
Haskell-Tutorial

Damir Medak

Gerhard Navratil

Institute for Geoinformation

Technical University Vienna

February 2003

There are numerous books on functional programming. These books are good,
but usually intended to teach a student about everything their writers had ever
learned.

Thus, the reader is confused in the very beginning: Either with the amount
of information given, or by the absence of concrete, useful examples applying the
theoretical material. Usually, the reader is soon curious about using abstract
concepts in programming but has no idea how to start.

We would like to express here the fundamentals of functional languages for
beginners. The idea is to empower the reader to really do some coding, produc-
ing curiosity for the theoretical background on some later stage. Some familiar-
ity with basic mathematics is assumed.

We have to admit, however, that we ignore two aspects, which might be
important for some readers:

• We do dot care about efficiency! We want to specify functions and cre-
ate models. We do not aim at fast or powerful software but at easy-to-
understand models.

• We define no user interface. We do not care about interaction with a user,
with other programs or with files. We use the language for modelling only
and use the command line for testing.

1 Prerequisites

It is useful to sit in front of the computer while reading this tutorial because
then all examples can be tested immediately. It is therefore useful to install
Hugs (98) and an adequate editor (e.g. UltraEdit).

1.1 How to install Hugs?

Reading about any programming language is boring if the reader cannot exper-
iment with it. For Haskell, the solution is called Hugs (Haskell User’s Gofer
System). The latest version can be found in the Internet (www.Haskell.org).

1

DOS-version Windows-version
Command line dir \HUGS.EXE %F dir \WINHUGS.EXE %F

Working directory %P %P
Windows program? Not checked Checked

Table 1: Parameters to add Hugs as a tool in UltraEdit

The latest version is from November 2002 at the moment (February 2003).
Versions for Microsoft Windows, generic Unix, Linux, MacOS X and MacOS 9
are available. We will always relate to the Windows version when talking about
the user interface. Read the documentation for the other operating systems.
The Windows file is a Windows installer package (msi) and the installation
starts immediately after a double-click. It is recommended to read the help file
to avoid errors and get additional information.

• Download the file with the recent Hugs-version (at the moment ‘hugs98-
Nov2002.msi’) to your hard disc.

• Run the installation program.

• Check if you already have an editor installed. If you do not have a good
one installed yet, do it now.

• If using UltraEdit set the editor option in Hugs (Options/Set ...) to:
UEdit32 %s/%d/1. If you use a different editor replace “UEdit32” with the
name of the editor of your choice and the parameters by the parameters
necessary to open the file with the editor and jump to a specified line
number.

Table 1 provides the necessary commands for adding Hugs as a tool to UltraEdit.
The name dir in the command line must be replaced by the directory where
Hugs is installed.

1.2 What are we going to learn in the tutorial?

This tutorial is a hard way to learn functional programming, because there are
no easy ways to learn anything useful. (If you prefer some other formal method,
take any book on first order logic, read a chapter or two, and you will come
back.)

Easy exercises will make you comfortable with Hugs (comments and recom-
mendations are welcome!). We will start with simple tasks like the definition
of functions and data types and then move on to more elaborate methods like
object oriented programming and modularization.

2 Basic Types, or “How to bring Haskell to work
for me at all?”

Test the following functions in Hugs - save them in a file, load them into Hugs,
and test them.

2

2.1 Print “Hello, world” on the command line

This is not a big deal, but every language can do it; Haskell has the operation
putStr to write a string to the screen. Open Hugs and write the following on
the command line (the line with a question mark)1:

putStr "Hello"

The result should look like this:

Hello

(2 reductions, 7 cells)

?

The first line is the result of the command. The second line provides some
information on the evaluation of the command. The interpreter replaces the
functions with easier functions until each part is a simple step with a direct
implementation (similar to other interpreter languages like the original Basic).
These replacements are called reductions. The cells are a value for the amount
of memory used for the reductions and printing the result.

Open the editor (type ‘:e’ at the command line) and type the same command
in the editor window (use the editor-commands ‘new file’ and ‘save file as’). We
write it as a function, i.e. we provide a name (f in this case) and separate it
from the function definition by the character ‘=’. Save the file and give it the
extension ‘.hs’.

f = putStr "Hello"

Load the file in HUGS2 and run the function. Running a function is easy
in Hugs. You only have to type the name of the function (here: f) and the
parameters (none in this case) at the command line. The result is:

? f

Hello

(3 reductions, 15 cells)

?

The difference to the solution above is that the number of reductions is 3 (instead
of 2) and the number of cells used is 15 (instead of 7). The number of reductions
increased by one because the interpreter must replace the f by putStr "Hello".
This is an additional reduction which also requires some memory.

2.2 Writing functions in Haskell

In a functional language, everything (even a program) is a function. Thus,
writing a program is actually writing a function. You can write many functions
in a single file, that is, you can have many programs in a single file. Each
function then may use other functions to calculate the result. There are many

1“Hello” is a string. Like Pascal Haskell uses double quotes to define start and end of
strings. Single characters are marked by normal quotes: String “abc”; Characters ‘a’, ‘b’, ‘c’

2In the Windows-version of Hugs you can use the script manager to load additional files -
just say ‘Add script’, select the file, and click ‘Ok’ two times. If you use the DOS-version you
have to change the current path (using ‘:cd ...’) and load the file using ‘:l “FileName.Ext”’.

3

predefined functions available like in other programming languages. The files
containing these functions can be found in ‘hugs98\lib’.

Writing a function consists of two parts. First we have to define the types
for the arguments and the result. A function may have no arguments. This is
called a constant function. An example for this is the function pi which returns
the value of π and needs no arguments to do this. Other functions may have
one or more arguments. However, each function has a single result, e.g.:

increment :: Int -> Int

The name of our new function is increment. The ‘::’ separates the name of the
function from the type definition(s). If there is more than one type, the types
are separated by ->. The last type in that list is the type of the result3.

The second part of writing a function is the concrete implementation, e.g.:

increment x = x + 1

The function increment takes a single argument of type Int (an integer number)
returning an Int as well. To test its functionality, we type “increment 2”
(without the quotes) on the Hugs-prompt resulting in something like

3 :: Int

If Hugs writes 3 without the type, use “Options/Set...” and check “show type
after evaluation”. If that field is unchecked, the interpreter only writes the result
without specifying the type.

