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Curvature



Curvature
Definition
Intuitively, you can consider curvature as the rate of 
change in edge direction.


This rate of change characterises the points in a curve -- 
points where the edge direction changes rapidly are 
corners, whereas points where there is little change in edge 
direction correspond to "straight" lines.


Such extreme points are very useful for shape 
description and matching, since they represent 
significant information with reduced data.



Curvature for planar curves
Definition

Curvature is normally defined by considering a parametric form 
of a planar curve.


The parametric contour  describes the 
points in a continuous curve as the end points of the 
position vector.


Here, the values of  define an arbitrary parameterisation, 
 and  are the standard unit vectors in 

Cartesian 2D coordinate system. 


Changes in the position vector are given by the tangent vector 
function of the curve :


.

v(t) = x(t)Ux + y(t)Uy

t
Ux = [1,0] Uy = [0,1]

v(t)

v′ (t) = x′ (t)Ux + y′ (t)Uy



Curvature for planar curves
Definition
This vectorial expression has a simple intuitive meaning.


If you think of the trace of the curve as the motion of a point 
and  is related to time, the tangent vector defines the 
instantaneous motion. At any moment, the point moves with 
a speed given by:





in the direction:


.

t

|v′ (t) | = x′ (t)2 + y′ (t)2

ϕ(t) = tan−1 ( y′ (t)
x′ (t) )



Curvature for planar curves
Definition
The curvature at a point  describes the changes in the direction  with respect 
to changes in arc length. That is:


,


where  is arc length along the edge itself.


Curvature is given with respect to arc length because a curve parameterised by arc 
length maintains a constant speed of motion.


Here  is the angle of the tangent to the curve.


That is, , where  is the gradient direction defined by well known 
formula introduced in previous part:





That is, if we apply an edge detector operator to an image, then we can 
compute  to obtain a normal direction for each point in a curve. The tangent to 
a curve is given by an orthogonal vector.

v(t) ϕ(t)

κ(t) =
dϕ(t)

ds
s

ϕ

ϕ = θ ± 90∘ θ

θ(x, y) = edir(x, y) = tan−1 (
My(x, y)
Mx(x, y) )

θ



Curvature for planar curves
Computing
By considering that:


,


then the curvature at a point  is given by:


.


This relationship is called the curvature function, and it is the 
standard measure of curvature for planar curves.

ϕ(t) = tan−1 ( y′ (t)
x′ (t) )

v(t)

κ(t) =
x′ (t)y′ ′ (t) − y′ (t)x′ ′ (t)

(x′ (t)2 + y′ (t)2)
3
2



Curvature for planar curves
Computing
For curves in digital images, the derivatives must be 
computed from discrete data. This can be done in three 
main ways.


1. The most obvious approach is to calculate curvature by 
directly computing the difference between angular 
direction of successive edge pixels in a curve.


2. A second approach is to derive a measure of curvature 
from changes in image intensity.


3. Finally, a measure of curvature can be obtained by 
correlation.



Computing curvature by 
differences in edge direction



Computing curvature
Computing differences in edge direction
To compute curvature in digital images you can measure the 
angular change along the curve’s path. This approach merely 
computes the difference in edge direction between connected pixels 
forming a discrete curve.


That is, it approximates the derivative:





as the direction difference between neighbouring pixels. As such, 
curvature is simply given by:





where the sequence . represents the 
gradient direction of a sequence of pixels defining a curve segment. 
Gradient direction can be obtained as the angle given by an edge 
detector operator.

κ(t) =
dϕ(t)

ds

k(t) = ϕt+1 − ϕt−1

…, ϕt−2, ϕt−1, ϕt, ϕt+1, ϕt+2, …



Computing curvature
Computing differences in edge direction
Alternatively, gradient direction can be computed by considering 
the positions of pixels in the sequence. That is, by defining:





where  denotes pixel  in the sequence. Since edge points 
are only defined at discrete points, this angle can only take 
eight values, so the computed curvature is very ragged. This 
can be smoothed by considering the difference in mean angular 
direction of  pixels on the leading and trailing curve segment:


.


