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Difference of Gaussians 
(DoG)



Gausian averaging operator

From Basic image processing. Group operators lecture we 
know Gaussian averaging operator which takes the form: 

.


We use it to blur image. The blurred image is obtained by 
convolving the original grayscale image with Gaussian 
kernels (calculated with the following formula for a given 
window size and deviation ).

g(x, y, σ) =
1

2πσ2
e− x2 + y2

2σ2
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Difference of Gaussians (DoG)
Algorithm
Difference of Gaussian is super simple.


1. Choose two different Gaussian kernels selecting two 
different variances  and , and one common window 
size (if you want, you can choose two windows of 
different size).


2. Convolve twice the image with those Gaussian kernels 
separately — you will obtain two differently blurred 
images.


3. Subtract one image from another.


4. Threshold image from previous step to filter out the 
pixels with weaker intensity.

σ1 σ2



Difference of Gaussians (DoG)
Algorithm
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Difference of Gaussians (DoG)
Remarks
The difference of Gaussians can be utilized to increase the 
visibility of edges and other detail present in a digital image.


By blurring you remove components that represent noise 
(they are known as high-frequency components), and by 
subtracting you remove some components that correspond 
to the homogeneous areas in the image (they are known as 
low-frequency components).


Thus, the Difference of Gaussian acts like a bandpass filter.


The remaining components (frequency components) are 
assumed to be associated with the edges in the images.




Approximate Laplacian of 
the Gaussian (LoG) with DoG



Blobs

In computer vision blob is a region in a digital image that 
differ in properties, such as brightness or color, compared to 
surrounding regions. Informally, a blob is a region of an 
image in which some properties are constant or 
approximately constant; all the points in a blob can be 
considered in some sense to be similar to each other.



Laplacian of the Gaussian (LoG)
Remarks
One of the first and also most common blob detectors is based on the 
Laplacian of the Gaussian (LoG). Given an input image , this 
image is convolved by a Gaussian kernel:





at a certain scale  (blur ratio) to give a scale space representation (see 
[2] for examples of different scale applied to an image):





Then, the result of applying the Laplacian operator:





is computed, which usually results in strong positive responses for dark 
blobs of radius  and strong negative responses for bright 
blobs of similar size.

f(x, y)

g(x, y, σ) =
1

2πσ
e− x2 + y2

2σ

σ

L(x, y; σ) = g(x, y, σ) * f(x, y)

∇2L = Lxx + Lyy

r = 2σ



Laplacian of the Gaussian (LoG)
Remarks
Calculating Laplacian is computationally expensive.


The Laplacian of the Gaussian operator  can 
also be computed as the limit case of the difference 
between two Gaussian smoothed images (DoG):


.

∇2L(x, y, σ)

∇2L(x, y; σ) ≈
σ

Δσ (L(x, y; σ + Δσ) − L(x, y; σ))



Laplacian of the Gaussian (LoG)
Remarks
A main problem when applying LoG operator at a single 
scale, however, is that the operator response is strongly 
dependent on the relationship between the size of the blob 
structures in the image domain and the size of the Gaussian 
kernel used for pre-smoothing. In order to automatically 
capture blobs of different (unknown) size in the image 
domain, a multi-scale approach is therefore necessary.



Histogram of oriented 
gradients (HOG)



Histogram of oriented gradients (HOG)
Step 1— preprocess the data
Often underestimated, it is an essential part of any 
algorithm.  Preprocessing data is a crucial step in any 
machine learning project and that’s no different when 
working with images.


We need to preprocess the image and bring down the width 
to height ratio to 1:2. Because, to extract the features, we 
will be dividing the image into 16 x 16  and 8 x 8 blocks, 
each dimension should be a multiple of 16. In the original 
paper the size 64 x 128 was used, but this is not strictly 
required. Rectangular shape was a consequence of the 
primary aim: this type of detection was used in the task of 
pedestrian recognition.



