
Image Feature Extraction Techniques

Regions 
characterisation

Piotr Fulmański



Form regions within an 
image



Image segmentation (pixel labelling)

In general, the process of partitioning the pixels in an image 
to form regions is known as image segmentation or pixel 
labelling. In our case, we illustrate the analysis of regions by 
considering techniques that group pixels according to their 
properties. Any grouping techniques essentially change the 
image resolution from high to very low.


I will present several techniques that grow regions by 
following an iterative process aggregating pixels according 
to measured local properties. This approach allows to create 
primitives that can be used to segment meaningful 
structures in images.



Watershed transform



Watershed transform

The watershed method derives from the morphological 
operations, and follows an analogy of flooding areas in 
hydrology. It partitions the image into multiple segments by 
growing regions from a set of initial seeds.


The main idea is to use labels to aggregate pixels in an 
iterative process. The pixels in each region have a different 
label. During each iteration, pixels that have not been 
aggregated into any region are labelled according to the 
labels of its neighbours. As such, connected components 
grow and edges that limit the regions can be delineated.



Watershed transform

The  axis defines pixels, and the  axis defines a distance 
property measured for all the pixels. We can visualise 
region growing process as a flooding of the topographic 
surface. In this case curve visualise an intersection of an 
image and represents only a one row of it. To represent the 
whole 2D image, the curve should be visualised as a 
surface.
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Watershed transform



Watershed transform

According to the flooding analogy, the watershed process 
involves three main steps:


1. Compute a distance or property for each pixel. This 
represents how pixels are organised in regions and it 
defines a topographic surface


2. Find a local minima that represent initial regions.


3. Flood the topographic surface by labelling pixels and 
delineating edges.


Although these three steps are fixed, there are many ways in 
which they can be implemented, thus there are many 
algorithms that segment an image following the watershed 
process.



Watershed transform

Generally, the distance property is defined as the radial 
distance between pixel’s positions and their closest 
edge.


The main idea is to make the watersheds flood the image 
towards the edges. That is, pixels far away from edges are 
considered the centre of the regions (i.e. minima) and the 
flooding makes the regions grow until the region reaches the 
image edges (i.e. maxima). To compute the radial distances, 
it is necessary to identify edges and to find the closest edge 
to every pixel.



Watershed transform

Image Distance Watershed

Image source: [1]



Watershed transform

In the watershed process, initial regions are found by 
looking for extreme values. In general, these values are 
determined by finding minima in a local neighbourhood. This 
process has to deal with two practical issues. 


• The minima can be extended over large regions forming a 
plateau.


• There may be small changes in the distance values due to 
noise.



Maximal Stable Extremal Region 
(MSER)



Maximal Stable Extremal Region (MSER)
The previous section showed how region growing can be used to find image 
regions according to the radial distance between pixel positions and edges; in 
the watershed method, regions are grown towards edges, thus the 
segmentation contains regions delimited by significant changes in image 
intensities. Maximal Stable Extremal Region (MSER) also follows a region 
growing approach, but instead of using the distance to edges, it uses 
image intensities.


The main motivation is to locate regions that are uniform in intensity, so they 
are maintained when images are captured with different illumination conditions 
or from different viewpoints.


Similar to watershed process, the image can be considered as a topographic 
surface, but in this case the vertical axis corresponds to pixel  intensity.


Since, the surface is defined from pixel’s intensities, then the flood level is 
actually equivalent to an image threshold, and so the MSER can be seen as a 
region growing process or as a multi-thresholding method.


In any case, the aim of the flooding (or thresholding) is to obtain a description 
of how the size of connected components changes as a function of the 
flooding level (or threshold).



Maximal Stable Extremal Region (MSER)
Stable regions
A general implementation requires four main steps:


1. Grow existing regions and store their size increment, this 
can be implemented as a flooding process similar to the 
one discussed in the previous part.


2. Merge touching regions and to update the change in 
sizes accordingly, which requires deletion of all the 
regions but one wherein all the pixels are aggregated.


3. Find new regions when the flooding reaches a minimum.


4. Detect stable regions by recording the number of times 
the regions have grown under the growing criteria.



Superpixels 
Simple Linear Iterative Clustering 
(SLIC)



Simple Linear Iterative Clustering (SLIC)

Superpixel techniques segment an image into regions by 
considering similarity measures defined using perceptual 
features. That is, different from watersheds and MSER, 
superpixel techniques create groups of pixels that look 
similar. The motivation is to obtain regions that represent 
meaningful descriptions with far less data than is the case 
when using all the pixels in an image.



Simple Linear Iterative Clustering (SLIC)
In the SLIC technique, each pixel is characterised by a five-dimensional vector:


• Three components of the vector represent the colour using the CIELAB colour space as it gives a good 
similarity measure for colour perception.


• Two components of its position.


Similarity between two pixels  and  indexed by  and  is defined as:





where colour distance  and is a spatial difference  are defined as:


,


.


The constant  is used to normalise the distance . In SLIC the initial centre of a region is defined in a regular 

grid with sides . Thus the normalisation  defines the distance in terms of number of interval lengths. If we 
decrease the grid size, then the distance contributes more to the similarity increasing the compactness.