The average gives some immunity to noise. The value of , 
defines a compromise between accuracy and noise sensitivity.

ϕt =
yt−1 − yt+1

xt−1 − xt+1

(xt, yt) t

n

kn(t) =
1
n

n

∑
i=1

ϕt+i −
1
n

n

∑
i=1

ϕt−i =
1
n

n

∑
i=1

(ϕt+i − ϕt−i)

n



Computing curvature
Computing differences in edge direction
From the previous slide it seems to be simple process: it should be 
enough to use magnitude and angle computed for example with the 
Canny edge operator.


The problem is, how to determine pixels belonging to one curve?


The simplest option is:


1. For each pixel with coordinates  belonging to some 
edge (i.e. a pixel with magnitude greater than zero) define its close 
neighborhood (small region surrounding it) , as we did in 
case of nonlocal means filter described in Advanced smoothing 
filters part.


2. Then consider all pixels from  as pixels from the same curve 
as pixel .


Of course, this is a great oversimplification but it may works in your 
case.

p = (xp, yp)

R(p)

R(p)
p



Computing curvature
Computing differences in edge direction
The following code implements detecting curvature by angle differences. Notice that to 
calculate angle difference a dot product is used. See an explanation of this on next slide.


for x,y in itertools.product(range(0, width), range(0, height)):  
  # Edge  
  if magnitude[y,x] > 0:  
 
  # Consider neighbor edges  
  edgesNeigbor = []  
 
  for wx,wy in itertools.product(range(-windowDelta, windowDelta+1), \  
  range(-windowDelta, windowDelta+1)):  
    if magnitude[y+wy, x+wx] > 0 :  
      edgesNeigbor.append((y+wy,x+wx))  
 
  # Use dot product to measure angle difference  
  np = len(edgesNeigbor)  
  for p in range(0, np):  
    y1 = (edgesNeigbor[p])[0]  
    x1 = (edgesNeigbor[p])[1]  
 
    curvature[y,x] += 1.0-(cos(angle[y1,x1]) * cos(angle[y,x]) \  
    + sin(angle[y1,x1]) * sin(angle[y,x]))  
 
  if np > 0:  
    curvature[y,x] /= np



Computing curvature
Computing differences in edge direction
How to use dot product to calculate angle difference?


If we have two tangent lines, one at point  and angle 
 and second at point  and angle , calculating their 

angle difference  is equivalent to calculating angle   
between them:


(x1, y1)
α (x2, y2) β

α − β γ



Computing curvature
Computing differences in edge direction
Both points can be represented by the circle equation in parametric form:


,


.


Because we care only about directions, 
we can consider points  and  
such that both preserves their angle 
and both are located at the circle centered 
at the point , with radius equal to 1.


With this conditions:


,





and one tangent line has direction given 
by vector  of length 1:





while second tangent line has direction given by vector  also of length 1:


.

(x1, y1) = (x′ 0 + r1 cos α, y0 + r1 sin α)

(x2, y2) = (x0 + r2 cos β, y0 + r2 sin β)

(x′ 1, y′ 1) (x′ 2, y′ 2)

(0,0)

(x′ 1, y′ 1) = (cos α, sin α)

(x′ 2, y′ 2) = (cos β, sin β)

v

v = [cos α, sin α]

w

w = [cos β, sin β]



Computing curvature
Computing differences in edge direction
How to use dot product to calculate angle difference?


As we know, the dot product of two Euclidean vectors  and 
 is defined by:





where  is the angle between  and . If vectors are 
normalized to a length equal to 1, this formula simplifies to:


.


Thus  can be computed as:


.

v
w

v ⋅ w = ∥v∥ ∥w∥ cos θ

θ v w

v ⋅ w = cos θ

θ

θ = arccos(v ⋅ w)



Computing curvature
Computing differences in edge direction
From previous slide you know that angle  between two vectors  and  is given by formula:





In our case:





so





The domain and the range of  are given below:





As you can see,  transforms monotonically interval  into . Computing trigonometric 
function and their inverses is time consuming task. Saying the truth, in this case we don't need exact value -- all the 
transformations which are monotonic and spans in positive range of values are acceptable, as capable of expressing 
presence of the edge.