Let us take another example. Like other programming languages Haskell has
a predefined data type for Boolean values. An important operator for Boolean
values is the logical and. Although Haskell already knows that function we will
implement it again. One solution would be to write is in the following way:

and1 :: Bool -> Bool -> Bool

and1 a b = if a == b then a

else False

Here we use a branch (if-then-else) to split the calculation method for the
result. If the parameters are equal (either both True or False) we return the
value of one of the parameters. If the parameters are not equal we return False.
Another method would be the use of pattern matching. The logical ‘and’ has
special a case where the result is True. In all other eases the result is False. We
know which parameters the special case has. We can write these parameters in
a separate line and add the result. For all other cases we write a second line:

and2 :: Bool -> Bool -> Bool

and2 True True = True

and2 x y = False

In our example we did not use the parameters for calculating the result of the
second line. It is not necessary to know the values of the parameters because we
have a constant result. In Haskell we can write ‘ ’ instead of providing names
for these parameters. The advantage for the reader is that he knows the number
of the parameters and also knows that the result is independent of the values of
these parameters. The second line would then look like the following:

and2 _ _ = False

3If writing a Pascal-function this would read like: function Increment (i : Integer) : Integer

4

2.3 Calculate roots of quadratic equations (learn about
where and if then else)

The first step for writing functions is the definition of the problem. We have to
define the signature of the solution.

First, remember that the function you are writing is actually a program - use
sketches, notes, books, and previously written examples while programming. It
is not the activity of typing - it is a work of art.

A quadratic equation looks like a2x
2 + a1x + a0 = 0. The equation has two

roots (or one if the roots are equal). The mathematical solution looks like the
following:

x1 =
−b

2a
−

√
b2 − 4ac

2a
, (1)

x2 =
−b

2a
+

√
b2 − 4ac

2a
. (2)

A function calculating the roots has a triple of values as an input and a tuple
of values as an output. If we use the type Float for the values, the definition
in Haskell is:

roots :: (Float, Float, Float) -> (Float, Float)

The name of the function is roots. The ‘::’ separates the name of the function
from the type definitions. The characters ‘->’ separate the different type defi-
nitions. The last type definition is the result (output) of the function while the
others are parameters (input). Thus the type definition (Float,Float,Float)

is the parameter of our function. It is a representation of a triple of Float

values. The result of the function is (Float, Float), a pair of Float values.
The next step is the definition of the function roots:

roots (a,b,c) = (x1, x2) where

x1 = e + sqrt d / (2 * a)

x2 = e - sqrt d / (2 * a)

d = b * b - 4 * a * c

e = - b / (2 * a)

The result of the function is a pair (x1,x2). Both values, x1 and x2 are defined
by local definitions (after the where-clause). The local definitions calculate
parts of the result. In general it is useful to create a local definition for a partial
calculation if the result of that calculation is needed more than once. The
result of the local definitions d and e, for example, is necessary for both parts
of the solution (x1 and x2). The solutions themselves could have been written
directly in the tuple. However, defining them as local definitions improves the
readability of the code because the symmetry of the solution is clearly visible.

The formulas used are the well-known formulas for the calculation of the
roots for quadratic equations.

This function works, but it takes no care for negative square roots. We can
test that with two polynomial triples p1 and p2:

p1, p2 :: (Float, Float, Float)

p1 = (1.0, 2.0, 1.0)

p2 = (1.0, 1.0, 1.0)

5

For p1 the result is

? roots p1 (-1.0,-1.0) :: (Float,Float)

(94 reductions, 159 cells)

For p2, however, the output is

? roots p2

(Program error: {primSqrtFloat (-3.0)}

(61 reductions,183 cells)

The notation Program error: shows that there was an error at run-time. The
bracket above that text is visible because Haskell started to print the result
before the error occurred. The bracket is the beginning of the text for the
resulting pair. The text after the error notation specifies the error. Here, the
text says, that the function primSqrtFloat cannot handle the parameter -
3.0 which is negative and, therefore, has no real square root. The function
primSqrtFloat is the hardcoded implementation of the function sqrt for the
type Float.

We have to modify the code to handle exceptions like the non-existence of
real numbers as the roots:

roots (a,b,c) = if d < 0 then error "sorry" else (x1, x2)

where x1 = e + sqrt d / (2 * a)

x2 = e - sqrt d / (2 * a)

d = b * b - 4 * a * c

e = - b / (2 * a)

The function now tests the value if the local definition for d and writes an user-
defined error if d is negative. Otherwise the function calculates the roots like
before.

There are several explanations about this solution:

• The if-then-else-construct works like “if the condition is fulfilled (True)
then do the first operation (after then), in all other cases do the second
Operation (after else)”.

• where is part of the previous line, because it is indented and the next four
lines must be equally indented because they are on the same level.

• How is it possible to calculate sqrt d in the line x1 in case that d < 0.0?
The answer: It is never calculated if d is smaller than zero, because func-
tional programs evaluate only those expressions that are necessary for the
result:

– The program needs d, calculates d, if it is < 0.0, the program gives
the error message and ends.

– If d is not < 0.0, it calculates x1, needs e for the calculation, calcu-
lates e, calculates x2 and ends.

Functions should be tested for behavior. If the interpreter does not complain
with an error message, our functions satisfied all syntax rules (e.g., all opened
brackets match the closed brackets). If there is an error message when loading or

6

running a functions and it contains the word type, something is certainly wrong
with the type structure of the function: It does not match the specification in
the signature, etc. Finally, a syntactically correct function needs not be correct
semantically: lt may give wrong results or no results at all. We should test new
functions with some (easy) examples.

2.4 Some predefined types

Table 2 provides an overview on the most important predefined types in Haskell.

Bool True, False
Int -100, 0, 1, 2,...
Integer -33333333333, 3, 4843056380457832945789457,...
Float/Double -3.22425, 0.0, 3.0,...
Char ‘a’ , ‘z’, ‘A’, ‘Z , ‘;’, ...
String “Medak”, “Navratil”, ...

