
Image Feature Extraction Techniques

Regions
characterisation

Piotr Fulmański

Form regions within an
image

Image segmentation (pixel labelling)

In general, the process of partitioning the pixels in an image
to form regions is known as image segmentation or pixel
labelling. In our case, we illustrate the analysis of regions by
considering techniques that group pixels according to their
properties. Any grouping techniques essentially change the
image resolution from high to very low.

I will present several techniques that grow regions by
following an iterative process aggregating pixels according
to measured local properties. This approach allows to create
primitives that can be used to segment meaningful
structures in images.

Watershed transform

Watershed transform

The watershed method derives from the morphological
operations, and follows an analogy of flooding areas in
hydrology. It partitions the image into multiple segments by
growing regions from a set of initial seeds.

The main idea is to use labels to aggregate pixels in an
iterative process. The pixels in each region have a different
label. During each iteration, pixels that have not been
aggregated into any region are labelled according to the
labels of its neighbours. As such, connected components
grow and edges that limit the regions can be delineated.

Watershed transform

The axis defines pixels, and the axis defines a distance
property measured for all the pixels. We can visualise
region growing process as a flooding of the topographic
surface. In this case curve visualise an intersection of an
image and represents only a one row of it. To represent the
whole 2D image, the curve should be visualised as a
surface.

x y

Watershed transform

Watershed transform

According to the flooding analogy, the watershed process
involves three main steps:

1. Compute a distance or property for each pixel. This
represents how pixels are organised in regions and it
defines a topographic surface

2. Find a local minima that represent initial regions.

3. Flood the topographic surface by labelling pixels and
delineating edges.

Although these three steps are fixed, there are many ways in
which they can be implemented, thus there are many
algorithms that segment an image following the watershed
process.

Watershed transform

Generally, the distance property is defined as the radial
distance between pixel’s positions and their closest
edge.

The main idea is to make the watersheds flood the image
towards the edges. That is, pixels far away from edges are
considered the centre of the regions (i.e. minima) and the
flooding makes the regions grow until the region reaches the
image edges (i.e. maxima). To compute the radial distances,
it is necessary to identify edges and to find the closest edge
to every pixel.

Watershed transform

Image Distance Watershed

Image source: [1]

Watershed transform

In the watershed process, initial regions are found by
looking for extreme values. In general, these values are
determined by finding minima in a local neighbourhood. This
process has to deal with two practical issues.

• The minima can be extended over large regions forming a
plateau.

• There may be small changes in the distance values due to
noise.

Maximal Stable Extremal Region
(MSER)

Maximal Stable Extremal Region (MSER)
The previous section showed how region growing can be used to find image
regions according to the radial distance between pixel positions and edges; in
the watershed method, regions are grown towards edges, thus the
segmentation contains regions delimited by significant changes in image
intensities. Maximal Stable Extremal Region (MSER) also follows a region
growing approach, but instead of using the distance to edges, it uses
image intensities.

The main motivation is to locate regions that are uniform in intensity, so they
are maintained when images are captured with different illumination conditions
or from different viewpoints.

Similar to watershed process, the image can be considered as a topographic
surface, but in this case the vertical axis corresponds to pixel intensity.

Since, the surface is defined from pixel’s intensities, then the flood level is
actually equivalent to an image threshold, and so the MSER can be seen as a
region growing process or as a multi-thresholding method.

In any case, the aim of the flooding (or thresholding) is to obtain a description
of how the size of connected components changes as a function of the
flooding level (or threshold).

Maximal Stable Extremal Region (MSER)
Stable regions
A general implementation requires four main steps:

1. Grow existing regions and store their size increment, this
can be implemented as a flooding process similar to the
one discussed in the previous part.

2. Merge touching regions and to update the change in
sizes accordingly, which requires deletion of all the
regions but one wherein all the pixels are aggregated.

3. Find new regions when the flooding reaches a minimum.

4. Detect stable regions by recording the number of times
the regions have grown under the growing criteria.

Superpixels
Simple Linear Iterative Clustering
(SLIC)

Simple Linear Iterative Clustering (SLIC)

Superpixel techniques segment an image into regions by
considering similarity measures defined using perceptual
features. That is, different from watersheds and MSER,
superpixel techniques create groups of pixels that look
similar. The motivation is to obtain regions that represent
meaningful descriptions with far less data than is the case
when using all the pixels in an image.

Simple Linear Iterative Clustering (SLIC)
In the SLIC technique, each pixel is characterised by a five-dimensional vector:

• Three components of the vector represent the colour using the CIELAB colour space as it gives a good
similarity measure for colour perception.

• Two components of its position.

Similarity between two pixels and indexed by and is defined as:

where colour distance and is a spatial difference are defined as:

,

.

The constant is used to normalise the distance . In SLIC the initial centre of a region is defined in a regular

grid with sides . Thus the normalisation defines the distance in terms of number of interval lengths. If we
decrease the grid size, then the distance contributes more to the similarity increasing the compactness.

The constant controls the compactness independent of the grid size. The greater the value of the more
special proximity is emphasised.

pi = (xi, yi) pj = (xj, yj) i j

D(i, j) = dc(i, j) + m
ds(i, j)

s
dc ds

ds(i, j) = (xi − xj)2 + (yi − yj)2

dc(i, j) = (li − lj)2 + (ai − aj)2 + (bi − bj)2

s ds

s
ds

s

m m

Simple Linear Iterative Clustering (SLIC)

The SLIC algorithm creates regions by three main steps:

1. Creates initial regions according to a parameter that
defines the desired number of superpixels.

2. Performs region clustering to aggregate pixels to the
regions according to the similarity criteria.

3. Reinforces connectivity (through iterative process).

Simple Linear Iterative Clustering (SLIC)
The process of creating initial regions
• Initially define superpixels by a regular grid of the size:

,

where:

• is the number of pixels in the input image,

• is the number of superpixels.