In our case the following transformation is used:





so:





and it preserves descending nature of  function: if product part  changes from -1 to 1, 
values of  changes from  to 0; the same is for  as it changes from 2 to 0. 


θ v w

θ = arccos(v ⋅ w)

v ⋅ w = [cos α, sin α] ⋅ [cos β, sin β] = cos α cos β + sin α sin β

γ = arccos(v ⋅ w) = arccos(cos α cos β + sin α sin β)

arccos

arccos : [−1,1] ⟶ [0,π]

arccos [−1,1] [0,π] ≈ [0,3.14]

k(α, β) = 1 − (cos α cos β + sin α sin β)

k : [−1,1] ⟶ [0,2]

arccos cos α cos β + sin α sin β
arccos π k



Computing curvature by changes 
in intensity (differentiation)



Computing curvature
Measuring curvature by changes in intensity (differentiation)
We can derive the curvature as a function of angular changes in the discrete 
image. This derivation can be based on the measure of changes in image 
intensity.


We can represent the curve direction at each image point as the function . 
According to the definition of curvature:


[...] if we apply an edge detector operator to an image, then we can compute 
 to obtain a normal direction for each point in a curve. The tangent to a 

curve is given by an orthogonal vector [...] 

we should compute the change in these direction values normal to the image 
edge 

ϕ(x, y)

θ



Computing curvature
Measuring curvature by changes in intensity (differentiation)
The curve at an edge can be locally approximated by the 
points given by the parametric line defined by:



x(t) = x + t cos(ϕ(x, y))

y(t) = y + t sin(ϕ(x, y))



Computing curvature
Measuring curvature by changes in intensity (differentiation)
Thus, the curvature is given by the change in the function  with 
respect to :





From previous material (see Prewitt edge detection operator in Low-level 
feature extraction. Edge detection) you know that edge magnitude and 
edge direction (gradient direction, so it is perpendicular to an edge) can be 
calculated as:


,


,


where  is the vertical template and  is the horizontal template 
defined by operator.

ϕ(x, y)
t

κϕ(x, y) =
∂ϕ(x, y)

∂t
=

∂ϕ(x, y)
∂x

x(t)
∂t

+
∂ϕ(x, y)

∂y
y(t)
∂t

em(x, y) = Mx(x, y)2 + My(x, y)2

θ(x, y) = edir(x, y) = tan−1 (
My(x, y)
Mx(x, y) )

Mx My



Computing curvature
Measuring curvature by changes in intensity (differentiation)
Very basic property of vectors in 2D space is that given a non zero vector:





the vector:





is perpendicular to .


The unit vector is then obtained by dividing by its norm:


,


where:





It is worth to note, that vector:





is the other perpendicular to .


u = [a, b]

v = [b, − a]

u

v = (
b

∥v∥
, −

a
∥v∥

)

∥v∥ = a2 + b2

w = [−b, a]

u



Computing curvature
Measuring curvature by changes in intensity (differentiation)
In consequence, if direction:





is defined by vector  perpendicular to a curve at a point , then vector  
defines direction tangent at the same point:


.


Because:


, , , , where ,


then:


, 


edir(x, y) = tan−1 (
My(x, y)
Mx(x, y) )
[Mx, My] (x, y) [−My, Mx]

ϕ(x, y) = tan−1 ( Mx(x, y)
−My(x, y) )

sin(α) =
y
r

cos(α) =
x
r

tan(α) =
y
x

tan−1 ( y
x ) = α r = x2 + y2

sin(ϕ(x, y)) =
Mx

M2
x + M2

y

cos(ϕ(x, y)) =
−My

M2
x + M2

y



Computing curvature
Measuring curvature by changes in intensity (differentiation)
As you remember, derivative of  function (arcus tangens) is given by:


.


