)[n] =
∞

∑
m=−∞

f [m]g[n − m]



Discrete convolution
Example - direct approach using convolution sum




f = [1, 2, 3, 2, 1]  
g = [3, 2, 1, 1, 1]

n    0 1 2 3 4  
f[n] 1 2 3 2 1  
g[n] 3 2 1 1 1

  
 
y[0] = ... + f[-1]g[0+1] + f[0]g[0-0] + f[1]g[0-1] + ...  
     = 3  
y[1] = ... + f[-1]g[1+1] + f[0]g[1-0] + f[1]g[1-1] + f[2]g[1-2] + ...  
     = 2 + 6 = 8  
y[2] = ... + f[-1]g[2+1] + f[0]g[2-0] + f[1]g[2-1] + f[2]g[2-2] + f[3]g[2-3] + ...  
     = 1 + 4 + 9 = 14  
y[3] = ... + f[-1]g[3+1] + f[0]g[3-0] + f[1]g[3-1] + f[2]g[3-2] + f[3]g[3-3] + f[4]g[3-4] + ...  
     = 1 + 2 + 6 + 6 = 15  
y[4] = ... + f[-1]g[4+1] + f[0]g[4-0] + f[1]g[4-1] + f[2]g[4-2] + f[3]g[4-3] + f[4]g[4-4] + f[5]g[4-5] + ...  
     = 1 + 2 + 3 + 4 + 3 = 13  
y[5] = ... + f[-1]g[5+1] + f[0]g[5-0] + f[1]g[5-1] + f[2]g[5-2] + f[3]g[5-3] + f[4]g[5-4] + f[5]g[5-5] + ...  
     = 2 + 3 + 2 + 2 = 9  
y[6] = ... + f[-1]g[6+1] + f[0]g[6-0] + f[1]g[6-1] + f[2]g[6-2] + f[3]g[6-3] + f[4]g[6-4] + f[5]g[6-5] + ...  
     = 3 + 2 + 1 = 6  
y[7] = ... + f[-1]g[7+1] + f[0]g[7-0] + f[1]g[7-1] + f[2]g[7-2] + f[3]g[7-3] + f[4]g[7-4] + f[5]g[7-5] + ...  
     = 2 + 1 = 3  
y[8] = ... + f[-1]g[8+1] + f[0]g[8-0] + f[1]g[8-1] + f[2]g[8-2] + f[3]g[8-3] + f[4]g[8-4] + f[5]g[8-5] + ...  
     = 1  
 

f[n]*g[n] = [3, 8, 14, 15, 13, 9, 6, 3, 1]

y[n] = ( f * g)[n] =
∞

∑
m=−∞

f [m]g[n − m]



Discrete convolution
Example - direct approach using convolution sum




f = [1, 2, 3, 2, 1]  
g = [3, 2, 1, 1, 1]

