
Image Feature Extraction Techniques

Low-level feature
extraction
Corner extraction

Piotr Fulmański

Curvature

Curvature
Definition
Intuitively, you can consider curvature as the rate of
change in edge direction.

This rate of change characterises the points in a curve --
points where the edge direction changes rapidly are
corners, whereas points where there is little change in edge
direction correspond to "straight" lines.

Such extreme points are very useful for shape
description and matching, since they represent
significant information with reduced data.

Curvature for planar curves
Definition

Curvature is normally defined by considering a parametric form
of a planar curve.

The parametric contour describes the
points in a continuous curve as the end points of the
position vector.

Here, the values of define an arbitrary parameterisation,
 and are the standard unit vectors in

Cartesian 2D coordinate system.

Changes in the position vector are given by the tangent vector
function of the curve :

.

v(t) = x(t)Ux + y(t)Uy

t
Ux = [1,0] Uy = [0,1]

v(t)

v′￼(t) = x′￼(t)Ux + y′￼(t)Uy

Curvature for planar curves
Definition
This vectorial expression has a simple intuitive meaning.

If you think of the trace of the curve as the motion of a point
and is related to time, the tangent vector defines the
instantaneous motion. At any moment, the point moves with
a speed given by:

in the direction:

.

t

|v′￼(t) | = x′￼(t)2 + y′￼(t)2

ϕ(t) = tan−1 (y′￼(t)
x′￼(t))

Curvature for planar curves
Definition
The curvature at a point describes the changes in the direction with respect
to changes in arc length. That is:

,

where is arc length along the edge itself.

Curvature is given with respect to arc length because a curve parameterised by arc
length maintains a constant speed of motion.

Here is the angle of the tangent to the curve.

That is, , where is the gradient direction defined by well known
formula introduced in previous part:

That is, if we apply an edge detector operator to an image, then we can
compute to obtain a normal direction for each point in a curve. The tangent to
a curve is given by an orthogonal vector.

v(t) ϕ(t)

κ(t) =
dϕ(t)

ds
s

ϕ

ϕ = θ ± 90∘ θ

θ(x, y) = edir(x, y) = tan−1 (
My(x, y)
Mx(x, y))

θ

Curvature for planar curves
Computing
By considering that:

,

then the curvature at a point is given by:

.

This relationship is called the curvature function, and it is the
standard measure of curvature for planar curves.

ϕ(t) = tan−1 (y′￼(t)
x′￼(t))

v(t)

κ(t) =
x′￼(t)y′￼′￼(t) − y′￼(t)x′￼′￼(t)

(x′￼(t)2 + y′￼(t)2)
3
2

Curvature for planar curves
Computing
For curves in digital images, the derivatives must be
computed from discrete data. This can be done in three
main ways.

1. The most obvious approach is to calculate curvature by
directly computing the difference between angular
direction of successive edge pixels in a curve.

2. A second approach is to derive a measure of curvature
from changes in image intensity.

3. Finally, a measure of curvature can be obtained by
correlation.

Computing curvature by
differences in edge direction

Computing curvature
Computing differences in edge direction
To compute curvature in digital images you can measure the
angular change along the curve’s path. This approach merely
computes the difference in edge direction between connected pixels
forming a discrete curve.

That is, it approximates the derivative:

as the direction difference between neighbouring pixels. As such,
curvature is simply given by:

where the sequence . represents the
gradient direction of a sequence of pixels defining a curve segment.
Gradient direction can be obtained as the angle given by an edge
detector operator.

κ(t) =
dϕ(t)

ds

k(t) = ϕt+1 − ϕt−1

…, ϕt−2, ϕt−1, ϕt, ϕt+1, ϕt+2, …

Computing curvature
Computing differences in edge direction
Alternatively, gradient direction can be computed by considering
the positions of pixels in the sequence. That is, by defining:

where denotes pixel in the sequence. Since edge points
are only defined at discrete points, this angle can only take
eight values, so the computed curvature is very ragged. This
can be smoothed by considering the difference in mean angular
direction of pixels on the leading and trailing curve segment:

.

The average gives some immunity to noise. The value of ,
defines a compromise between accuracy and noise sensitivity.