Table 2: Predefined types

2.5 Summary

• A function has a signature: A specification declaring the types of argu-
ment(s) and result

• The indentation matters:

1. Top level declarations start in the first column and their end is the
next declaration starting in the first column.

2. A declaration can be broken at any place and continued in the next
line provided that the indent is larger than the indent of the previous
line.

3. If the keyword where is followed with more than one declaration, all
of them must be on the same level of indentation.

• When writing, be clear as much as possible (use descriptive names for
functions). For example, a function name called matrixMult will be easier
to understand than mM.

• Comments are nevertheless useful - everything written after ‘--’ is a com-
ment

• Functions are tested with examples we easily can check by hand.

Exercise: Extend the program for complex numbers (a complex number is a
pair of real numbers).

7

3 Lists, or “How something so simple can be
useful?”

In the previous exercise we met the data type pair (x1,x2) and triple (a,b,c)

(or, in general, tuples). Pairs have exactly two elements and triples have exactly
three. We may have also tuples with four, five and more elements, but the
number of elements will always be fixed. The elements of tuples may have
different types, however. For example, the first element of a pair may be a
name (a string) and the second the age (an number).

What is a list? A list provides a way to deal with an arbitrary number
of elements of the same type. A list can have no elements at all: empty list
denoted as []. It can contain any type, but all elements must be of the same
type. In other words: A list is a one-dimensional set of elements of the same
type (numbers, strings, Boolean values...). Examples for lists are:

[] ... empty list
[l, 2] ... list with elements of type integer
[True,False] ... list with elements of type Boolean
[(1, 2), (2, 3)] ... list of tuples of Integers
[[1, 2], [2, 3, 4]] ... list of Integer-lists

Strings are lists, too:

"Name" = [’N’ , ’a’ , ’m’, ’e’]

Access on list elements is provided on the first element (the head of the list)
and all other elements (the tail of the list) only. Therefore, if we need access to
other elements we have to read the list recursively. The following function, for
example, provides access to the nth element of a list:

nthListEl 1 1 = head 1

nthListEl 1 n = nthListE1 (tail 1) (n-1)

3.1 Recursion: The fundamental principle of functional
programming, or “Who stole loops and counters”

The standard faculty function (!), defined in mathematics in terms of itself:

fact n =

{

1 : n = 0
n ∗ fact(n − 1) : n 6= 0

(3)

Faculty is a rather simple example for mathematical induction - Zero-case and
induction step (successor case):

1) p(0),

2) p(n) => p(n+1)

We can translate this syntax easily to Haskell:

fact 0 = 1 -- zero step

fact n = n * fact (n-1) -- induction step

8

How does this program work? Let us take a look at an example, the faculty of
6: Since n==6 and not zero, the induction step is applied: 6 * fact 5. Because
n==5 and not zero, the induction step is applied: 6 * (5 * fact 4), and so
on, until n==0, when the zero step is applied and the recursion terminates.

fact 6 ==> 6 * fact 5

==> 6 * (5 * fact 4)

==> 6 * (5 * (4 * fact 3))

==> 6 * (5 * (4 * (3 * fact 2)))

==> 6 * (5 * (4 * (3 * (2 * fact 1))))

==> 6 * (5 * (4 * (3 * (2 * (1 * fact 0)))))

==> 6 * (5 * (4 * (3 * (2 * (1 * 1)))))

==> 6 * (5 * (4 * (3 * (2 * 1))))

==> 6 * (5 * (4 * (3 * 2)))

==> 6 * (5 * (4 * 6))

==> 6 * (5 * 24)

==> 6 * 120

==> 720

This reasoning is based on a single important fact: That the complete set of
natural numbers including zero (N0) is covered by two cases:

1. A natural number is either zero (zero ease).

2. Or a successor of another natural number (induction step).

The purpose of this short trip to the world of mathematics is to make easier to
grasp the similar case of recursion over lists in Haskell. The two cases for lists
are:

1. An empty list

2. A non-empty lists consisting of an element and the rest (possibly an empty
list)

For complete definitions we must know an important function that “glues” to-
gether elements to the list - (:) pronounced as “cons” for construct. It has the
following type:

(:) :: a -> [a] -> [a]

and works like this:

1 : 2 : 3 : [] = [1,2,3]

Now, the two cases, that allow the recursive definition of lists, are:

[] an empty list
(x: xs) a list with at least one element

List = [] | (a : List)

This means that a list is either empty or contains an element followed by a list
(which again may be empty or ...). The type variable a tells us that we may

9

have any type for the list elements4. The structure of a list does not depend on
the type of data stored in the list. The only restriction is that all elements of
the list must be of the same type. We may have lists of integer numbers, lists
of Boolean values, or lists of floating point numbers but we may not create a
list holding five Integers and two Booleans. With this definition it’s possible to
write functions on lists, for example a function which determines the sum of all
elements of a list:

sumList :: [Int] -> Int

sumList [] = 0

sumList (x:xs) = x + sumList xs

We separate the first list element recursively from the rest of the list until we
have an empty list. We know the result for the empty list (it is zero). We then
add the elements of the list in reverse order of the separation process. This
means the last element in the is the first we add to zero, and so on. After
processing all elements of the list we have the sum of the list elements as the
result of the list. We can use the list constructor also to rewrite the function
for reading the n-th element of a list:

nthListEl’ (l:ls) 1 = l

nthListEl’ (l:ls) n = nthListEl’ ls (n-1)

3.2 Basic functions for lists

head returns the first element of a list
tail removes the first element of the list
length returns the length of the list
reverse reverses the list
++ (concat) concatenates 2 lists: [1,2]++[3,4]=[1,2,3,4]
map applies a function to each element in the list
filter returns all list elements that fulfill a specified con-

dition
foldr combines the elements of a list with a specified

function and a start value (e.g. adds all elements)
zip takes two lists and combines the corresponding

elements (the elements at the same position) by
making pairs

zipWith takes two lists and combines the corresponding
elements (the elements at the same position) by
applying the specified function

Table 3: Useful list functions

There are several important functions to work with lists. Table 3 shows some
of the most important list functions and explains briefly what they do.