n    0 1 2 3 4  
f[n] 1 2 3 2 1  
g[n] 3 2 1 1 1

y[-1] = ... + f[-1]g[-1+1] + f[0]g[-1-0] + f[1]g[-1-1] + ...  
     = 0  
y[0] = ... + f[-1]g[0+1] + f[0]g[0-0] + f[1]g[0-1] + ...  
     = 3  
y[1] = ... + f[-1]g[1+1] + f[0]g[1-0] + f[1]g[1-1] + f[2]g[1-2] + ...  
     = 2 + 6 = 8  
y[2] = ... + f[-1]g[2+1] + f[0]g[2-0] + f[1]g[2-1] + f[2]g[2-2] + f[3]g[2-3] + ...  
     = 1 + 4 + 9 = 14  
y[3] = ... + f[-1]g[3+1] + f[0]g[3-0] + f[1]g[3-1] + f[2]g[3-2] + f[3]g[3-3] + f[4]g[3-4] + ...  
     = 1 + 2 + 6 + 6 = 15  
y[4] = ... + f[-1]g[4+1] + f[0]g[4-0] + f[1]g[4-1] + f[2]g[4-2] + f[3]g[4-3] + f[4]g[4-4] + f[5]g[4-5] + ...  
     = 1 + 2 + 3 + 4 + 3 = 13  
y[5] = ... + f[-1]g[5+1] + f[0]g[5-0] + f[1]g[5-1] + f[2]g[5-2] + f[3]g[5-3] + f[4]g[5-4] + f[5]g[5-5] + ...  
     = 2 + 3 + 2 + 2 = 9  
y[6] = ... + f[-1]g[6+1] + f[0]g[6-0] + f[1]g[6-1] + f[2]g[6-2] + f[3]g[6-3] + f[4]g[6-4] + f[5]g[6-5] + ...  
     = 3 + 2 + 1 = 6  
y[7] = ... + f[-1]g[7+1] + f[0]g[7-0] + f[1]g[7-1] + f[2]g[7-2] + f[3]g[7-3] + f[4]g[7-4] + f[5]g[7-5] + ...  
     = 2 + 1 = 3  
y[8] = ... + f[-1]g[8+1] + f[0]g[8-0] + f[1]g[8-1] + f[2]g[8-2] + f[3]g[8-3] + f[4]g[8-4] + f[5]g[8-5] + ...  
     = 1  
y[9] = ... + f[-1]g[9+1] + f[0]g[9-0] + f[1]g[9-1] + f[2]g[9-2] + f[3]g[9-3] + f[4]g[9-4] + f[5]g[9-5] + ...  
     = 0

f[n]*g[n] = [3, 8, 14, 15, 13, 9, 6, 3, 1]

y[n] = ( f * g)[n] =
∞

∑
m=−∞

f [m]g[n − m]



Discrete convolution
Example - direct approach using convolution sum




f = [1, 2, 3, 2, 1]  
g = [3, 2, 1, 1, 1]

n    0 1 2 3 4  
f[n] 1 2 3 2 1  
g[n] 3 2 1 1 1

y[-1] = ... + f[-1]g[-1+1] + f[0]g[-1-0] + f[1]g[-1-1] + ...  
     = 0  
y[0] = ... + f[-1]g[0+1] + f[0]g[0-0] + f[1]g[0-1] + ...  
     = 3  
y[1] = ... + f[-1]g[1+1] + f[0]g[1-0] + f[1]g[1-1] + f[2]g[1-2] + ...  
     = 2 + 6 = 8  
y[2] = ... + f[-1]g[2+1] + f[0]g[2-0] + f[1]g[2-1] + f[2]g[2-2] + f[3]g[2-3] + ...  
     = 1 + 4 + 9 = 14  
y[3] = ... + f[-1]g[3+1] + f[0]g[3-0] + f[1]g[3-1] + f[2]g[3-2] + f[3]g[3-3] + f[4]g[3-4] + ...  
     = 1 + 2 + 6 + 6 = 15  
y[4] = ... + f[-1]g[4+1] + f[0]g[4-0] + f[1]g[4-1] + f[2]g[4-2] + f[3]g[4-3] + f[4]g[4-4] + f[5]g[4-5] + ...  
     = 1 + 2 + 3 + 4 + 3 = 13  
y[5] = ... + f[-1]g[5+1] + f[0]g[5-0] + f[1]g[5-1] + f[2]g[5-2] + f[3]g[5-3] + f[4]g[5-4] + f[5]g[5-5] + ...  
     = 2 + 3 + 2 + 2 = 9  
y[6] = ... + f[-1]g[6+1] + f[0]g[6-0] + f[1]g[6-1] + f[2]g[6-2] + f[3]g[6-3] + f[4]g[6-4] + f[5]g[6-5] + ...  
     = 3 + 2 + 1 = 6  
y[7] = ... + f[-1]g[7+1] + f[0]g[7-0] + f[1]g[7-1] + f[2]g[7-2] + f[3]g[7-3] + f[4]g[7-4] + f[5]g[7-5] + ...  
     = 2 + 1 = 3  
y[8] = ... + f[-1]g[8+1] + f[0]g[8-0] + f[1]g[8-1] + f[2]g[8-2] + f[3]g[8-3] + f[4]g[8-4] + f[5]g[8-5] + ...  
     = 1  
y[9] = ... + f[-1]g[9+1] + f[0]g[9-0] + f[1]g[9-1] + f[2]g[9-2] + f[3]g[9-3] + f[4]g[9-4] + f[5]g[9-5] + ...  
     = 0

