
Image Feature Extraction Techniques

Low-level feature
extraction
Edge detection

Piotr Fulmański

Derivative

Derivative and differencing
Derivative
The derivative of a function of a real variable measures the sensitivity to change of the
function value (output value) with respect to a change in its argument (input value).

The derivative of a function at a point is defined by the limit.

The derivative of a function of a single variable at a chosen input value, when it exists,
is the slope of the tangent line to the graph of the function at that point. The tangent
line is the best linear approximation of the function near that input value. For this
reason, the derivative is often described as the "instantaneous rate of change", the
ratio of the instantaneous change in the dependent variable to that of the independent
variable.

Derivatives are a fundamental tool of calculus. For example, the derivative of the
position of a moving object with respect to time is the object's velocity: this measures
how quickly the position of the object changes when time advances.

A function of a real variable is differentiable at a point of its domain, if its
domain contains an open interval containing , and the following limit exists:

.

This limit is called the derivative of at , and denoted .

f x

y = f(x) a
I a

lim
h→0

f(a + h) − f(a)
h

f a f′￼(a)

Derivative and differencing
Calculus of the gradient vector

Image source: [6]

Derivative and differencing
Derivative - idea of application in image edge detection

Derivative and differencing
Numerical differentiation - discrete gradient
Differentiation is the action of computing a derivative.

In numerical analysis, numerical differentiation describes
algorithms for estimating the derivative.

Typically in numerical differentiation, finite difference is
often used as an approximation of the derivative.

Three basic types of finite differences are commonly
considered: forward, backward, and central.

Derivative and differencing
Numerical differentiation - discrete gradient
A forward difference, denoted of a function is a function defined as:

Depending on the application, the spacing may be variable or constant. When omitted, is taken to
be 1; that is,

.

A backward difference uses the function values at and , instead of the values at and :

.

Finally, the central difference is given by:

Hence, the differences divided by approximates 
the derivative when is smal

Δh[f] f

Δh[f](x) = f(x + h) − f(x)

h h

Δ[f](x) = Δ1[f](x) = f(x + 1) − f(x)

x x − h x + h x

∇h[f](x) = f(x) − f(x − h) = Δh[f](x − h)

δh[f](x) = f (x+ h
2) − f (x− h

2) = Δh[f](x− h
2)

h
h

Derivative and differencing
Numerical differentiation - discrete gradient
The forward difference divided by approximates the derivative
when is small. The error in this approximation can be derived from
Taylor's theorem. Assuming that is twice differentiable, we have:

.

The same formula holds for the backward difference:

.

However, the central (also called centered) difference yields a
more accurate approximation. If is three times differentiable then:

.

h
h

f
Δh[f](x)

h
− f′￼(x) = O(h) → 0 as h → 0

∇h[f](x)
h

− f′￼(x) = O(h) → 0 as h → 0

f
δh[f](x)

h
− f′￼(x) = O (h2)

Edge

Edge
Definition
Many approaches to image interpretation are based on edges,
since analysis based on edge detection is insensitive to
change in the overall illumination level.

Edges are perhaps the low-level image features that are most
obvious to human vision. They preserve significant features, so
we can usually recognise what an image contains from its edge
detected version.

Edge detection highlights image contrast. Detecting contrast,
which is difference in intensity, can emphasise the boundaries of
features within an image, since this is where image contrast
occurs. The boundary of an object is a step change in the
intensity levels.

To detect the edge position, you can use first-order
differentiation since this emphasises change and gives no
response when applied to signals that do not change.

Edge
Type of edges

Image source: [6]

First-order differentiation

First-order differentiation
Basic idea
A change in intensity can be revealed by differencing adjacent points.

Differencing horizontally adjacent points will detect vertical
changes in intensity and is often called a horizontal edge detector
by virtue of its action. A horizontal operator will not show up
horizontal changes in intensity since the difference is zero.

When applied to an image of dimension (width) and (height) the
action of the horizontal edge detector forms the difference
between two horizontally adjacent points, as such detecting the
vertical edges:

for all and .

This method of differencing (when you consider point and next
point just after which is) is called forward differencing.

I n m

ev = | I(x, y) − I(x + 1,y) |

x = 1,…, n − 1 y = 1,…, m

x
x x + 1

First-order differentiation
Basic idea
Following the idea of detecting vertical edges you can easily get formula for detecting
horizontal edges:

.

Combining the horizontal and vertical detectors defines an operator that can detect
both vertical and horizontal edges together:

which gives:

From the last formula you can get the coefficients of a differencing template which can
be convolved with an image to detect all the edge points:

As in the previous lectures, the reference point of a template (the position of the point
you are computing a new value for) is marked with different color. Of course, the
template shows only the weighting coefficients and not the modulus operation.

eh = | I(x, y) − I(x, y + 1) |

e

e = | I(x, y) − I(x + 1,y) + I(x, y) − I(x, y + 1) |

e = |2 ⋅ I(x, y) − I(x + 1,y) − I(x, y + 1) |

2 -1
-1 0

Roberts cross operator
Definition
The Roberts cross operator was one of the earliest edge detection operators (1963).