Some of the functions (like e.g. map) are especially interesting, because they
have a function as an argument - we say that these functions are higher order
functions. In the following sections we will use some of these functions.

4This concept is called polymorphism. More information can be found in section 5

10

3.2.1 Code your name into ASCII numbers and back (do you know
what map does?)

Suppose we have a string and need the ASCII-code for each character of the
string. A string in Haskell is a list of characters. Therefore it is obvious to
use list functions to solve the problem. The function ord should be applied to
each single character because it provides the calculation of the ASCII number.
Since a string is a list of characters coding a string into a list of ASCII numbers
requires applying ord to each character of the string. This is exactly what map
does. The type definition of map is:

map :: (a -> b) -> [a] -> [b]

The function map takes two arguments, a function and a list, and returns a list.
The input list has elements of an arbitrary type a and the resulting list has
elements of an arbitrary type b. The function has a parameter of type a and
returns a value of type b. In our example the types a is a character and the
type b is an integer number. The implementation of map is:

map f [] = []

map f (x:xs) = f x : map f xs

It applies the function f recursively to all elements of the list and creates a new
list by applying the list constructor ‘:’.

Coding a string to a list of ASCII numbers now can be written as follows:

code :: String -> [Int]

code x = map ord x

After reloading the Definition file into Hugs we may test the new function:

code "Hugs"

The result is:

[72,117,103,115]

3.2.2 Calculation of the area of a polygon

Let us assume we need to calculate the area of a polygon. The polygon is a list
of points with x and y coordinates. The Gaussian formula for the area is:

2F =
n

∑

i=1

(xi − xi+1)(yi + yi+1) (4)

We now want to use list functions to calculate the area. We start with a defini-
tion of the polygon. In our case it is a list of points and each point is a pair of
coordinates. A polygon for testing purposes could look like the following (which
has the area 10000 as we can see immediately):

p = [(100.0,100.0),(100.0,200.0),(200.0,200.0),(200.0,100.0)]

:: [(Float,Float)]

11

The function p returns a simple polygon which we can use for testing our func-
tion (the area of this polygon should be 10000).

In the first step we have to think about restructuring our list in a way that
allows applying the list functions. It is clear that the last step will be calculation
of the sum of partial areas and division by two. The function foldl combines
the elements of a list with a specified function and uses a specified value as the
staring point. We want to add the elements and therefore we must use ‘+’.
Since ‘+’ is defined to stand between the arguments (x + y) we must write it
as ‘(+)’. The expression ‘(+) x y’ is the same as ‘x + y’. The starting point for
our function is zero. Therefore the function can be written as:

sum_parts :: [Float] -> Float

sum_parts parts = (foldl (+) 0 parts) / 2

We now must find a way to calculate the partial areas (xi − xi+1)(yi + yi+1).
We would like to have four lists with the following contents:

list contents
1 x1, x2, x3, x4

2 x2, x3, x4, x1

3 y1, y2, y3, y4

4 y2, y3, y4, y1

Table 4: Resulting lists

This would allow using zipWith for calculating the partial sums. The function
zipWith can be defined as follows (I changed the name to zipWith’ to avoid
conflicts with the function already defined):

zipWith’ :: (a -> a -> a) -> [a] -> [a] -> [a]

zipWith’ _ [] _ = []

zipWith’ _ _ [] = []

zipWith’ f (a:as) (b:bs) = (f a b) : zipWith’ f as bs

The first line defines the type of the function. The function takes two lists and
a function (used for combining the elements of the lists). The next two lines
stop the recursion if one of the lists is empty. The last line then shows how the
function works. It takes the first elements of the lists and applies the function
f to these elements. The result is an elements of the resulting list.

The first part of our remaining formula tells us to take the x-coordinates of
the first point and subtract the x-coordinates of the second point from them
(xi − xi+1). If we use the lists from table 4 we take the elements of the first list
and subtract the elements of the second list from them. Therefore the line

zipWith (-) list1 list2

provides the subtraction for alle elements in the lists. Therefore the complete
formula looks like

zipWith (*) (zipWith (-) list1 list2) (zipWith (+) list3 list4)

The only problem remaining is not the creation of the lists. The lists 1 and 3
are rather simple. They are the x- and y-coordinates to the points. We can use

12

map and apply two other functions, fst and snd to each element of the list. fst
takes a pair and returns the first value. snd also takes a pair but remains the
second value. If we assume that the coordinates are given in the order (x,y) we
get these lists with

list1 poly = map fst poly

list3 poly = map snd poly

where poly contains the polygon. Since formula (4) also works if we change x
and y, it is not important whether the coordinates for the polygon are given as
(x,y) or as (y,x).

The other two lists are a little bit more difficult. In both cases the list is
rotated. We therefore have to take the first element and move it to the back of
the list. This can be done by

moveback poly = tail poly ++ [head poly]

The functions head and tail split the list into the first element (head) and the
remainder of the list (tail), which is a list itself. Adding edged brackets around
an expression creates a list with the expression as the element5. The function
‘++’ (or concat for concatenate) takes two lists and merges them by putting
the elements of the second list behind the last element of the first list.

A combination of all these parts provides the final function, where we also
add error expressions if we have less than three points (and therefore no area):

area :: [(Float,Float)] -> Float

area [] = error "not a polygon"

area [x] = error "points do not have an area"

area [x,y] = error "lines do not have an area"

area ps = abs ((foldl (+) 0.0 parts) / 2) where

parts = zipWith (*) (zipWith (-) l1 l2) (zipWith (+) l3 l4)

l1 = map fst ps

l2 = tail l1 ++ [head l1]

l3 = map snd ps

l4 = tail l3 ++ [head l3]

3.3 Other useful list functions

As seen in section 3.2 functions can also be arguments to other functions. An
example for this is the function map which we used in section 3.2.1

map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (x:xs) = f x : map f xs

For the function definition we need not know explicitly which types we use.
During runtime, however, it is important to know both types. The type of the
parameter is known at runtime (we then work with existing data sets which are
of a specific type). The type of the result however must not be unambiguous.
In this ease we would have to specify the type of result we need by adding ‘::
Type’.