The constant  controls the compactness independent of the grid size. The greater the value of  the more 
special proximity is emphasised.


pi = (xi, yi) pj = (xj, yj) i j
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ds(i, j)

s
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Simple Linear Iterative Clustering (SLIC)

The SLIC algorithm creates regions by three main steps:


1. Creates initial regions according to a parameter that 
defines the desired number of superpixels.


2. Performs region clustering to aggregate pixels to the 
regions according to the similarity criteria.


3. Reinforces connectivity (through iterative process).




Simple Linear Iterative Clustering (SLIC)
The process of creating initial regions
• Initially define superpixels by a regular grid of the size:


,


where:


•  is the number of pixels in the input image,


•  is the number of superpixels.


Initial location for each superpixel (its reference point) is set as a 
center pixel of corresponding grid cell.


To improve this choice, you can shift center pixel according to 
some criteria. For example, you can shift it to the lowest gradient 
in a small pixel's neighbourhood.


• Compute the average colour of each region.

s =
N
K

N

K



Simple Linear Iterative Clustering (SLIC)
The iterative region update process
Simply speaking, this is a well known k-means algorithm 
applying to the image data.


# For each pixel [x,y] find region [minX, minY] such that
# similarity D between this pixel and region's reference point
# is minimal.

newRegionColour[minX, minY] += colourOfPixel[x, y]
newRegionPos[minX, minY] += coordinatesOfPixel[x, y]
newRegionSize[minX, minY] += 1
regionsIDOfPixel[x, y] = [minX, minY]

# Update regions
regionPos[x,y] = newRegionPos[x,y] / newRegionSize[x,y]
regionColour[x,y] = newRegionColour[x,y] / newRegionSize[x,y]

Image source: [1]



Textures and texture-
based description



Statistical approach with 
co-occurrence matrix



Texture

There is no unique definition of texture and there are many 
ways to describe and extract it.



Co-occurrence matrix

The co-occurrence matrix contains elements that are counts of 
the number of pixel pairs for specific brightness levels, when 
separated by some distance and at some relative inclination. For 
brightness levels  and  the co-occurrence matrix  is





where  is an image width,  is an image height, and:


,


.


When above formula is applied to an image, you obtain a square, 
symmetric, matrix whose dimensions equal the number of grey 
levels in the picture.

b1 b2 C

C(b1, b2) =
W

∑
x=1

H

∑
y=1

((I(x, y) = = b1) and (I(x′ , y′ ) = = b1))?1 : 0)

W H

x′ = x + r cos(θ)

y′ = y + r cos(θ)



Co-occurrence matrix

func textureCoocurrence(image, dist, dirs):  
  #Get dimensions  
  [rows,cols]=size(image)  
 
  #Create Array[256][256]  
  coocMatrix = [[0 for x in range(256)] for y in range(256)]  
 
  for x = 1:cols:  
    for y = 1:rows:  
      for r = 1:dist:  
        for theta = 0:2*pi/dirs:2*pi*(1-1/dirs)  
          xc=round(x+r*cos(theta));  
          yc=round(y+r*sin(theta));  
          coocc[image(y,x)][image(yc,xc)] += 1

  return coocMatrix



Co-occurrence matrix

Co-occurence matric can be treated as a discriminator or 
fingerprint of an image.


We may need measurements that describe these matrices.



Local Binary Pattern 
(LBP)



Local Binary Pattern (LBP)
The goal is to create code  encodes the local intensity structure called the local binary pattern.


In the most basic form, LBP is derived by comparing the point  with its neighbours  
from 3 x 3 region, to derive a code which is stored at the point . For points  and  of intensity  
and  respectively, the process depends on thresholding, which is given by the following function:


.


The code is derived from binary weighting applied to result of thresholding for a point  with eight 
neighbours  for :


.


Note: The thresholding process, the unwrapping and the weighting can be achieved in different 
ways.

P

p = (xp, yp) qp,x
p p qp,x Ip

Ip,x

s(p, x) = {1 if Ip,x > Ip

0 otherwise

P
xi i = 1,…,8

LBP(p) = ∑
i=1,…,8

s(p, xi) ⋅ 2i−1



Local Binary Pattern (LBP)

The code  now encodes the local intensity structure.


It is complemented by two local measures: contrast and 
variance.


The contrast is computed from the difference between 
points encoded as a ‘1’ and those encoded as a ‘0’. 


The variance is computed from the four neighbour pixels 
aiming to reflect pattern correlation as well as contrast.


Of these two complementary measures, contrast was 
found to add most to discriminatory capability.


P



Local Binary Pattern (LBP)
Invariance — translation
The approach is inherently translation invariant by its 
formulation: a texture which is shifted should achieve the 
same histogram of LBP codes.



Local Binary Pattern (LBP)
Invariancy — scale
The scale invariance requires consideration of points at a greater distance. 
If the space is sampled in a circular manner, and  points are derived at 
radius , then the co-ordinate equations for  are:


.


Using Bresenham’s algorithm you can precompute circle.


Now the LBP formula takes the form:


P
r i ∈ [1,P]

xR(i) = [x0 + r(cos(
2π
P

)i), y0 + r(sin(
2π
P

)i)]

LBP(p, r) = ∑
i=1,…,8

s(p, xr
i ) ⋅ 2i−1
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Local Binary Pattern (LBP)
Invariance — rotation
The rotation invariant arrangement then shifts the derived 
code so as to achieve a minimum integer.



Local Binary Pattern (LBP)
Invariance — rotation
The LBP approach determines a histogram of the codes 
derived for an entire image and this histogram describes the 
texture.
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