Because in our case:


,


where:


,


so:





tan−1

tan−1(a) =
1

1 − a2

ϕ(x, y) = tan−1 (a(x, y))

a(x, y) =
Mx(x, y)

−My(x, y)

∂ϕ
∂x

=
∂ϕ
∂a

∂a
∂x

=
1

1 + a(x, y)2

∂
∂x

a(x, y) =
1

1 + M2
x

(−My)
2

−
∂Mx

∂x My + Mx
∂My

∂x

M2
y

=
−(My

∂Mx

∂x − Mx
∂My

∂x )
M2

y + M2
x

∂ϕ
∂y

=
∂ϕ
∂a

∂a
∂y

=
1

1 + a(x, y)2

∂
∂y

a(x, y) =
1

1 + M2
x

(−My)
2

−
∂Mx

∂y My + Mx
∂My

∂y

M2
y

=
Mx

∂My

∂y − My
∂Mx

∂y

M2
y + M2

x



Computing curvature
Measuring curvature by changes in intensity (differentiation)
Both derivatives calculated in previous slide:








are needed to calculate curvature:





Two other missing component can be easily calculated from previously given definitions:








In consequence respective derivatives are given by:


,





and finally:


,


∂ϕ
∂x

=
−1

M2
y + M2

x (My
∂Mx

∂x
− Mx

∂My

∂x )
∂ϕ
∂y

=
1

M2
y + M2

x (Mx
∂My

∂y
− My

∂Mx

∂y )

κϕ(x, y) =
∂ϕ(x, y)

∂t
=

∂ϕ(x, y)
∂x

∂x(t)
∂t

+
∂ϕ(x, y)

∂y
∂y(t)

∂t

x(t) = x + t cos(ϕ(x, y))

y(t) = y + t sin(ϕ(x, y))

∂x(t)
∂t

= cos(ϕ(x, y))

∂y(t)
∂t

= sin(ϕ(x, y))

∂x(t)
∂t

=
−My

M2
x + M2

y

∂y(t)
∂t

=
Mx

M2
x + M2

y

.



Computing curvature
Measuring curvature by changes in intensity (differentiation)
Last step is to combine all the components:


, 


, 


in curvature formula:





 

+ 


∂ϕ
∂x

=
−1

M2
y + M2

x (My
∂Mx

∂x
− Mx

∂My

∂x ) ∂ϕ
∂y

=
1

M2
y + M2

x (Mx
∂My

∂y
− My

∂Mx

∂y )
∂x(t)

∂t
=

−My

M2
x + M2

y

∂y(t)
∂t

=
Mx

M2
x + M2

y

.

κϕ(x, y) =
∂ϕ(x, y)

∂t
=

∂ϕ(x, y)
∂x

∂x(t)
∂t

+
∂ϕ(x, y)

∂y
∂y(t)

∂t

κϕ(x, y) =
−1

M2
y + M2

x (My
∂Mx

∂x
− Mx

∂My

∂x )
−My

M2
x + M2

y

+
1

M2
y + M2

x (Mx
∂My

∂y
− My

∂Mx

∂y ) Mx

M2
x + M2

y

=
1

(M2
x + M2

y )
3
2 (M2

y
∂Mx

∂x
− MxMy

∂My

∂x ) +
1

(M2
x + M2

y )
3
2 (M2

x
∂My

∂y
− MxMy

∂Mx

∂y )
=

1

(M2
x + M2

y )
3
2 (M2

y
∂Mx

∂x
− MxMy

∂My

∂x
+ M2

x
∂My

∂y
− MxMy

∂Mx

∂y )



Computing curvature
Measuring curvature by changes in intensity (differentiation)
The formula:





defines a forward measure of curvature along the edge direction. We can 
actually use an alternative direction to the measure of curvature. We can 
differentiate backwards (in the direction of  which gives . In this 
case, we consider that the curve is given by:








Thus:


κϕ(x, y) =
1

(M2
x + M2

y )
3
2 (M2

y
∂Mx

∂x
− MxMy

∂My

∂x
+ M2

x
∂My

∂y
− MxMy

∂Mx

∂y )