5or elements if we have more expressions, separated by commas

13

The next essential list function is the filter function. We rename (to avoid a
collision with the function defined in the prelude) and implement it:

filter2 :: (a -> Bool) -> [a] -> [a]

filter2 f [] = []

filter2 f (x:xs) = if f x then x : filter2 f xs

else filter2 f xs

The filter function takes two arguments. The first argument is a function (the
filter) and the second is a list of an arbitrary type a. The filter takes a list
element and returns a Boolean value. If the value is True, the element remains
in the list, otherwise it is removed from the resulting list.

3.4 Calculation of roots for a list of quadratic equations

We start with a list of quadratic equations (stored as triples of real numbers like
in section 2.3). The task splits into two parts. We must assure that all equations
have real solutions because if there are complex solutions our function creates
an error. We therefore need a function that returns True if the solutions are
real and False if the solutions are complex:

real :: (Float, Float, Float) -> Bool

real (a,b,c) = (b*b - 4*a*c) >= 0

We can now use that function to filter the equations with real solutions:

p1 = (1.0,2.0,1.0) :: (Float, Float, Float)

p2 = (1.0,1.0,1.0) :: (Float, Float, Float)

ps = [p1,p2]

newPs = filter real ps

rootsOfPs = map roots newPs

The function ps returns a list with two quadratic equations. The first equation
(p1) has real solutions while p2 has complex solutions. The function newPs uses
real to filter the elements of ps that have real solutions. Finally, rootsOfPs
applies the function roots to each equation in the list. The result then is the
list of solutions for the equations.

Exercise: Use the function that calculates complex roots (from the last exer-
cise) and apply it to a list of quadratic equations.

3.5 Alternative function definition

It is always possible to write a function in different ways. The differences are
usually in the abstraction of the definition or in the functions used. It is also
possible to use different styles for dealing with special cases. The following
example defines functions for the length of a list. Although they look rather
different they all produce the same result. In all cases the abstraction is the
same (all have a parameter of type [a] and a result of type Int).

l1 [] = 0

l1 (x:xs) = 1 + l1 xs

14

l2 xs = if xs == [] then 0 else 1 + l2 (tail xs)

l3 xs | xs == [] = 0

| otherwise = 1 + l3 (tail xs)

l4 = sum . map (const 1)

l5 xs = foldl inc 0 xs

where inc x _ = x+1

l6 = foldl’ (\n _ -> n + 1) 0

The special case for the length of a list is the empty list. in this case the length
is zero. The functions l1 to l3 start from this fact and use iteration to calculate
the length. However, they use different methods for detecting the empty list:

• l1 uses pattern matching

• l2 uses an if-then-else branch

• l3 uses guard notation (see (6.2) for more information)

The functions l4 to l6 use other list functions to perform the calculation. They
work in the following way:

• l4 first replaces all elements in the list with 1 and then just sums the
elements of the list.

• l5 defines a local function for increasing a local counter and uses the
function foldl to go through the list.

• l6 uses the same method as l5 but defines the function in a lambda-
expression6

3.6 Summary

We found out a few things about lists in this sections. The most important
points have been:

• Lists are an excellent way for representing an arbitrary number of elements
provided that all elements must be of the same type.

• There is a number of useful functions over lists in the prelude.hs.

• The higher-order function map applies a function to all elements of a list.

• Mathematical induction is the basic theoretical background for recursion.

• Recursion replaces loop constructs in imperative programs in a mathe-
matically sound way.

6We will not use lambda-expressions in this tutorial. The definitions was only added
because this is the definition used in the Haskell-prelude.

15

• Lists are isomorph to natural numbers and recursion is applied in the same
manner.

• map, filter and foldl/foldr are the most important functions over lists
and are useful in many applications.

• There are usually many ways to define a function in Haskell.

4 Representation of Data

Until now we only used the base types for our functions. Usually it is necessary
to define data structures to store the data necessary for our functions.

4.1 Type synonyms

Let us continue with the roots example. The input for roots is a triple (Float,

Float,Float) and the output is a pair (x1,x2). The type signature for roots
looked like:

roots :: (Float, Float, Float) -> (Float, Float)

If we had a number of functions in our program, such type information would
not be very helpful in understanding what that function really does. It might
be better to read something like:

roots :: Poly2 -> Roots2

That is why Haskell supports type synonyms. Type synonyms are user-defined
names for already existing types or their combinations in tuples or lists. The
lines

type Poly2 = (Float, Float, Float)

type Roots2 = (Float, Float)

mean that we can refer to any triple of Floats using the name Poly2 and to
a tuple of floats using the name Roots2. Both names say more about the type
than the original tuple (the first one tells us that it contains a polynomial of
the second order and the second one contains the roots of such a polynomial).

Summary: Type synonyms are just shortcuts for already existing data types
which should make clearer what the program does or what input and output a
function has.

4.2 User-defined data types

Combining predefined types (Bool, Int, Float, Char) in lists ([]) or tuples
(pairs, triples, ...) is usually powerful enough to solve a number of problems we
deal with. However, sometimes we need our own definitions to express:

• Tuples in more convenient form: Poly = (Float,Float,Float)

• Enumerated types: The days of week are Mon or Tue or Wed or Thu or
Fri or Sat or Sun

• Recursive types: Num (No) is either Zero or a successor of Num

16

User-defined data types play an important role in the class-based style of pro-
gramming and it is worth learning how they work.

data Polynom = Poly Float Float Float

Explanation:

• data is the keyword to start a data type definition

• Polynom is the name of data type (type information)

• Poly is the constructor function (try :t Poly)

• Float is the type of the first, second, and third argument of Poly

This means that we can rewrite the function roots2 (to avoid the name clash
with roots):

roots2 :: Polynom -> (Float, Float)

roots2 (Poly a b c) = ...

pOne, pTwo :: Polynom

pOne = Poly 1.0 2.0 1.0

pTwo = Poly 2.0 4.0 (-5.0)

The brackets around the number -5.0 in the definition of pTwo are necessary
because the sign for negative numbers is the same as the function name for
subtraction. Without the brackets Haskell would misinterpret the ‘-’ and would
give the following error:

ERROR D:\Texte\Latex\code.hs:116 - Type error in explicitly typed binding

*** Term : pTwo

*** Type : Float -> Polynom

*** Does not match : Polynom

The most important thing is the distinction between the type name (Polynom)
and the type constructor (Poly). The type name comes always in lines con-
cerning the type information (containing ‘::’), and the type constructors in lines
concerning application (containing ‘=’). Type constructors are the only func-
tions starting with a capital letter, and the only functions that can appear on
the left-hand side of an expression.