Histogram of oriented gradients (HOG)
Step 2— calculate gradients
Calculate gradient. You can use any formula you want, but 
in most cases we calculate gradients as:



Mx(x, y) = I(x + 1,y) − I(x − 1,y)

My(x, y) = I(x, y + 1) − I(x, y − 1)



Histogram of oriented gradients (HOG)
Step 3 — calculate the magnitude and orientation
Having gradients, you can calculate gradient direction:





and its magnitude:


.

edir(x, y) = tan−1 (
My(x, y)
Mx(x, y) )

em(x, y) = Mx(x, y)2 + My(x, y)2



Histogram of oriented gradients (HOG)
Step 4 — create histograms using gradients and orientation
Method 1 

Create 360 slots (bins, buckets) dividing equally full circle 
into 1 degree parts.


For every pixel, get it angle and add 1 to the slot 
corresponding to this angle.


In result you obtain frequency table which can be used to 
generate a histogram with angle values on the x-axis and 
the frequency on the y-axis.



Histogram of oriented gradients (HOG)
Step 4 — create histograms using gradients and orientation
Method 2 

This method is similar to the previous method, except that 
now you divide full circle into, for example, 10-degree slots.  
So, the number of buckets you would get for this case is 36.




Histogram of oriented gradients (HOG)
Step 4 — create histograms using gradients and orientation
Method 3 

In this method, instead of using the frequency (instead od 
adding 1), you can use the gradient magnitude to fill the 
values in the table.



Histogram of oriented gradients (HOG)
Step 4 — create histograms using gradients and orientation
Method 4 

Each pixel broadcasts a weighted vote to other slots, based on the values found in the gradient computation.


For example, if you have 36 slots, 10 degree each, and for one pixel you obtain direction 17 and magnitude 12 then you 
should add something to the slot 0-9, 10-19 and 20-29. Amount you add should correspond to relation between slot 
range and orientation — the higher contribution should be to the bin value which is closer to the orientation. For example 
you can compute this as follow:























d1 = 0 + floor ( 9 − 0
2 ) − angle = |4 − 17 | = 13

d2 = 10 + floor ( 19 − 10
2 ) − angle = |14 − 17 | = 3

d3 = 20 + floor ( 29 − 20
2 ) − angle = |24 − 17 | = 7

d = d1 + d2 + d3 = 23

Δslot 0-9 =
1
2 (1 −

d1

d ) magnitude =
1
2 (1 −

13
23 ) 12 = 0.43 ⋅ 6 = 2.6

Δslot 10-19 =
1
2 (1 −

d2

d ) magnitude =
1
2 (1 −

3
23 ) 12 = 0.86 ⋅ 6 = 5.21

Δslot 20-29 =
1
2 (1 −

d3

d ) magnitude =
1
2 (1 −

7
23 ) 12 = 0.69 ⋅ 6 = 4.17



Histogram of oriented gradients (HOG)
Step 4 — create histograms using gradients and orientation
The histogram of oriented gradients is not computed for the whole imag but for 
small blocks into which image is divided — 8 x 8 pixels is popular choice.


For each region we obtain one  histogram. In consequence shape of data matrix 
is changed.


Example:


Image initial size (width x height) in pixels: 64 x 128


Small block size in pixels: 8 x 8


Image size in regions: 8 x 16


Histogram size for region: 


Size of new matrix data (matrix with histograms): 8 x 16 x 


Note: On original paper to computer histogram method similar to method 4 but 
a little bit different was used. Moreover, only degrees from 0 to 180 were 
considered, and histogram had 9 bins (20 degree each).

h

h



Histogram of oriented gradients (HOG)
Step 5— normalize histogram
The gradients of the image are very sensitive to the overall 
lighting. This will influence also our histograms calculated 
for 8 x 8 pixels blocks. 


It is difficult (or even impossible) to totally get rid of this 
unwanted behavior, but we can reduce lighting variation by 
normalizing the gradients. To do this, we consider 
overlapping big blocks of the size 16 × 16 pixels, with a 
stride of 8 pixels.