f[n]*g[n] = [3, 8, 14, 15, 13, 9, 6, 3, 1]

y[n] = ( f * g)[n] =
∞

∑
m=−∞

f [m]g[n − m]



Multidimensional discrete 
convolution



Multidimensional discrete convolution
Definition
The convolution of two complex-valued functions on  is a complex-valued function on , defined by:


.


An -dimensional convolution would be written as:





Similar to the one-dimensional case, an asterisk is used to represent the convolution operation. The number 
of dimensions in the given operation is reflected in the number of asterisks.


You can consider multidimensional discrete convolution which is directly computed via the following formula:





Two-dimensional convolution is given by:





which is quite similar to one-dimensional case mentioned earlier:


.


Rn Rn

( f * g)(t) = ∫Rn

f(τ)g(t − τ) dτ = ∫Rn

f(t − τ)g(τ) dτ

n

y(t1, t2, . . . , tn) = f(t1, t2, . . . , tn) * n⋯ * g(t1, t2, . . . , tn)

∞

∑
τ1=−∞

∞

∑
τ2=−∞

. . .
∞

∑
τn=−∞

f(τ1, τ2, . . . , τn)g(t1 − τ1, t2 − τ2, . . . , tn − τn)

( f * g)[n1][n2] =
∞

∑
k1=−∞

∞

∑
k2=−∞

f [k1][k2]g[n1 − k1][n2 − k2]

( f * g)[n] =
∞

∑
k=−∞

f [k]g[n − k]



Two-dimensional discrete convolution
Example - direct approach using convolution sum
Let's try to compute the pixel value of the output data 
resulting from the convolution of 5×5 sized data matrix  
with the kernel  of size , shown below:


       0  1  2  3  4  
    0 [1, 2, 3, 4, 5]         0  1  2   
    1 [6, 7, 8, 9, 9]      0 [1, 2, 3]  
f = 2 [8, 7, 6, 5, 4]  g = 1 [4, 5, 6]  
    3 [3, 2, 1, 1, 2]      2 [7, 8, 9]  
    4 [3, 4, 5, 6, 7]  

f
g 3 × 3



Two-dimensional discrete convolution
Example - direct approach using convolution sum




     
    0  1  2  3  4                       0  1  2  3  4  
    0 [1, 2, 3, 4, 5]         0  1  2   0  1  
    1 [6, 7, 8, 9, 9]      0 [1, 2, 3]  1  
f = 2 [8, 7, 6, 5, 4]  g = 1 [4, 5, 6]  2  
    3 [3, 2, 1, 1, 2]      2 [7, 8, 9]  3  
    4 [3, 4, 5, 6, 7]                   4  
 
 
y[0][0] =  
... + f[-1][-1]g[0+1][0+1] + f[-1][0]g[0+1][0-0] + f[-1][1]g[0+1][0-1] + ...  
... + f[ 0][-1]g[0-0][0+1] + f[ 0][0]g[0-0][0-0] + f[ 0][1]g[0-0][0-1] + ...  
... + f[ 1][-1]g[0-1][0+1] + f[ 1][0]g[0-1][0-0] + f[ 1][1]g[0-1][0-1] + ...  
=  
... + f[-1][-1]g[0+1][0+1] + f[-1][0]g[0+1][0-0] + f[-1][1]g[0+1][0-1] + ...  
... + f[ 0][-1]g[0-0][0+1] + f[ 0][0]g[0-0][0-0] + f[ 0][1]g[0-0][0-1] + ...  
... + f[ 1][-1]g[0-1][0+1] + f[ 1][0]g[0-1][0-0] + f[ 1][1]g[0-1][0-1] + ...  
=  
f[ 0][0]g[0-0][0-0]  
=  
1*1  
=  
1  