One can define a data type with the same name for the type and for the
constructor, but such practice is highly discouraged!

IMPORTANT: Finally, another portion of syntactic sugar: To avoid prob-
lems with printing results of functions, just add to any new definition of data
type the following two words: deriving Show. This creates automatically an
instance of the class7 Show for the new data type

The following code gives an example for a recursive data type. Try it on the
command line:

:t Start, :t Next, :t Next (Bus), :i Bus, testbus, testint

data Bus = Start | Next (Bus) deriving Show

7see chapter 8 for information on classes and instances.

17

myBusA, myBusB, myBusC :: Bus

myBusA = Start

myBusB = Next (Next (Next (Start)))

myBusC = Next myBusB

plus :: Bus -> Bus -> Bus

plus a Start = a

plus a (Next b) = Next (plus a b)

testBus :: Bus

testBus = plus myBusC myBusB

howFar :: Bus -> Int

howFar Start = 0

howFar (Next r) = 1 + howFar r

testInt :: Int

testInt = (+) (howFar myBusC) (howFar myBusB)

4.3 Parametrized Data Types

Data types can be parametrized with a type parameter, which must be instan-
tiated with a type when used. A simple example for such a data type is a
list:

data List a = L a (List a) | Empty

This data type defines a list as a recursion. The starting point is the empty list.
Any other list has an element as the head of the list and a list as it’s tail. The
elements of the list are arbitrary elements but all elements within the list must
have the same type. Some examples for this data type are:

l1,l2,l3 :: List Integer

l1 = Empty

l2 = L 1 l1

l3 = L 5 l2

li1 = L 1.5 Empty :: List Double

5 Polymorphism

Polymorphism means that a single function can be applied to a variety of argu-
ment types. Typical examples in other programming languages are mathemat-
ical operations like plus or minus. Usually the following expressions are valid
for Integer numbers and floating point numbers. In C++-Notion we would say
that the functions are “overloaded”.

a + b

a - b

18

5.1 Ad hoc Polymorphism

If the two operations have just the same name, we call it ad hoc polymorphism.
It is somewhat confusing, as two completely different operations, with different
properties can be using the same name (e.g. ‘+’ to concatenate strings is not
commutative a + b 6= b + a). This is not desirable and programmers should
watch out not to introduce such sources of error (the readers expectation for
‘+’ is different from what is programmed).

5.2 Subset Polymorphism

A common type of polymorphism is based on a subset relation of the data types.
We postulate a most general type (say number) from which subtypes (Integer,
Float etc.) is constructed. We then say that the operation plus applies to all
objects of type number and therefore also to the subtypes.

Subtype relations in Haskell cannot be defined directly. However, it is possi-
ble to demand, that there must be instances of specific classes for the used data
type. In our roots example we would need real numbers for our parameters and
the result. Since an implementation of real numbers is not possible in computer
systems we have to work with an approximation (e.g. floating point numbers).
However, we can demand that specific functions must be defined for the used
data type - addition, multiplication, square roots, ... These functions are de-
fined in the Haskell classes Num (numbers), Fractional, and Floating. The
last one requires the instances of the other two classes. Therefore it is sufficient
to demand the implementation of Floating:

roots :: (Floating a) => (a, a, a) -> (a, a)

Adding ‘(Floating a) =>’ does not create the necessary instance! However, it
can check the existence of the instance during run-time (when it is clear which
data types are used) and give an error message Unresolved Overloading if a
necessary instance is missing.

? roots (1,2,1)

ERROR - Unresolved overloading

*** Type : Floating Integer => (Integer,Integer)

*** Expression : roots (1,2,1)

?

5.3 Parameterized Polymorphism

The solution used in Haskell is ‘parameterized polymorphism’. An operation is
applicable to all situations

plus :: a -> a -> a,

where the type parameter a is replaced consistently with the same type - thus
for

plus :: Int -> Int -> Int,

or

plus:: Rat -> Rat -> Rat.

19

Correspondingly, data types can also have a type parameter (e.g. data List a).
This gives enormous power, as operations can often be expressed in a general

form, not depending on the particulars of the parameter selected. For example,
one can count the length of a list without knowing the type of data stored in
the list.

listlen :: List a -> Int

listlen Empty = 0

listlen (L _ list) = 1 + listlen list

6 Advanced Programming Methods

6.1 Composition

We can compose functions. In the last example we applied two functions to a
list. The mathematical expression for this is f(g(x)). In mathematics we could
also write (g ◦ f)(x). The key condition is that the result type of the function
‘g’ coincides with the argument type of the function ‘f’. Haskell has a similar
mechanism. The composition operator ‘.’ takes two functions and combines
them ((f . g) x = f (g x))

rootsOfPs2 = (map roots.filter real) ps

The dot replaces the circle. The function filter real is g, the function
map roots is f, and the variable ps is x.

6.2 Guards

Guards are another method to write if-then-else-expressions. Let us assume
that we have the following example:

tst1 (a,b,c) = if d > 0

then d

else if d==0 then 0

else error "negative sqrt"

where d = b*b - 4*a*c

This means the same as the ‘guard’-notation:

tst2 (a,b,c) | d > 0 = d

| d == 0 = 0

| otherwise = error "negative d"

where d b*b - 4*a*c

If the first test (d > 0) returns True the result is d. Otherwise the second line
is checked. The result here is 0. The expression otherwise in the third line
is predefined and returns True in any case. If, therefore, the first two checks
return False the result of the function will be an error. Thus, the result of the
function tst2 is the same as the result of the function tst1.