Initial location for each superpixel (its reference point) is set as a
center pixel of corresponding grid cell.

To improve this choice, you can shift center pixel according to
some criteria. For example, you can shift it to the lowest gradient
in a small pixel's neighbourhood.

• Compute the average colour of each region.

s =
N
K

N

K

Simple Linear Iterative Clustering (SLIC)
The iterative region update process
Simply speaking, this is a well known k-means algorithm
applying to the image data.

For each pixel [x,y] find region [minX, minY] such that
similarity D between this pixel and region's reference point
is minimal.

newRegionColour[minX, minY] += colourOfPixel[x, y]
newRegionPos[minX, minY] += coordinatesOfPixel[x, y]
newRegionSize[minX, minY] += 1
regionsIDOfPixel[x, y] = [minX, minY]

Update regions
regionPos[x,y] = newRegionPos[x,y] / newRegionSize[x,y]
regionColour[x,y] = newRegionColour[x,y] / newRegionSize[x,y]

Image source: [1]

Textures and texture-
based description

Statistical approach with
co-occurrence matrix

Texture

There is no unique definition of texture and there are many
ways to describe and extract it.

Co-occurrence matrix

The co-occurrence matrix contains elements that are counts of
the number of pixel pairs for specific brightness levels, when
separated by some distance and at some relative inclination. For
brightness levels and the co-occurrence matrix is

where is an image width, is an image height, and:

,

.

When above formula is applied to an image, you obtain a square,
symmetric, matrix whose dimensions equal the number of grey
levels in the picture.

b1 b2 C

C(b1, b2) =
W

∑
x=1

H

∑
y=1

((I(x, y) = = b1) and (I(x′ , y′) = = b1))?1 : 0)

W H

x′ = x + r cos(θ)

y′ = y + r cos(θ)

Co-occurrence matrix

func textureCoocurrence(image, dist, dirs):  
 #Get dimensions  
 [rows,cols]=size(image)  
 
 #Create Array[256][256]  
 coocMatrix = [[0 for x in range(256)] for y in range(256)]  
 
 for x = 1:cols:  
 for y = 1:rows:  
 for r = 1:dist:  
 for theta = 0:2*pi/dirs:2*pi*(1-1/dirs)  
 xc=round(x+r*cos(theta));  
 yc=round(y+r*sin(theta));  
 coocc[image(y,x)][image(yc,xc)] += 1

 return coocMatrix

Co-occurrence matrix

Co-occurence matric can be treated as a discriminator or
fingerprint of an image.

We may need measurements that describe these matrices.

Local Binary Pattern
(LBP)

Local Binary Pattern (LBP)
The goal is to create code encodes the local intensity structure called the local binary pattern.

In the most basic form, LBP is derived by comparing the point with its neighbours
from 3 x 3 region, to derive a code which is stored at the point . For points and of intensity
and respectively, the process depends on thresholding, which is given by the following function:

.

The code is derived from binary weighting applied to result of thresholding for a point with eight
neighbours for :

.

Note: The thresholding process, the unwrapping and the weighting can be achieved in different
ways.

P

p = (xp, yp) qp,x
p p qp,x Ip

Ip,x

s(p, x) = {1 if Ip,x > Ip

0 otherwise

P
xi i = 1,…,8

LBP(p) = ∑
i=1,…,8

s(p, xi) ⋅ 2i−1

Local Binary Pattern (LBP)

The code now encodes the local intensity structure.

It is complemented by two local measures: contrast and
variance.

The contrast is computed from the difference between
points encoded as a ‘1’ and those encoded as a ‘0’.

The variance is computed from the four neighbour pixels
aiming to reflect pattern correlation as well as contrast.

Of these two complementary measures, contrast was
found to add most to discriminatory capability.

P

Local Binary Pattern (LBP)
Invariance — translation
The approach is inherently translation invariant by its
formulation: a texture which is shifted should achieve the
same histogram of LBP codes.

Local Binary Pattern (LBP)
Invariancy — scale
The scale invariance requires consideration of points at a greater distance.
If the space is sampled in a circular manner, and points are derived at
radius , then the co-ordinate equations for are:

.

Using Bresenham’s algorithm you can precompute circle.

Now the LBP formula takes the form:

P
r i ∈ [1,P]

xR(i) = [x0 + r(cos(
2π
P

)i), y0 + r(sin(
2π
P

)i)]

LBP(p, r) = ∑
i=1,…,8

s(p, xr
i) ⋅ 2i−1

111
101
111

00100
01010
10001
01010
00100

0011100
0100010
1000001
1000001
1000001
0100010
0011100

Local Binary Pattern (LBP)
Invariance — rotation
The rotation invariant arrangement then shifts the derived
code so as to achieve a minimum integer.

Local Binary Pattern (LBP)
Invariance — rotation
The LBP approach determines a histogram of the codes
derived for an entire image and this histogram describes the
texture.

Bibliography

Bibliography

1. Mark S. Nixon, Alberto S. Aguado, Feature Extraction and Image Processing for Computer Vision,
Academic Press (Elsevier), 2020 (4th edition)