( f * g)[n1][n2] =
∞

∑
k1=−∞

∞

∑
k2=−∞

f [k1][k2]g[n1 − k1][n2 − k2]



Two-dimensional discrete convolution
Example - mechanical approach using sliding inverted matrix
Instead of using direct approach and computing convolution sum 
from formula, you can apply "mechanical" or "manual" procedure 
similar to the inversion and shift method applied in one-dimensional 
case. 


To do this, first you have to find kernel matrix inversion. You do this 
exactly the same way as you do it for one-dimensional case: you 
flip the kernel along, rows followed by a flip along columns (order is 
not important):


 
     initial        flip          flip  
                   by row       by column  
 
    [1, 2, 3]     [7, 8, 9]     [9, 8, 7]  
g = [4, 5, 6] g = [4, 5, 6] g = [6, 5, 4]  
    [7, 8, 9]     [1, 2, 3]     [3, 2, 1]  
 



Two-dimensional discrete convolution
Example - mechanical approach using sliding inverted matrix
Now you can move inverted kennel matrix over data matrix


 
 
    1  2  3  4  5   
    6  7  8  9  9      9  8  7  
f = 8  7  6  5  4  g = 6  5  4  
    3  2  1  1  2      3  2  1  
    3  4  5  6  7  
 
 
 
 
 
 
 
 
 

 
 



Two-dimensional discrete convolution
Example - mechanical approach using sliding inverted matrix
Now you can move inverted kennel matrix over data matrix


 
 
    1  2  3  4  5   
    6  7  8  9  9  
f = 8  7  6  5  4  
    3  2  1  1  2  
    3  4  5  6  7  
 
    1  ?  ?  ?  ?  ?  ?  
 
 
 
 
 
 
 

 
 

9  8  7  
6  5  4  
3  2  1



Two-dimensional discrete convolution
Example - mechanical approach using sliding inverted matrix
Now you can move inverted kennel matrix over data matrix


 
 
    1  2  3  4  5   
    6  7  8  9  9  
f = 8  7  6  5  4  
    3  2  1  1  2  
    3  4  5  6  7  
 
    1  4  ?  ?  ?  ?  ?  
 
 
 
 
 
 
 

 
 

9  8  7  
6  5  4  
3  2  1



Two-dimensional discrete convolution
Example - mechanical approach using sliding inverted matrix
Now you can move inverted kennel matrix over data matrix


 
 
    1  2  3  4  5   
    6  7  8  9  9  
f = 8  7  6  5  4  
    3  2  1  1  2  
    3  4  5  6  7  
 
    1  4  10 ?  ?  ?  ?  
 
 
 
 
 
 
 

 
 

9  8  7  
6  5  4  
3  2  1



Two-dimensional discrete convolution
Example - mechanical approach using sliding inverted matrix
Now you can move inverted kennel matrix over data matrix


 
 
    1  2  3  4  5   
    6  7  8  9  9  
f = 8  7  6  5  4  
    3  2  1  1  2  
    3  4  5  6  7  
 
    1  4  10 16 ?  ?  ?  
 
 
 
 
 
 
 

 
 

9  8  7  
6  5  4  
3  2  1



Two-dimensional discrete convolution
Example - mechanical approach using sliding inverted matrix
Now you can move inverted kennel matrix over data matrix


 
 
    1  2  3  4  5   
    6  7  8  9  9  
f = 8  7  6  5  4  
    3  2  1  1  2  
    3  4  5  6  7  
 
    1  4  10 16 22 ?  ?  
 
