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Advanced smoothing filters



Nonlocal means
Definition
You can think about the nonlocal means operator as an 
advanced, more sophisticated version of the averaging 
operator mentioned earlier.


The basic function of the operator is to assign a point a 
value that is the mean of a different areas which are closest 
to the mean at the value of the point, rather than the mean 
at that point.


Difficult to understand?


Let's explain it step by step.



Nonlocal means
Step 1
Let  is a point of intensity  from input image .


Define a smal region surrounding a given point  and denote it as .  is 
an image  without some internal border such that for every  region .


I will also call this region the same as I called so far: a window or a template. From practical point of 
view it is required that region has a rectangular shape and its size  is an od number.


Being more precise,  is smaller because  area should be enclosed in . I will discuss this 
in next few slides.
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Nonlocal means
Step 2
Having  defined, you can compute mean (average) at point  
taking into account pixels from region  surrounding this point:


.
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Nonlocal means
Step 3
Define a big region surrounding a given point  and 
denote it as .


This region has also a rectangular shape, its size m is an od number 
and .

p = (xp, yp) ∈ I
Rbig(p)

m > n



Nonlocal means
Step 4
Having  defined, you can compute mean (average) at any point  such 
that region  surrounding point  is completely enclosed in  taking into account 
pixels from :
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Nonlocal means
Step 5

Now you can compute how the average  at point  is 
similar to the average  at point :


.


This would be your weighting function.


The weight will be maximum when  and much 
less when the two averages are very different. The product 

 is close to  when the mean of the point of 
interest  is the same as the mean of the region at point .
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Nonlocal means
Step 6
Computed accumulated weights:


F(p) = ∑
q∈Rbig(p)
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Nonlocal means
Step 7

Compute final value  of the output pixel  corresponding 
to pixel :
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Nonlocal means
Final words
The parameters that you must choose are:


•  -- the window size of the averaging operator; this defines the size of ,


•  -- the size of the search region; this defines the size of ,


•  -- the standard deviation.


To have a guarantee that  is completely enclosed in , you have to properly 
defined , for example as:


,


where:


• ,


•  is the greatest  coordinate,


•  is the greatest  coordinate.
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Nonlocal means
Examples
[tutu examples]



Nonlocal means
Conclusions
Nonlocal means operator compared with Gaussian 
averaging is much more computational expensive but offers 
less loss of details.



Bilateral filter
Definition
As you know, Gaussian averaging operator mentioned in 
previous part, blurs every part of an image regardless of the 
image content: whether some part contains large flat part or 
sharp details, everything is blurred the same way. In 
consequence you loose details.


Idea behind bilateral filter is to use two factors influencing 
the final form of the resulting image:


• one responsible for "traditional" blur effect (this could be, 
and very of the it is, Gaussian averaging),


• second for limiting blur strength across boundaries  of 
different area by decreasing the filter weight when the 
intensity difference is too large.


You can think of it as a weighted Gaussian averaging.



Bilateral filter
Definition
Let  is a point from input image . Define a smal region surrounding a given 
point  and denote it as .  is an image  without some 
internal border such that for every  region .


You can define a function:


,


where:


• ,


•   is the spatial (or domain) kernel for smoothing differences in coordinates (this 
function can be a Gaussian function); this function measures distance,


•  is the range kernel for smoothing differences in intensities (this function can 
also be a Gaussian function; this function detects boundaries.


Very general form of this filter is given below:


.
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Bilateral filter
Definition
When both spatial and range kernels is a Gaussian kernel, 

 is given by the following formula:





where:


•  is an Euclidean distance between 
point  and ,


•  is a difference in intensity between point  and 
.
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Bilateral filter
Examples
[tutu examples]



Bilateral filter
Conclusions
Bilateral filter, as all other filters can be use iteratively. 


Usually a single iteration produces a much cleaner image 
than the original, and is probably sufficient for most image 
processing needs.


Multiple iterations have the effect of flattening the colors in 
an image considerably, but without blurring edges.


The resulting image of cartoon-like appearance has a much 
smaller color map. All shadows and edges are preserved.



Morphological operators



Mathematical morphology
Idea
Mathematical morphology is a theory and technique for the 
analysis and processing of geometrical structures, based on 
set theory, lattice theory, topology, and random functions.


In mathematical morphology, you process images according 
to shape, by treating both as sets of points. In this way, 
morphological operators define local transformations that 
change pixel values that are represented as sets. The ways 
pixel values are changed is formalised by the definition of 
the hit or miss transformation.


The basic idea in morphology is to probe an image with a 
simple, pre-defined shape, drawing conclusions on how this 
shape fits or misses the shapes in the image. This simple 
"probe" is called the structuring element (instead of 
coefficient matrix, weight matrix or window as you have 
seen in previous chapters).