Another example where guards are useful are discontinuous functions. Let
us assume that we have a function that is -1 for negative values, 0 for zero, and

20

1 for positive values (this is the signum-function). The mathematical definition
looks like the following:

signum x =

−1 : x < 0
0 : x = 0
1 : x > 0

(5)

In guard notation we write (after changing the name to sign to avoid clashes
with the existing function signum):

sign x | x < 0 = -1

| x == 0 = 0

| x > 0 = 1

We see that there are only minor differences between the mathematical nota-
tion and the Haskell syntax. The vertical bars replace the winged bracket and
condition and result are in reverse order in Haskell.

6.3 Sections

Standard numeric functions take two arguments and give a single result:

(+), (*) :: Num a => a -> a -> a

Their application looks like:

? 3 + 4

7

but may be written:

? (+) 3 4

7

If we specify the first argument together with the operator, the type signature
is:

(3 +) :: Num a => a -> a

In other words, the first argument of ‘(+)’ is “eaten” by the integer 3. This
property is useful in map constructs:

? map (3+) [4,7,12]

Equality (==) and ordering operators (<, <=, >, >=) represent another set
of functions that are commonly used in the section form. Since they all give a
Boolean value as a result, their sections are useful filter constructs:

? filter (==2) [1,2,3,4) [2]

? filter (<=2) [1,2,3,4] [1,2]

Note the profund difference in the position of the operator and the argument in
the section. It does not make any difference if using symmetric operation like
but it makes a big one for ordering operations - try different things like

(<2) (2<) (>2) (2>)

for p in the form filter p [1,2,3,4] and see what happens.

21

Summary: Sections are the way to convert a function to a new function with
less arguments than the original one. It is often used to convert a function
with more than one argument to a function which is acceptable for mapping,
filtering, and functional composition.

6.4 List comprehensions

List comprehensions are yet another device for defining lists and operations on
them (usually found in textbooks about functional programming). The form
should be completely natural if you think about lists in terms of set theory.

In set theory, a set of odd integers between 0 and 100 will be represented by
the set: {x|x ∈ 0..100, odd x}. In functional language, the same set is written
as:

[x | x <- [0..100], odd x]

Thus, braces are replaced by square brackets, the ‘∈’ is replaced by ‘<-’ and
you can define almost anything expressible as a set.

For example, to multiply all elements of one list with all elements of another
list, we write a function like this:

? f [2,3,4] [5,6] where f xs ys = [x*y | x <- xs, y <- ys]

[10,12,15,18,20,24] :: [Integer]

Actually, map and filter can be expressed in terms of list comprehension:

map f xs = [f x | x <- xs]

filter p xs = [x | x <- xs, p x]

7 Functional vs. Imperative Programming

Example: Calculation of inner product for vectors:
The vectors a and b are one-dimensional vectors with elements a1, a2, ..., an

and bl, b2, ..., bn. The inner product of a and b then is a sum of products of
matching components: a · b = al · bl + a2 · b2an + ... + bn.

An imperative program will probably look like this:

c := 0

for i:= 1 to n do

c := c + a[i] * b[i]

We can see some parts where errors may occur. We need a variable to store
provisional results. This variable will be active within the whole function and,
therefore, may be used on a different place, too. This makes the code harder
to read and may cause errors if the programmer is not careful. We also must
determine the number of elements within a vector prior to the for-do-loop be-
cause this is the second parameter of the loop. Finally, we loose contact to the
mathematical notation (

∑

n

i=1
a1 · bi)

For a functional program there are a few versions. Here is one of the shortest
and most elegant:

inn2 :: Num a => ([a] , [a]) -> a

inn2 = foldr (+) 0 . map (uncurry (*)) . uncurry zip

22

There are several things that look quite strange in these two lines. The first
line should be clear when ignoring the Num a =>. This part tells the interpreter,
that the arbitrary type a must be a number. Num is a class containing functions
for adding, subtracting, multiplying, etc. It is not useful to implement these
functions for data types which are no numbers. Therefore, the data type is a
number if there is an implementation of Num for that data type. This is exactly
what the interpreter does if lie finds something like Num a =>.

In the second line there is no parameter for the function. The complete line
would look like this:

inn2 x = (foldr (+) 0 . map (uncurry uncurry zip) x

If we compare the the parts on the left and right side of the ‘=’ we find that
the parameter x is the last element in both cases. Therefore we may let the
parameter away without consequences. This does not only reduce the work
for writing, but it also let us concentrate on the most important part - the
algorithm.

The second line consists of three functions that are combined by the com-
position operator:

• uncurry zip: The function zip takes two lists as parameters and com-
bines the lists in the following way: It takes the first elements of both
lists and makes a pair. This is the first element of the resulting list. Then
it takes the second elements of both lists and makes a pair (which is the
second element of the resulting list), and so on. The function uncurry

modifies the function zip so, that it has not two separate parameters but
a single pair. An example for the use of uncurry can be found below
(function ut).

• map (uncurry (*)): This part takes the list of tuples created by the
first step and multiplies the elements of the tuples. For a single tuple
uncurry (*) executes the multiplication. The use of map applies that
function to each tuple in the list.

• foldr (+) 0: This function finally sums the results of the multiplications.

For better understanding try the following examples and look what they do:

ft = foldr (*) 7 [2,3]

ut = uncurry (+) (5,6)

zt = zip "Haskell" [1,2,3,4,5,6,7]

testvec = inn2 ([1,2,3], [4,5,6])

The next step is to expand the function to a list of vectors. The parameter
therefore is a list of vectors (which are a list of integer numbers). The result is
the inner product of all vectors:

innXa, innXb :: [[Integer]] -> Integer

innXa = foldr (+) 0 . map (foldr (*) 1) . transpose

innXb = foldr1 (+) . map (foldr1 (*)) . transpose

The functions innXa and innXb do the same. Both consist of three parts. The
difference is that innXb uses the function foldr1 instead of foldr. foldr1 uses

23

the zero element defined for the parameter function. In case of the multiplication
the zero element is 1, for the addition it is 0.

The function transpose takes a list of lists as a parameter and creates a
new list of lists. The first list contains the first elements of all input lists, the
second lists contains the second elements of all input lists, and so on.

transpose :: [[a]] -> [[a]]

transpose [] = []

transpose ([]:xss) = transpose xss

transpose ((x:xs) : xss) = (x : [h | (h:t) <- xss]) :

transpose (xs : [t | (h:t) <- xss])

The following example can be used to test the function.

x = [[1,2,3],[4,5,6],[1,1,1]]

testa = innXa x

testb = innXb x

We can now list some advantages of functional program over imperative pro-
gramming:

• It operates only on its arguments (no side-effects).