 
 
 
 
 
 

 
 

9  8  7  
6  5  4  
3  2  1



Two-dimensional discrete convolution
Example - mechanical approach using sliding inverted matrix
Now you can move inverted kennel matrix over data matrix


 
 
    1  2  3  4  5   
    6  7  8  9  9  
f = 8  7  6  5  4  
    3  2  1  1  2  
    3  4  5  6  7  
 
    1  4  10 16 22 22 ?  
 
 
 
 
 
 
 

 
 

9  8  7  
6  5  4  
3  2  1



Two-dimensional discrete convolution
Example - mechanical approach using sliding inverted matrix
Now you can move inverted kennel matrix over data matrix


 
 
    1  2  3  4  5   
    6  7  8  9  9  
f = 8  7  6  5  4  
    3  2  1  1  2  
    3  4  5  6  7  
 
    1  4  10 16 22 22 15  
 
 
 
 
 
 
 

 
 

9  8  7  
6  5  4  
3  2  1



Two-dimensional discrete convolution
Example - mechanical approach using sliding inverted matrix
Now you can move inverted kennel matrix over data matrix


 
 
    1  2  3  4  5   
    6  7  8  9  9  
f = 8  7  6  5  4  
    3  2  1  1  2  
    3  4  5  6  7  
 
    1  4  10 16 22 22 15  
    10  
 
 
 
 
 
 

 
 

9  8  7  
6  5  4  
3  2  1



Two-dimensional discrete convolution
Example - mechanical approach using sliding inverted matrix
Now you can move inverted kennel matrix over data matrix


 
 
    1  2  3  4  5   
    6  7  8  9  9  
f = 8  7  6  5  4  
    3  2  1  1  2  
    3  4  5  6  7  
 
    1  4  10 16 22 22 15  
    10 32  
 
 
 
 
 
 

 
 

9  8  7  
6  5  4  
3  2  1



Two-dimensional discrete convolution
Example - mechanical approach using sliding inverted matrix
... many steps ... 
 
 
 
 
 
 
 
 
 

 
 



Two-dimensional discrete convolution
Example - mechanical approach using sliding inverted matrix
Now you can move inverted kennel matrix over data matrix


 
 
    1  2  3  4  5   
    6  7  8  9  9  
f = 8  7  6  5  4  
    3  2  1  1  2  
    3  4  5  6  7  
 
    1  4  10 16 22 22 15  
    10 32 ...  
    39  
 
 
 
 
 

 
 

9  8  7  
6  5  4  
3  2  1



Two-dimensional discrete convolution
Example - mechanical approach using sliding inverted matrix
Now you can move inverted kennel matrix over data matrix


 
 
    1  2  3  4  5   
    6  7  8  9  9  
f = 8  7  6  5  4  
    3  2  1  1  2  
    3  4  5  6  7  
 
    1  4  10 16 22 22 15  
    10 32 ...  
    39 103  
 
 
 
 
 

 
 

9  8  7  
6  5  4  
3  2  1



Two-dimensional discrete convolution
Example - mechanical approach using sliding inverted matrix
Now you can move inverted kennel matrix over data matrix


 
 
    1  2  3  4  5   
    6  7  8  9  9  
f = 8  7  6  5  4  
    3  2  1  1  2  
    3  4  5  6  7  
 
    1  4  10 16 22 22 15  
    10 32 ...  
    39 103193  
 
 
 
 
 

 
 

9  8  7  
6  5  4  
3  2  1



Two-dimensional discrete convolution
Example - mechanical approach using sliding inverted matrix
... many steps ... 
 