−ϕ(x, y) κ−ϕ(x, y)

x(t) = x + t cos(−ϕ(x, y))

y(t) = y + t sin(−ϕ(x, y))

κ−ϕ(x, y) =
1

(M2
x + M2

y )
3
2 (M2

y
∂Mx

∂x
− MxMy

∂My

∂x
− M2

x
∂My

∂y
+ MxMy

∂Mx

∂y )



Computing curvature
Measuring curvature by changes in intensity (differentiation)
Two further measures can be obtained by considering the 
forward and a backward differential along the normal. These 
differentials cannot be related to the actual definition of 
curvature, but can be explained intuitively. If we consider 
that curves are more than one pixel wide, differentiation 
along the edge will measure the difference between the 
gradient angle between interior and exterior borders of a 
wide curve. In theory, the tangent angle should be the same. 
However, in discrete images there is a change due to the 
measures in a window. If the curve is a straight line, then the 
interior and exterior borders are the same. Thus, gradient 
direction normal to the edge does not change locally. As we 
bend a straight line, we increase the difference between the 
curves defining the interior and exterior borders. Thus, we 
expect the measure of gradient direction to change. That is, 
if we differentiate along the normal direction, we maximise 
detection of gross curvature.



Computing curvature
Measuring curvature by changes in intensity (differentiation)
The value  is obtained when:








Thus:





In a backward formulation along a normal direction to the edge, we 
obtain:


.

κ⊥ϕ(x, y)

x(t) = x + t sin(ϕ(x, y))

y(t) = y + t cos(ϕ(x, y))

κ⊥ϕ(x, y) =
1

(M2
x + M2

y )
3
2 (M2

x
∂My

∂x
− MxMy

∂My

∂x
− MxMy

∂My

∂y
+ M2

y
∂Mx

∂y )

κ−⊥ϕ(x, y) =
1

(M2
x + M2

y )
3
2 (−M2

x
∂My

∂x
+ MxMy

∂Mx

∂x
− MxMy

∂My

∂y
+ M2

y
∂Mx

∂y )



Computing curvature
Measuring curvature by changes in intensity (differentiation)
Code below shows an implementation of the four measures of curvature. The arrays Mx and My store the 
gradient obtained by the convolutions of the original image with Sobel kernels in horizontal and vertical 
directions. The arrays Mxx, Mxy, Myx and Myy contain the convolutions of Mx and My with Sobel kernels.


for x,y in itertools.product(range(0, width), range(0, height)):  
  # If it is an edge  
  if magnitude[y,x] > 0:  
    Mx2,My2,MxMy = mX[y,x]*mX[y,x], mY[y,x]*mY[y,x], mX[y,x]*mY[y,x]  
 
    if Mx2 + My2 !=0.0:  
      p = 1.0/ pow((Mx2 + My2), 1.5)  
 
    elif op == "T":  
      curvature[y,x] = p * (My2 * mXx[y,x] - MxMy * mYx[y,x] + \  
      Mx2 * mYy[y,x] - MxMy * mXy[y,x])  
 
    elif op == "TI":  
      curvature[y,x] = p * (-My2 * mXx[y,x] + MxMy * mYx[y,x] - \  
      Mx2 * mYy[y,x] + MxMy * mXy[y,x])  
 
    elif op == "N":  
      curvature[y,x] = p * (Mx2 * mYx[y,x] - MxMy * mYx[y,x] - \  
      MxMy * mYy[y,x] + My2 * mXy[y,x])  
 
    else: #if op == "NI":  
      curvature[y,x] = p * (-Mx2 * mYx[y,x] + MxMy * mXx[y,x] + \  
      MxMy * mYy[y,x] - My2 * mXy[y,x])  
 
    curvature[y,x] = fabs(curvature[y,x])



Computing curvature by 
computing correlation



Computing curvature
Measuring curvature by computing correlation
Corners are regions in the image with large variation in 
intensity in all the directions.


Harris corner detector -- see [2, 3, 4, 5]
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