ϕt =
yt−1 − yt+1

xt−1 − xt+1

(xt, yt) t

n

kn(t) =
1
n

n

∑
i=1

ϕt+i −
1
n

n

∑
i=1

ϕt−i =
1
n

n

∑
i=1

(ϕt+i − ϕt−i)

n

Computing curvature
Computing differences in edge direction
From the previous slide it seems to be simple process: it should be
enough to use magnitude and angle computed for example with the
Canny edge operator.

The problem is, how to determine pixels belonging to one curve?

The simplest option is:

1. For each pixel with coordinates belonging to some
edge (i.e. a pixel with magnitude greater than zero) define its close
neighborhood (small region surrounding it) , as we did in
case of nonlocal means filter described in Advanced smoothing
filters part.

2. Then consider all pixels from as pixels from the same curve
as pixel .

Of course, this is a great oversimplification but it may works in your
case.

p = (xp, yp)

R(p)

R(p)
p

Computing curvature
Computing differences in edge direction
The following code implements detecting curvature by angle differences. Notice that to
calculate angle difference a dot product is used. See an explanation of this on next slide.

for x,y in itertools.product(range(0, width), range(0, height)):  
 # Edge  
 if magnitude[y,x] > 0:  
 
 # Consider neighbor edges  
 edgesNeigbor = []  
 
 for wx,wy in itertools.product(range(-windowDelta, windowDelta+1), \  
 range(-windowDelta, windowDelta+1)):  
 if magnitude[y+wy, x+wx] > 0 :  
 edgesNeigbor.append((y+wy,x+wx))  
 
 # Use dot product to measure angle difference  
 np = len(edgesNeigbor)  
 for p in range(0, np):  
 y1 = (edgesNeigbor[p])[0]  
 x1 = (edgesNeigbor[p])[1]  
 
 curvature[y,x] += 1.0-(cos(angle[y1,x1]) * cos(angle[y,x]) \  
 + sin(angle[y1,x1]) * sin(angle[y,x]))  
 
 if np > 0:  
 curvature[y,x] /= np

Computing curvature
Computing differences in edge direction
How to use dot product to calculate angle difference?

If we have two tangent lines, one at point and angle
 and second at point and angle , calculating their

angle difference is equivalent to calculating angle
between them:

(x1, y1)
α (x2, y2) β

α − β γ

Computing curvature
Computing differences in edge direction
Both points can be represented by the circle equation in parametric form:

,

.

Because we care only about directions, 
we can consider points and  
such that both preserves their angle 
and both are located at the circle centered 
at the point , with radius equal to 1.

With this conditions:

,

and one tangent line has direction given 
by vector of length 1:

while second tangent line has direction given by vector also of length 1:

.

(x1, y1) = (x′￼0 + r1 cos α, y0 + r1 sin α)

(x2, y2) = (x0 + r2 cos β, y0 + r2 sin β)

(x′￼1, y′￼1) (x′￼2, y′￼2)

(0,0)

(x′￼1, y′￼1) = (cos α, sin α)

(x′￼2, y′￼2) = (cos β, sin β)

v

v = [cos α, sin α]

w

w = [cos β, sin β]

Computing curvature
Computing differences in edge direction
How to use dot product to calculate angle difference?

As we know, the dot product of two Euclidean vectors and
 is defined by:

where is the angle between and . If vectors are
normalized to a length equal to 1, this formula simplifies to:

.

Thus can be computed as:

.

v
w

v ⋅ w = ∥v∥ ∥w∥ cos θ

θ v w

v ⋅ w = cos θ

θ

θ = arccos(v ⋅ w)

Computing curvature
Computing differences in edge direction
From previous slide you know that angle between two vectors and is given by formula:

In our case:

so

The domain and the range of are given below:

As you can see, transforms monotonically interval into . Computing trigonometric
function and their inverses is time consuming task. Saying the truth, in this case we don't need exact value -- all the
transformations which are monotonic and spans in positive range of values are acceptable, as capable of expressing
presence of the edge.

In our case the following transformation is used:

so:

and it preserves descending nature of function: if product part changes from -1 to 1,
values of changes from to 0; the same is for as it changes from 2 to 0.