Other words, we combine four 8 × 8 blocks to create a one 
16 × 16 big block. 



Histogram of oriented gradients (HOG)
Step 5— normalize histogram
Other words, we combine four 8 × 8 blocks to create a one 
16 × 16 big block. 

One block Two overlapping blocks in one row Three overlapping blocks in two rows

7 blocks

15 blocks



Histogram of oriented gradients (HOG)
Step 5— normalize histogram

Each 8 × 8 block has a  × 1 matrix for a histogram. So, we 
would have four  × 1 matrices or a single  × 1 matrix for 
one 16 x 16 pixels big block.


To normalize this matrix, we will divide each of these values 
by the square root of the sum of squares of the values. 

h
h 4h



Histogram of oriented gradients (HOG)
Step 6— features for the complete image
From the last step we have features for each 16 × 16 blocks 
of the image — in this case this is a normalized  × 1 
matrix combining 4 histograms from 8 x 8 pixels blocks.


Now our task is to combine all of them to get the features 
for a whole image. We use a very simple approach — all  
× 1 matrices are combined to give one, one-dimensional 
vector of the size:


 .

4h

4h

(4h × 1) ⋅ number_of_big_blocks



Histogram of oriented gradients (HOG)
Step 6— features for the complete image




How many big blocks do we have? The number of big 
blocks for one dimension is equal to: 





In case of 64 x 128 pixels image we have:





In consequence final feature vector has length of: 


(4h × 1) ⋅ number_of_big_blocks

dimension_in_pixels
8

− 1

( 64
8

− 1) ( 128
8

− 1) = (8 − 1)(16 − 1) = 7 ⋅ 15 = 105

4h ⋅ 105 = 420h



Histogram of oriented gradients (HOG)

Python code from scratch as well as with skimage library 
can be found in [5].



Scale invariant feature 
transform (SIFT) 



Scale-Invariant Feature Transform (SIFT)
SIFT stands for Scale-Invariant Feature Transform and was first presented in 2004, 
by D.Lowe, University of British Columbia. SIFT is invariance to image scale and 
rotation. 


This algorithm is really effective:


Image source: [1]



Scale-Invariant Feature Transform (SIFT)

Image source: [1]



Scale-Invariant Feature Transform (SIFT)

Image source: [1]



Scale-Invariant Feature Transform (SIFT)

The algorithm was patented, but expired in March of 2020.


Advantages of SIFT are


• Locality: features are local, so robust to occlusion and 
clutter (no prior segmentation).


• Distinctiveness: individual features can be matched to a 
large database of objects.


• Quantity: many features can be generated for even small 
objects.


• Efficiency: close to real-time performance.


• Extensibility: can easily be extended to a wide range of 
different feature types, with each adding robustness.



Scale-Invariant Feature Transform (SIFT)



Scale-Invariant Feature Transform (SIFT)
Step 1 — construct a scale space 
This is the initial preparation. You create internal 
representations of the original image to ensure scale 
invariance. This is done by generating a scale space.


1. To create it, you take the original image and generate 
progressively blurred out images.


2. Resize the non-blurred image from the last step to half 
size and again generate blurred out images.


3. Repeat previous step few times.


In result you obtain series of images of different sizes and 
few different blur levels.



Scale-Invariant Feature Transform (SIFT)
Step 1 — construct a scale space 
In result you obtain series of images of different sizes and 
few different blur levels.


Suggested number of different sizes (known as octaves) is 4 
with 5 different blur levels each.


Surprisingly, to get more keypoints you can start with 
double original image.


Blurring can be done with many different methods, but in 
most cases it is referred to as the convolution of the 
Gaussian operator and the image.


If you decide to use Gaussian blur, then blur parameter  in 
the next image should be  , where  is a constant you 
choose.

σ
kσ k



Scale-Invariant Feature Transform (SIFT)
Step 2 — calculate Difference of Gaussian
Blurred images are used to generate another set of images 
being results of applying Difference of Gaussians (DoG) 
operator.