 
 
 
 
 
 
 
 

 
 



Two-dimensional discrete convolution
Example - mechanical approach using sliding inverted matrix
Now you can move inverted kennel matrix over data matrix


 
 
    1  2  3  4  5   
    6  7  8  9  9  
f = 8  7  6  5  4  
    3  2  1  1  2  
    3  4  5  6  7  
 
    
 
 
  1,  4, 10, 16, 22, 22, 15  
 10, 32, 68, 89,109, 94, 57  
 39,103,193,226,255,198,111  
 77,173,287,291,291,210,111  
 71,146,224,195,175,125, 69  
 33, 69,108,106,119, 96, 60  
 21, 52, 94,118,142,110, 63  
 
 

9  8  7  
6  5  4  
3  2  1



Group operators



Group operators
Very general definition
Group operations calculate new pixel values from a pixel’s 
neighbourhood by using a various "grouping" process.


The group operation is usually expressed in terms of 
template convolution where the template is a set of 
weighting coefficients.



Convolution
Practical approach
• The template is usually square.


• Its size is usually odd (for example  or ) to ensure that the 
result positioned precisely on a pixel.


• For reasons of speed, the most common sizes are ,  and 
.


• This template is used to calculate new pixel value for every pixel.


• New pixel values are calculated by placing the template (its central 
point) at the point of interest.


• Source image pixel values are multiplied by the corresponding 
weighting coefficient and added to an overall sum. The sum 
(usually) evaluates a new value for the centre pixel (where the 
template is centered), and this becomes the pixel in the new 
image, the output image. 


3 × 3 5 × 5

3 × 3 5 × 5
7 × 7



Convolution
Formula
Template convolution of input (source) image  and weight 
template  is given by the following formula:





where:


•  and  are the numbers of columns (width) and rows (height),


•  and ,


•  is a weighting coefficient at  point of weight template,


•  is a width and  is a height of a template,


•  and  are the coordinates of image points laying within the 
template area "centered" at .

p(x, y)
w(i, j)

q(x, y) = ∑
i = 1,…, W
j = 1,…, H

w(i, j) ⋅ p(x(i), y( j))

w h

x ∈ {1,…, w} y ∈ {1,…, h}

w(i, j) (i, j)

W H

x(i) y( j)
(x, y)



Convolution
Example

 = 5,  = 4, , , , w h W = 3 H = 3 x = 3 y = 2

Input image:


1 2 3 4 5  
6 7 8 9 1  
2 3 4 5 6  
7 8 9 1 2

Weights:


9 8 7  
6 5 4  
3 2 1

Pixel for which you make calculations

(image reference point)

Template center point

(template reference point)

q(3,2) = ∑
i = 1,…,3
j = 1,…,3

w(i, j) ⋅ p(x(i), y( j))

= w(1,1) ⋅ p(x(1), y(1)) + w(2,1) ⋅ p(x(2), y(1)) + w(3,1) ⋅ p(x(3), y(1))
+w(1,2) ⋅ p(x(1), y(2)) + w(2,2) ⋅ p(x(2), y(2)) + w(3,2) ⋅ p(x(3), y(2))
+w(1,3) ⋅ p(x(1), y(3)) + w(2,3) ⋅ p(x(2), y(3)) + w(3,3) ⋅ p(x(3), y(3))
= w(1,1) ⋅ p(1,2) + w(2,1) ⋅ p(2,2) + w(3,1) ⋅ p(3,2)
+w(1,2) ⋅ p(1,3) + w(2,2) ⋅ p(2,3) + w(3,2) ⋅ p(3,3)
+w(1,3) ⋅ p(1,4) + w(2,3) ⋅ p(2,4) + w(3,3) ⋅ p(3,4)
= 9 ⋅ 6 + 8 ⋅ 7 + 7 ⋅ 8
+6 ⋅ 2 + 5 ⋅ 3 + 4 ⋅ 4
+3 ⋅ 7 + 2 ⋅ 8 + 1 ⋅ 9

1  2  3  4  5  
6  7  8  9  1  
2  3  4  5  6  
7  8  9  1  2

9  8  7  
6  5  4  
3  2  1



Convolution
Problem with borders
Note that we cannot ascribe values to the picture’s borders.