Mathematical morphology
Idea
To simplify consideration I will be talking about binary morphology which means morphology 
applied to binary images and binary structuring element.


In this case both image and structuring element contain only value 0 and 1, where 1 represents 
pixel in an image and 0 represents image background. To define structuring element, you have to 
specify:


• its size (dimensions);


• structuring element  which is represented by two parts:


•  -- set of pixels of value 1,


•  -- set of pixels of value 0;


• reference point used during translation.


B

B1

B2



Mathematical morphology
Idea

Please keep in mind that  doesn't have to be rectangular. 
Following structuring elements are perfectly fine:


B



Mathematical morphology
Idea
Below I give an example of a binary image and a structuring element.


Pixels from image  are divided into those belonging to  (corresponding to image values 1) 
and those belonging to its complement  (corresponding to background values 0) :


   and   .


In this case I use term image in two different meanings: first means image as a whole set of 
pixels, second means part of image different than background.


There is also an example of structural element  and its decomposition into the two sets  
and .


Each subset of  will be used to analyse the set  and its complement.


I X
X′￼

I = X ∪ X′￼ X ∩ X′￼= ∅

B B1
B2

B X



Mathematical morphology
Idea
The hit or miss transformation is defined as the point operator:


.


In this equation,  represents element of . The operation of  on  is a 
hit; the operation of  on  is a miss. The index  in the structural element 
indicates that it is moved to the position of the element  in such a way that 
the reference point coincides with point . That is quite similar to other 
group operators you have seen so far --  defines a specific window that is 
moved through the image.


This transformation defines a process that moves the structural element  
to be placed at each pixel in the image, and it performs a pixel-by-pixel 
comparison against the template . If the value of the image is the same as 
that of the structuring element, then the image’s pixel forms part of the 
resulting set .


The simplest form of morphological operators is defined when either  or 
 is empty.

I ⊗ B = {x ∈ I : B1(x) ⊆ X ∧ B2(x) ⊆ X′￼}
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B
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B
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Mathematical morphology
Operators: erosion (reduction)

When  is empty the hit or miss transformation defines an 
erosion (reduction):


.


According to this formula pixel  belongs to the eroded set if 
each point of the element  translated to  is on . Since 
all the points in  need to be in , this operator removes 
the pixels at the borders of objects in the set . Thus, it 
actually erodes or shrinks the set.


One of the most common applications of this is to remove 
noise in thresholded images.

B2

I ⊖ B = {x ∈ I : B1(x) ⊂ X}

x
B1 x X

B1 X
X



Mathematical morphology
Operators: erosion (reduction)
[tutu examples]



Mathematical morphology
Operators: dilation (increase)

When  is empty the hit or miss transformation defines an 
dilation (increase):


.


According to this formula pixel  belongs to the dilated set if 
each point of the element  translated to  is on .


Since all the points in  need to be in , this operator 
removes the pixels at the borders of the complementary set 

. Thus, it actually erodes or shrinks the the 
complementary set and when the it is eroded, the set  is 
dilated.

B1

I ⊕ B = {x ∈ I : B2(x) ⊂ X′￼}

x
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B2 X′￼

X′￼
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Mathematical morphology
Operators: dilation (increase)
[tutu examples]



Mathematical morphology
Note 
• Neither dilation nor erosion specifies a required shape for the structuring 

element.


• By sequences of erosions and dilations other operators can be easily defined:


• the opening operator is defined by an erosion followed by a dilation: 
 




• the closing operator is defined by a dilation followed of an erosion: 
 

.


• Closing and opening operators are generally used as filters that remove dots 
characteristic of pepper noise and to smooth the surface of shapes in images. 
These operators are generally applied in succession, and the number of times 
they are applied depends on the structural element size and image structure.


• In addition to filtering, morphological operators can also be used to develop 
other image processing techniques. For example edges can be detected by 
subtracting the original image and the one obtained by an erosion or dilation.

I ∘ B = (I ⊖ B) ⊕ B

I ∙ B = (I ⊕ B) ⊖ B



Mathematical morphology
Gray level morphology 
The cross-section representation uses multiple thresholds to 
obtain a pile of binary images. Thus, morphological operator 
can be applied to collection of binary images formed at 
each threshold level.



Mathematical morphology
Gray level morphology 
The umbra approach considers all points  such that:


• ,


•  is a gray level at point ,


• 


• and .


Other words, in case of 2D images umbra  is a 3D object and it consist of all 
points located under the surface  given by:


.


In consequence:


.


To umbra you apply three-dimensional structuring element in a similar way as you 
do with to two-dimensional case. In some sense you can imagine that you play 
three-dimensional tetris.

(x, v)

v < f(x)

f(x) x

x ∈ I

v ∈ [0,255]

U(I)
F

F(I) = {(x, z) : x ∈ I, z = f(x)}

U(I) = {(x, z) : x ∈ I, z < f(x)}
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