It implements a version of basic first-order edge detection and uses two templates
which difference pixel values in a diagonal manner, as opposed to along the axes’
directions proposed in previous part. The two templates are defined as:

What to do with values calculated based on these two templates? As the value of
the edge at the point you can, for example:

• use the square root of the sum of values raised to the power of 2,

• use the sum of the absolute values of results of the two templates together,

• use the maximum of the absolute values delivered by application of these
templates,

• use any other approach you think is reasonable.

1 0
0 -1

0 1
-1 0M− = M+ =

Roberts cross operator
Definition
Roberts cross operator is less resistant to noise, but has
narrower edges.

Prewitt edge detection
operator

Prewitt edge detection operator
Definition

The Prewitt operator uses two kernels to calculate
approximations of the derivatives -- one for horizontal
changes, and one for vertical:

The Prewitt kernels can be decomposed as the products of
an (one-dimensional) averaging and a differentiation
kernel, for example:

.

3 × 3

Mx =
+1 0 −1
+1 0 −1
+1 0 −1

= [
1
1
1][+1 0 −1]

1 0 -1
1 0 -1
1 0 -1

1 1 1
0 0 0
-1 -1 -1

Mx = My =

Prewitt edge detection operator
Edge magnitude and direction
Incorporating averaging within the edge detection process makes this
filter less susceptible to the influence of noise.

If you want to say a little bit more about edges, you can calculate edge
magnitude and edge direction (gradient direction, so it is perpendicular
to an edge) at point :

,

,

where is the vertical template and is the horizontal template.

The signs of and can be used to determine the appropriate
quadrant for the edge direction or alternatively you can use a well
known in low-level computer graphic function .

(x, y)

em(x, y) = Mx(x, y)2 + My(x, y)2

edir(x, y) = tan−1 (
My(x, y)
Mx(x, y))

Mx My

Mx My

atan2(y, x)

Prewitt edge detection operator
Edge magnitude and direction

Image source: [6]

Prewitt edge detection operator
Edge magnitude and direction

Image source: [6]

Prewitt edge detection operator
Edge magnitude and direction

Image source: [6]

Prewitt edge detection operator
Code

import itertools

for x,y in itertools.product(range(0, width-1), range(0, height-1)):  
 mX,mY = 0.0, 0.0  
 
 for c in range(-1, 2):  
 mX += float(inputImage[y + c, x - 1]) - float(inputImage[y + c, x + 1])  
 mY += float(inputImage[y - 1, x + c]) - float(inputImage[y + 1, x + c])  
 
 outputMagnitude[y,x] = math.sqrt(mX * mX + mY * mY)  
 outputDirection[y,x] = math.atan2(mY, mX)

Sobel-Feldman edge
detection operator

Sobel-Feldman edge detection operator
Definition
Technically, this operator, as all previous operators, is a discrete
differentiation operator, computing an approximation of the gradient
of the image intensity function.

The operator uses two 3×3 kernels which are convolved with the
original image to calculate approximations of the derivatives -- one
for horizontal changes, and one for vertical. Both are very similar to
Prewitt operator but with stronger averaging component along
-axis and -axis which result in stronger smoothing:

x
y

Gx =
+1 0 −1
+2 0 −2
+1 0 −1

= [
1
2
1][+1 0 −1]

Gy =
+1 +2 +1
0 0 0

−1 −2 −1
= [+1 0 −1][

1
2
1]

Sobel-Feldman edge detection operator
Derive kernels
https://newbedev.com/sobel-filter-kernel-of-large-size

https://stackoverflow.com/questions/9567882/sobel-filter-
kernel-of-large-size

https://newbedev.com/sobel-filter-kernel-of-large-size
https://stackoverflow.com/questions/9567882/sobel-filter-kernel-of-large-size
https://stackoverflow.com/questions/9567882/sobel-filter-kernel-of-large-size

Canny edge detection
operator

Canny edge detection operator
Definition
In this case operator is rather a multistep algorithm.

It was formulated with three main objectives:

1. Detection of edge with no false responses.

2. The edge point detected from the operator should
accurately localize on the center of the edge.

3. Single response to eliminate multiple responses to a
single edge.

Canny edge detection operator
Definition
The first requirement aims to reduce the response to noise.
This can be effected by optimal smoothing.

The second criterion aims for accuracy: edges are to be
detected, in the right place. This can be achieved by a
process of nonmaximum suppression (which is equivalent to
peak detection). Nonmaximum suppression retains only those
points at the top of a ridge of edge data, whilst suppressing
all others. This results in thinning: the output of nonmaximum
suppression is thin lines of edge points, in the right place.

The third constraint concerns location of a single-edge point
in response to a change in brightness. This is because more
than one edge can be denoted to be present, consistent with
the output obtained by earlier edge operators.