To calculate values for the border pixels, we have three 
choices, but please keep in mind that none of them is 
optimal:


• Set the border to black (or deliver a smaller picture).


• Assume (as in Fourier) that the image replicates to infinity 
along both dimensions and calculate new values by cyclic 
shift from the far border.


• Calculate the border pixel value from a smaller area.



Convolution
Applications

In digital image processing convolutional filtering plays an 
important role in many algorithms such as edge detection, 
blurring and related processes.



Basic group methods



Averaging operator
Definition
For an averaging operator, the template weighting function 
is unity. 


To avoid constraining you can use  as a  weighting 
function - in this case the result of averaging pixels will not 
exceed upper range (255).


The averaging operator is then simply:


.

1/(w ⋅ h)

q(x, y) =
1

w ⋅ h ∑
i = 1,…, W
j = 1,…, H

p(x(i), y( j))



Averaging operator
Examples
[tutu examples]



Averaging operator
Conclusions
The effect of averaging is to reduce noise, which is its 
advantage.


Disadvantage is that averaging causes blurring which 
reduces details in an image. It is also


The effect of larger averaging operators is to smooth the 
image more, to remove more detail whilst giving greater 
emphasis to the large structures.



Gaussian averaging operator
Definition
The template for the Gaussian operator has values set by the Gaussian 
relationship. The Gaussian function  at coordinates  is controlled by the 
variance  according to:


.


More generally we can consider general form of Gaussian function (here given for 
one variable):


,


where for ,  and  are arbitrary real constants (of course  must be non-zero).


In effect, the Gaussian function essentially removes the influence of points greater 
than  in (radial) distance from the centre of the template.


The size of the template essentially dictates appropriate choice of the variance. 
The variance is chosen to ensure that template coefficients drop to near zero at 
the template’s edge.

g (x, y)
σ2

g(x, y, σ) =
1

2πσ2
e− x2 + y2

2σ2

f(x) = a ⋅ exp (−
(x − b)2

2c2 )
a b c c

3σ



Gaussian averaging operator
Examples
[tutu examples and comparision with averaging operator]



Gaussian averaging operator
Conclusions
The Gaussian averaging operator has been considered to 
be optimal for image smoothing because more features are 
retained whilst the noise is removed.




Median filter
Definition
The median is the value separating the higher half from the lower half of a data 
sample, a population, or a probability distribution. For a data set, it may be 
thought of as "the middle" value.


The median filter is usually computed from a pixels taken from an area of input 
image laying within the template area centered on the point of interest. What is 
different in this case is that template has no weights - it is used only to delimit 
the area of interest. That is why you should think about it rather as a window 
through which you observe image data.


Consider the typical square shape arrangement of template's pixels (but you can 
consider any other alternative shapes like cross, horizontal or vertical line as 
well). To get a value of resulting pixel  you have to:


1. Collect all pixels constituting image area within template "centered" at  
and put them into a list (or vector).


2. Sort list obtained in previous step.


3. The central component of the sorted list is the median value - this value is 
returned as an effect of applying median filter at point  of source image 

.

q(x, y)

(x, y)

(x, y)
p(x, y)



Median filter
Examples
[tutu examples]



Median filter
Conclusions
• The median filter has a well-known ability to remove salt 

and pepper noise.


• This form of noise is typical for decoding-like errors in 
picture transmission systems and appears as isolated 
white and black points within an image.


• It can also arise when rotating an image, when points 
remain unspecified by a standard rotation operator.


When a median operator is applied, the salt and pepper 
noise points will appear at either end of the rank-ordered 
list and are removed by the median process.


• The median operator has practical advantage, due to its 
ability to retain edges (the boundaries of shapes in 
images) whilst suppressing the noise contamination.



Mode filter
Definition
The mode (pl. dominanta) is the value that appears most 
often in a set of data values.