We do this because difference of blurred Gaussians is a 
good approximation of the Laplacian of the Gaussian (LoG) 
which is stron edges and corners predictor but is also 
computationally expensive.



Scale-Invariant Feature Transform (SIFT)
Step 3 — find keypoints
The first step is to coarsely locate the maxima and minima. For 
a fixed scale you iterate through each pixel and check all it's 3D 
neighbours. Yes, 3D neighbours, because check is done within 
the current image, and also the next and previous in scale axis:


In the above image X marks the current pixel. The green circles 
mark a total of 26  neighbour fields.


X is marked as a candidate to be a (local) key point if it is the 
greatest or least of all 26 neighbours.



Scale-Invariant Feature Transform (SIFT)
Step 4 — Getting rid of low contrast keypoints
The number of candidate keypoints generated in the 
previous step may be quite big. Most of them are not useful 
as features — some of them lie along an edge, or they don’t 
have enough contrast.


To get rid of useless keypoints the approach similar to the 
one used in the Harris Corner Detector is applied. Of course 
you don't have to calculate it for every image point but only 
for keypoints.


You also rejected candidates for keypoint if it has a low 
contrast.



Scale-Invariant Feature Transform (SIFT)
Step 5 — orientation assignment
At this stage, we have a set of stable keypoints for the 
images. We will now assign an orientation to each of these 
keypoints so that they are invariant to rotation. We can again 
divide this step into two smaller steps:


1. Calculate the magnitude and orientation.


2. Create a histogram for magnitude and orientation.



Scale-Invariant Feature Transform (SIFT)
Step 5.1 — orientation assignment (orientation and magnitude)
For each keypoint location, depending on the scale, an orientation collection 
region is considered. The bigger the scale, the bigger the collection region (the 
window size is equal to the size of the kernel for Gaussian Blur of amount ).


For every pixel from this region magnitude and orientation is calculated as we do 
many times before:


,





In the simplest case:








1.5σ

em(x, y) = Mx(x, y)2 + My(x, y)2

edir(x, y) = tan−1 (
My(x, y)
Mx(x, y) )

Mx(x, y) = I(x + 1,y) − I(x − 1,y)

My(x, y) = I(x, y + 1) − I(x, y − 1)



Scale-Invariant Feature Transform (SIFT)
Step 5.2 — orientation assignment (histogram)

To make a histogram a whole range of  is divided into 
36 slots (bins), each 10 degrees. 


For all the pixels around the keypoint we take corresponding 
angle and magnitude. Angle determines bin and magnitude 
is added to the bin value. 


When completed, the histogram will have a peak for some 
slot. Angle of this slot is assigned as an orientation of this 
keypoint.


Also, any peaks above 80% of the highest peak are 
converted into a new keypoint. This new keypoint has the 
same location and scale as the original, but its orientation is 
equal to the other peak.

360∘



Scale-Invariant Feature Transform (SIFT)
Step 6 — keypoint descriptor
At the end of step 5, each keypoint has a location, scale, 
orientation.


Now the task is to compute a descriptor for the local image 
region about each keypoint that is highly distinctive and 
invariant as possible to variations such as changes in 
viewpoint and illumination.



Scale-Invariant Feature Transform (SIFT)
Step 6 — keypoint descriptor
1. Take a 16×16 neighborhood around the keypoint.


2. The 16×16 block further divided into 16 sub-blocks 4×4.


3. For each sub-blocks generate the histogram using 
magnitude and orientation. In this case full circle is 
divided into 8 bins, 45 degrees each.


Because we have 16 sub-block and in each we have one 8-
bin histogram, so in total we have 16 x 8 bin values.


Potentially this 128 element vector could be used as a 
keypoint descriptor. It would be possible after some tuning.



Scale-Invariant Feature Transform (SIFT)
Step 6 — keypoint descriptor
• Remove rotation dependence 

The feature vector uses gradient orientations, so if we rotate 
the image, all orientations in keypoint descriptor change. 
To achieve rotation independence, the keypoint’s rotation 
is subtracted from each orientation. Thus each gradient 
orientation is relative to the keypoint’s orientation.