θ v w

θ = arccos(v ⋅ w)

v ⋅ w = [cos α, sin α] ⋅ [cos β, sin β] = cos α cos β + sin α sin β

γ = arccos(v ⋅ w) = arccos(cos α cos β + sin α sin β)

arccos

arccos : [−1,1] ⟶ [0,π]

arccos [−1,1] [0,π] ≈ [0,3.14]

k(α, β) = 1 − (cos α cos β + sin α sin β)

k : [−1,1] ⟶ [0,2]

arccos cos α cos β + sin α sin β
arccos π k

Computing curvature by changes
in intensity (differentiation)

Computing curvature
Measuring curvature by changes in intensity (differentiation)
We can derive the curvature as a function of angular changes in the discrete
image. This derivation can be based on the measure of changes in image
intensity.

We can represent the curve direction at each image point as the function .
According to the definition of curvature:

[...] if we apply an edge detector operator to an image, then we can compute
 to obtain a normal direction for each point in a curve. The tangent to a

curve is given by an orthogonal vector [...]

we should compute the change in these direction values normal to the image
edge

ϕ(x, y)

θ

Computing curvature
Measuring curvature by changes in intensity (differentiation)
The curve at an edge can be locally approximated by the
points given by the parametric line defined by:

x(t) = x + t cos(ϕ(x, y))

y(t) = y + t sin(ϕ(x, y))

Computing curvature
Measuring curvature by changes in intensity (differentiation)
Thus, the curvature is given by the change in the function with
respect to :

From previous material (see Prewitt edge detection operator in Low-level
feature extraction. Edge detection) you know that edge magnitude and
edge direction (gradient direction, so it is perpendicular to an edge) can be
calculated as:

,

,

where is the vertical template and is the horizontal template
defined by operator.

ϕ(x, y)
t

κϕ(x, y) =
∂ϕ(x, y)

∂t
=

∂ϕ(x, y)
∂x

x(t)
∂t

+
∂ϕ(x, y)

∂y
y(t)
∂t

em(x, y) = Mx(x, y)2 + My(x, y)2

θ(x, y) = edir(x, y) = tan−1 (
My(x, y)
Mx(x, y))

Mx My

Computing curvature
Measuring curvature by changes in intensity (differentiation)
Very basic property of vectors in 2D space is that given a non zero vector:

the vector:

is perpendicular to .

The unit vector is then obtained by dividing by its norm:

,

where:

It is worth to note, that vector:

is the other perpendicular to .

u = [a, b]

v = [b, − a]

u

v = (
b

∥v∥
, −

a
∥v∥

)

∥v∥ = a2 + b2

w = [−b, a]

u

Computing curvature
Measuring curvature by changes in intensity (differentiation)
In consequence, if direction:

is defined by vector perpendicular to a curve at a point , then vector
defines direction tangent at the same point:

.

Because:

, , , , where ,

then:

,

edir(x, y) = tan−1 (
My(x, y)
Mx(x, y))
[Mx, My] (x, y) [−My, Mx]

ϕ(x, y) = tan−1 (Mx(x, y)
−My(x, y))

sin(α) =
y
r

cos(α) =
x
r

tan(α) =
y
x

tan−1 (y
x) = α r = x2 + y2

sin(ϕ(x, y)) =
Mx

M2
x + M2

y

cos(ϕ(x, y)) =
−My

M2
x + M2

y

Computing curvature
Measuring curvature by changes in intensity (differentiation)
As you remember, derivative of function (arcus tangens) is given by:

.

Because in our case:

,

where:

,

so:

tan−1

tan−1(a) =
1

1 − a2

ϕ(x, y) = tan−1 (a(x, y))

a(x, y) =
Mx(x, y)

−My(x, y)

∂ϕ
∂x

=
∂ϕ
∂a

∂a
∂x

=
1

1 + a(x, y)2

∂
∂x

a(x, y) =
1

1 + M2
x

(−My)
2

−
∂Mx

∂x My + Mx
∂My

∂x

M2
y

=
−(My

∂Mx

∂x − Mx
∂My

∂x)
M2

y + M2
x

∂ϕ
∂y

=
∂ϕ
∂a

∂a
∂y

=
1

1 + a(x, y)2

∂
∂y

a(x, y) =
1

1 + M2
x

(−My)
2

−
∂Mx

∂y My + Mx
∂My

∂y

M2
y

=
Mx

∂My

∂y − My
∂Mx

∂y

M2
y + M2

x

Computing curvature
Measuring curvature by changes in intensity (differentiation)
Both derivatives calculated in previous slide:

are needed to calculate curvature:

Two other missing component can be easily calculated from previously given definitions:

In consequence respective derivatives are given by:

,

and finally:

,

∂ϕ
∂x

=
−1

M2
y + M2

x (My
∂Mx

∂x
− Mx

∂My

∂x)
∂ϕ
∂y

=
1

M2
y + M2

x (Mx
∂My

∂y
− My

∂Mx

∂y)

κϕ(x, y) =
∂ϕ(x, y)

∂t
=

∂ϕ(x, y)
∂x

∂x(t)
∂t

+
∂ϕ(x, y)

∂y
∂y(t)

∂t

x(t) = x + t cos(ϕ(x, y))

y(t) = y + t sin(ϕ(x, y))

∂x(t)
∂t

= cos(ϕ(x, y))

∂y(t)
∂t

= sin(ϕ(x, y))

∂x(t)
∂t

=
−My

M2
x + M2

y

∂y(t)
∂t

=
Mx

M2
x + M2

y

.

Computing curvature
Measuring curvature by changes in intensity (differentiation)
Last step is to combine all the components:

,

,

in curvature formula:

+

∂ϕ
∂x

=
−1

M2
y + M2

x (My
∂Mx

∂x
− Mx

∂My

∂x) ∂ϕ
∂y

=
1

M2
y + M2

x (Mx
∂My

∂y
− My

∂Mx

∂y)
∂x(t)

∂t
=

−My

M2
x + M2

y

∂y(t)
∂t

=
Mx

M2
x + M2

y

.

κϕ(x, y) =
∂ϕ(x, y)

∂t
=

∂ϕ(x, y)
∂x

∂x(t)
∂t

+
∂ϕ(x, y)

∂y
∂y(t)

∂t

κϕ(x, y) =
−1

M2
y + M2

x (My
∂Mx

∂x
− Mx

∂My

∂x)
−My

M2
x + M2

y

+
1

M2
y + M2

x (Mx
∂My

∂y
− My

∂Mx

∂y) Mx

M2
x + M2

y

=
1

(M2
x + M2

y)
3
2 (M2

y
∂Mx

∂x
− MxMy

∂My

∂x) +
1

(M2
x + M2

y)
3
2 (M2

x
∂My

∂y
− MxMy

∂Mx

∂y)
=

1

(M2
x + M2

y)
3
2 (M2

y
∂Mx

∂x
− MxMy

∂My

∂x
+ M2

x
∂My

∂y
− MxMy

∂Mx

∂y)

Computing curvature
Measuring curvature by changes in intensity (differentiation)
The formula:

defines a forward measure of curvature along the edge direction. We can
actually use an alternative direction to the measure of curvature. We can
differentiate backwards (in the direction of which gives . In this
case, we consider that the curve is given by:

Thus:

κϕ(x, y) =
1

(M2
x + M2

y)
3
2 (M2

y
∂Mx

∂x
− MxMy

∂My

∂x
+ M2

x
∂My

∂y
− MxMy

∂Mx

∂y)

−ϕ(x, y) κ−ϕ(x, y)

x(t) = x + t cos(−ϕ(x, y))

y(t) = y + t sin(−ϕ(x, y))

κ−ϕ(x, y) =
1

(M2
x + M2

y)
3
2 (M2

y
∂Mx

∂x
− MxMy

∂My

∂x
− M2

x
∂My

∂y
+ MxMy

∂Mx

∂y)

Computing curvature
Measuring curvature by changes in intensity (differentiation)
Two further measures can be obtained by considering the
forward and a backward differential along the normal. These
differentials cannot be related to the actual definition of
curvature, but can be explained intuitively. If we consider
that curves are more than one pixel wide, differentiation
along the edge will measure the difference between the
gradient angle between interior and exterior borders of a
wide curve. In theory, the tangent angle should be the same.
However, in discrete images there is a change due to the
measures in a window. If the curve is a straight line, then the
interior and exterior borders are the same. Thus, gradient
direction normal to the edge does not change locally. As we
bend a straight line, we increase the difference between the
curves defining the interior and exterior borders. Thus, we
expect the measure of gradient direction to change. That is,
if we differentiate along the normal direction, we maximise
detection of gross curvature.