For small set of data the correct mode is very difficult to 
determine. For example, it's not hard to imagine (it is highly 
probable) that within a  square template all 25 pixels 
are different, so each could be considered to be the mode.


As such you are forced to estimate the mode with the 
truncated median filter.

5 × 5



Mode filter
Truncated median filter - idea
The truncated median filter is based on the premise that for 
many non-Gaussian distributions, the order of the mean, the 
median and the mode is the same for many images, as 
illustrated below:


[img_02_02]


Accordingly, if you truncate the distribution, which means 
remove part of it, where the part selected to be removed is 
from the region beyond the mean, then the median of the 
truncated distribution will approach the mode of the original 
distribution:


[img_02_03]



Mode filter
Truncated median filter - algorithm
1. In implementation the operator first finds the mean and the median of the current window.


2. The distribution of intensity of points within the current window is truncated on the side of 
the mean so that the median now bisects the distribution of the remaining points.


So that the median bisects the remaining distribution:


A. If the median is less than the mean, the point at which the distribution is 
truncated, upper, is: 
 




B. If the median is greater than the mean, then you need to truncate at a lower point 
(before the mean), given by: 
 




3. The median of the truncated vector is the output of the truncated median filter at that point. 
However, there can be several iterations at each position to ensure that the mode is 
approached.


Notes: 

• In practice only few iterations are usually required for the median to converge to the mode.


• The window size is usually large, say ,  or even more.

upper = 2 ⋅ median − min(distribution)

lower = 2 ⋅ median − max(distribution)

7 × 7 9 × 9



Mode filter
Truncated median filter - algorithm
Let the current window, of the size , contains the following values:


[50, 50, 230, 100, 70, 150, 70, 70, 150, 180, 70, 100, 70, 100, 
100, 70, 100, 50, 70, 150, 70, 150, 180, 70, 50]

You can sort them:


[50, 50, 50, 50, 70, 70, 70, 70, 70, 70, 70, 70, 70, 100, 100, 
100, 100, 100, 150, 150, 150, 150, 180, 180, 230]

and compute histogram:


[50 (4), 70 (9), 100 (5), 150 (4), 180 (2), 230 (1)]

1. In implementation the operator first finds the mean and the median of the current 
window: 
 
mean: 100.8 
 
median: 70


Note: 
In this case it is possible to find mode directly and it is equal to 70 (you calculate it to 
verify if proposed algorithm works). Generally you want to approximate this value.

5 × 5



Mode filter
Truncated median filter - algorithm
A. If the median is less than the mean, the point at which the distribution is 

truncated, upper, is: 
 

 

 
So the vector should be truncated at 90 resulting truncated distribution of the 
form: 
 
[50, 50, 230, 100, 70, 150, 70, 70, 150, 180, 70, 100, 70, 
100, 100, 70, 100, 50, 70, 150, 70, 150, 180, 70, 50]  
 
You can sort them: 
 
[50, 50, 50, 50, 70, 70, 70, 70, 70, 70, 70, 70, 70, 100, 
100, 100, 100, 100, 150, 150, 150, 150, 180, 180, 230]  
 
and compute histogram: 
 
[50 (4), 70 (9), 100 (5), 150 (4), 180 (2), 230 (1)] 
 

upper = 2 ⋅ median − min(distribution)
= 2 ⋅ 70 − 50
= 90



Mode filter
Truncated median filter - algorithm
Truncated vector: 
 
[50, 50, 50, 50, 70, 70, 70, 70, 70, 70, 70, 
70]


3. The median of the truncated vector is the output of the 
truncated median filter at that point: 
 
[50, 50, 50, 50, 70, 70, 70, 70, 70, 70, 
70, 70, 70]  
 
median: 70. 
 
70 is an approximate value of mode (which is in 
accordance with previous calculations).



Mode filter
Examples
[tutu examples]



Mode filter
Conclusions
• This has an ability to reduce noise whilst retaining feature 

boundaries.
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