Canny edge detection operator
Algorithm
The process of Canny edge detection algorithm can be
broken down to the following steps:

1. Apply Gaussian filter to smooth the image in order to
reduce the noise.

2. Use the Sobel operator (or any other you prefer) to find the
intensity gradients of the image and its direction.

3. Apply nonmaximum suppression (or gradient magnitude
thresholding or lower bound cut-off suppression or anything
you think is a right tool) to get rid of spurious response to
edge detection.

4. Apply double threshold to determine potential edges.

5. Threshold with hysteresis to suppress all the edges that are
weak and not connected to strong edges.

Canny edge detection operator
Algorithm, step 1 [1]
Apply Gaussian filter to smooth the image in order to reduce
the noise.

Canny edge detection operator
Algorithm, step 2 [1]
Use the Sobel operator (or any other you prefer) to find the intensity gradients of the image and
its direction.

The result obtained in this step has two drawbacks:

1. Some of the edges are thick and others are thin. Non-Max Suppression step will help you
mitigate the thick ones.

2. The gradient intensity level is between 0 and 255 which is not uniform. The edges on the
final result should have the same intensity of value 255.

Canny edge detection operator
Algorithm, step 3 [1]
Perform non-maximum suppression to thin out the edges.

After getting gradient magnitude and direction, a full scan of image is done to remove any unwanted
pixels which may not constitute the edge. For this, at every pixel, pixel is checked if it is a local maximum
in its neighborhood in the direction of gradient.

In short, the result you get is a binary image with "thin edges".

The result is the same image with thinner edges. You can however still notice some variation regarding the
edges’ intensity: some pixels seem to be brighter than others, and you will try to cover this with the two
final steps

Canny edge detection operator
Algorithm, step 4 [1]

Now you can see what the double thresholds
holds for:

• High threshold is used to identify the strong
pixels (intensity higher than the high threshold)

• Low threshold is used to identify the non-
relevant pixels (intensity lower than the low
threshold)

• All pixels having intensity between both
thresholds are flagged as weak and the
hysteresis mechanism (next step) will help us
identify the ones that could be considered as
strong and the ones that are considered as
non-relevant.

The result of this step is an image with only 2
pixel intensity values (strong and weak).

Apply double threshold to determine potential edges.

The double threshold step aims at identifying 3 kinds of pixels: strong, weak, and non-relevant:

• Strong pixels are pixels that have an intensity so high that we are sure they contribute to the final edge.

• Weak pixels are pixels that have an intensity value that is not enough to be considered as strong ones,
but yet not small enough to be considered as non-relevant for the edge detection.

• Other pixels are considered as non-relevant for the edge.

Canny edge detection operator
Algorithm, step 5 [1]
Threshold with
hysteresis to suppress
all the edges that are
weak and not
connected to strong
edges.

Based on the threshold
results, the hysteresis
consists of transforming
weak pixels into strong
ones, if and only if at
least one of the pixels
around the one being
processed is a strong
one.

Bibliography

Bibliography

1. Sofiane Sahir, Canny Edge Detection Step by Step in Python — Computer Vision, Jan 25, 2019, 
https://towardsdatascience.com/canny-edge-detection-step-by-step-in-python-computer-
vision-b49c3a2d8123

2. Canny Edge Detection, 
https://docs.opencv.org/3.4/da/d22/tutorial_py_canny.html

3. CANNY EDGE DETECTION, 
http://justin-liang.com/tutorials/canny/

4. Zanurz się w Canny Edge Detection przy użyciu OpenCV-Python, 
https://ichi.pro/pl/zanurz-sie-w-canny-edge-detection-przy-uzyciu-opencv-
python-129958935503260

5. Abhisek Jana, Implement Canny edge detector using Python from scratch, May 20, 2019, 
http://www.adeveloperdiary.com/data-science/computer-vision/implement-canny-edge-detector-
using-python-from-scratch/

6. Image derivative, 
https://towardsdatascience.com/image-derivative-8a07a4118550

https://towardsdatascience.com/canny-edge-detection-step-by-step-in-python-computer-vision-b49c3a2d8123
https://towardsdatascience.com/canny-edge-detection-step-by-step-in-python-computer-vision-b49c3a2d8123
https://docs.opencv.org/3.4/da/d22/tutorial_py_canny.html
http://justin-liang.com/tutorials/canny/
https://ichi.pro/pl/zanurz-sie-w-canny-edge-detection-przy-uzyciu-opencv-python-129958935503260
https://ichi.pro/pl/zanurz-sie-w-canny-edge-detection-przy-uzyciu-opencv-python-129958935503260
http://www.adeveloperdiary.com/data-science/computer-vision/implement-canny-edge-detector-using-python-from-scratch/
http://www.adeveloperdiary.com/data-science/computer-vision/implement-canny-edge-detector-using-python-from-scratch/
https://towardsdatascience.com/image-derivative-8a07a4118550