• Remove illumination dependence


- Normalized the vector to unit length in order to enhance 
invariance to affine changes in illumination.


- Apply a threshold of 0.2 (any value greater than 0.2 is 
changed to 0.2) and again normalize the vector.


In Euclidean geometry, an affine transformation, or an affinity (from the Latin, 
affinis, "connected with"), is a geometric transformation that preserves lines 
and parallelism but not necessarily distances and angles.



Scale-Invariant Feature Transform (SIFT)
Feature matching
Feature matching is done with RANSAC Algorithm.


See [3, 4] for an example with matching features and 
general SIFT usage in OpenCV.



Speeded up robust features 
(SURF) — faster version of SIFT



(BRIEF) 



Features from accelerated 
segment test (FAST) 



Features from accelerated segment test (FAST) 
Step 1 — preliminary step
1. Select pixel  of coordinates .


2. Denote intensity of pixel  as  (or ).


3. Choose threshold value .


4. Consider a circle  of 16 pixels around the pixel  (technically this is a 
Bresenham circle of radius 3):


p (xp, yp)

p Ip I(xp, yp)

t

Cp p



Features from accelerated segment test (FAST) 
Step 2 — check corner conditions

1. The pixel  is a corner if there exists a set of  contiguous 
pixels in the circle (of 16 pixels) which are all brighter than 

, or all darker than .


Notes:


1. Note: In the first version of the algorithm the authors have 
used .


2. To make the algorithm fast, first compare the intensity of 
pixels 1, 5, 9 and 13 of the circle with . From the circle 
figure we infer that at least three of these four pixels 
should satisfy the threshold criterion. If it is true then 
check for all 16 pixels and check if 12 contiguous pixels 
fall in the criterion. If not, reject the pixel  as a possible 
interest (corner) point.

p n

Ip + t Ip − t

n = 12

Ip

p



Features from accelerated segment test (FAST) 
Speed improvement with machine learning
1. Select a set of images for training (preferably from the target 

application domain).


2. Run FAST algorithm in every image to find feature points.


3. For every feature point , store the 16 pixels around it as a vector . 
Do it for all the images to get a set of feature vectors.


4. Each pixel (name it ) in these 16 pixels can have one of the following 
three states: 
 

 

5. For every feature vector  and every , replace  feature value of this 
vector with corresponding ; denote resulting vector as .

p fp

x

sp,x =

d Ip,x ≤ Ip − t (darker)

s Ip − t ≤ Ip,x ≤ Ip + t (similar)

b Ip + t ≤ Ip,x (brighter)

fp x x
sp,x fp



Features from accelerated segment test (FAST) 
Speed improvement with machine learning

6. Define a variable  which is true if  is an interest point 
(corner) and false if  is not an interest point.


7. At this moment you have a learning set  of pairs . 
Apply to this set any machine learning method you want. 
One of the simplest is ID3 used to generate a decision 
tree.

tp p
p

L ( fp, tp)



Features from accelerated segment test (FAST) 
Eliminating insignificant interest points
There are many method of completing this process. One of the 
simplest is given below:


1. For each of interest point  compute a score value  as the sum 
of the absolute difference between the pixels intensity from a circle 

 and the intensity  of the point .


2. Consider two "adjacent" interest points  and , compare their 
score values  and . Discard the one with the lower score value.


Notes:


1. There may be different definitions of adjacency.


2. Discarding procedure may be very simple or much more 
sophisticated. We can imagine situation with three points ,  and 
 where  is adjacent to ,  is adjacent to  and . In 

this case order of discarding may affect final result.

p vp

Ip,x Ip p

p q
vp vq

p q
r q p r q vp > vq > vr



Oriented FAST and 
Rotated BRIEF (ORB) 



Locally Contrasting 
Keypoints (LOCKY) 
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