Computing curvature
Measuring curvature by changes in intensity (differentiation)
The value is obtained when:

Thus:

In a backward formulation along a normal direction to the edge, we
obtain:

.

κ⊥ϕ(x, y)

x(t) = x + t sin(ϕ(x, y))

y(t) = y + t cos(ϕ(x, y))

κ⊥ϕ(x, y) =
1

(M2
x + M2

y)
3
2 (M2

x
∂My

∂x
− MxMy

∂My

∂x
− MxMy

∂My

∂y
+ M2

y
∂Mx

∂y)

κ−⊥ϕ(x, y) =
1

(M2
x + M2

y)
3
2 (−M2

x
∂My

∂x
+ MxMy

∂Mx

∂x
− MxMy

∂My

∂y
+ M2

y
∂Mx

∂y)

Computing curvature
Measuring curvature by changes in intensity (differentiation)
Code below shows an implementation of the four measures of curvature. The arrays Mx and My store the
gradient obtained by the convolutions of the original image with Sobel kernels in horizontal and vertical
directions. The arrays Mxx, Mxy, Myx and Myy contain the convolutions of Mx and My with Sobel kernels.

for x,y in itertools.product(range(0, width), range(0, height)):  
 # If it is an edge  
 if magnitude[y,x] > 0:  
 Mx2,My2,MxMy = mX[y,x]*mX[y,x], mY[y,x]*mY[y,x], mX[y,x]*mY[y,x]  
 
 if Mx2 + My2 !=0.0:  
 p = 1.0/ pow((Mx2 + My2), 1.5)  
 
 elif op == "T":  
 curvature[y,x] = p * (My2 * mXx[y,x] - MxMy * mYx[y,x] + \  
 Mx2 * mYy[y,x] - MxMy * mXy[y,x])  
 
 elif op == "TI":  
 curvature[y,x] = p * (-My2 * mXx[y,x] + MxMy * mYx[y,x] - \  
 Mx2 * mYy[y,x] + MxMy * mXy[y,x])  
 
 elif op == "N":  
 curvature[y,x] = p * (Mx2 * mYx[y,x] - MxMy * mYx[y,x] - \  
 MxMy * mYy[y,x] + My2 * mXy[y,x])  
 
 else: #if op == "NI":  
 curvature[y,x] = p * (-Mx2 * mYx[y,x] + MxMy * mXx[y,x] + \  
 MxMy * mYy[y,x] - My2 * mXy[y,x])  
 
 curvature[y,x] = fabs(curvature[y,x])

Computing curvature by
computing correlation

Computing curvature
Measuring curvature by computing correlation
Corners are regions in the image with large variation in
intensity in all the directions.

Harris corner detector -- see [2, 3, 4, 5]

Bibliography

Bibliography

1. How to Find Perpendicular Vectors in 2 Dimensions, 
https://www.wikihow.com/Find-Perpendicular-Vectors-in-2-Dimensions  
retrieved, 2021-11-21

2. Harris Corner Detection, 
https://theailearner.com/2021/09/25/harris-corner-detection/  
retrieved, 2021-11-21

3. Show that the determinant of A is equal to the product of its eigenvalues, 
https://math.stackexchange.com/q/507660 
retrieved, 2021-11-21

4. Trace equals sum of eigenvalues in Trace (linear algebra), 
https://en.wikipedia.org/wiki/Trace_(linear_algebra)#Trace_equals_sum_of_eigenvalues  
retrieved, 2021-11-21

5. Mark S. Nixon, Alberto S. Aguado, Feature Extraction and Image Processing for Computer Vision,
Academic Press (Elsevier), 2020 (4th edition), Section: 4.4.1.4 Moravec and Harris detectors

https://www.wikihow.com/Find-Perpendicular-Vectors-in-2-Dimensions
https://theailearner.com/2021/09/25/harris-corner-detection/
https://math.stackexchange.com/q/507660
https://en.wikipedia.org/wiki/Trace_(linear_algebra)#Trace_equals_sum_of_eigenvalues