• It is hierarchical, being built from simpler functions.

• It employs the functions that are generally useful in other programs.

• It is static and non-repetitive.

• It is completely general.

• It does not name its arguments.

8 Building a simple database

A database is a collection of objects with identifiers and attributes. We will use
Integers as identifiers. They must be unique within the database. Attributes
are functions from value sets (‘name’, ‘age’, ‘color’) to values (“John”, “1211”,
“red”).

The operations needed are:

• insert (adding a new object with some attributes to a database)

• select (given an ID, retrieves the object from a database)

• selectby (retrieves the objects satisfying the given condition)

The goal is to look at the specification development process: We define functions
with signatures containing arbitrary data types and group them. The resulting
groups are called classes. Later we define these functions for specific data types
(instances of classes).

We give default definitions for general operations that do NOT depend on
implementation details. We have already seen a function that does not depend
on implementation - len in section 3.1.

24

If we work like that, we can hand our classes (without the instances) to
different programmers and the results of their work will be compatible (although
the implementations will differ).

For simplification, we introduce two type synonyms for identifiers and at-
tributes. The identifier is an Integer number. An attribute consists of two
Strings. The first defines the type of the attribute and the second defines the
value of the attribute.

type ID = Int

type Attrib = (String, String)

The class Objects defines the behavior of objects. We define, that an object
consists of an identifier of type ID and a list of attributes of type Attrib. The
operations object (creates a new object), getID (returns the ID of the object) ,
getAttrib (returns the attributes of the object) are implementation dependent
and, therefore, require a definition in an instance before use. However, the
operation getName (returns the value of the Attribute “name”) is independent
of the implementation and we can give the default definition (an axiom).

class Objects o where

object :: ID -> [Attrib] -> o

getID :: o -> ID

getAtts :: o -> [Attrib]

getName :: o -> String

getName = snd . head . filter (("name"==) . fst) . getAtts

The class Databases specifies the behavior of a collection of objects. It is not
important what the type of the objects is, provided that there are operations
for that type (defined in the class Objects). Again, the first five operations are
implementation dependent.

class (Objects o) => Databases d o where

empty :: d 0

getLastID :: d o -> ID

getObjects :: d o -> [o]

setLastID :: ID -> d o -> d o

setObjects :: [o] -> d o -> d o

insert :: [Attrib] -> d o -> d o

insert as db = setLastID i’ db’ where

db’ = setObjects os’ db

os’ = o : os

os = getObjects db

o = object i’ as

i’ = 1 + getLastID db

select :: ID -> d o -> o

select i = head . filter ((i==).getID) . getObjects

selectBy :: (o -> Bool) -> d o -> [o]

selectBy f = filter f . getObjects

25

Now we have a complete specification of a simple database. The next step is to
write an implementation to test the specification. The implementation here is
only one of many possibilities:

First of all we need a particular representation of objects. We define a data
type Object holding the identifier and the Attributes and connect the data type
to the class Objects by implementing the class for the data type. We only have
to implement the functions that have no axiom in the class definition.

data Object = Obj ID [Attrib] deriving Show

instance Objects Object where

object i as = Obj i as

getID (Obj i as) = i

getAtts (Obj i as) = as

We see that all dependent functions have a direct connection to the data type.
All functions either read data from the data set and return that data as the result
or write data to the data set and return the data set as a result. Therefore, the
functions are easy to implement. The complex tasks (like reading the value of
a specific attribute) are part of the class definition.

Now we have to do the same for the database. The data set for the data
base consists of an identifier and a list of objects. The identifier stored in the
data set is the last identifier used for an object. It is therefore easy to calculate
the identifier for a new object.

data DBS o = DB ID [o] deriving Show

instance Databases DBS Object where

empty = DB 0 []

getLastID (DB i os) = i

setLastID i (DB j os) = DB i os

getObjects (DB i os) = os

setObjects os (DB i ps) = DB i os

We can now start testing the database. For testing purposes we use examples
like the ones below. The tests are specific for the selected implementation.

d0, d1, d2 :: DBS Object

d0 = empty

d1 = insert [("name", "john"),("age", "30")] d0

d2 = insert [("name", "mary"),("age", "20")] d1

test1 :: Object

test1 = select 1 d1

test2 :: [Object]

test2 = selectBy (("john" ==).getName) d2

9 Modules

The programs we dealt with so far were short and compact, fitting on a single
sheet of paper. If we want to do some serious programming, it is very likely that

26

our program will increase in size. An overview of a lengthy file is a difficult task.
Therefore, long projects are divided in parts, containing pieces of a program that
belong together. These parts are called modules (not only in Haskell).

How to write a module? It is simple, just add a line containing the keyword
module, the actual name of the module (capitalized!), followed by the keyword
where, and that’s it. Note that this line should be the first line in your Haskell
script that is not a comment or empty. An example:

-- filename: Test.hs

-- project : Haskell Script

-- author : Damir Medak

-- date : 10 June 1999

module Test where

data Person = Pers String Int

-- etc.

-- end of file

Some conventions are useful:

• Put exactly one module in a single file.

• Give the same names to files and modules.

Thus the example above should be saved as Test.hs.
Barely collecting Haskell definitions into named modules would not have

improved the power of expression we want to achieve. The most important
thing to learn is how to import definitions from other modules into a module.
This is important both for importing already existing functions in numerous
libraries delivered with Haskell and for modularization of our own definitions.
An example for each usage will do.

9.1 Importing already existing definitions

A good exercise in module handling is to use an already defined function pro-
vided by a module different from the standard prelude (prelude.hs). As an
example, consider the function sort, defined in the script ‘\hugs\Lib\List.hs’.
We must specify that the module List (surprisingly named exactly as the script
- ‘List.hs’) is imported by our module.

module Test01 where

import List

xs = [2,1,4,3,5]

ys = sort xs

--end of file

Save a module as ‘Test01.hs’ and load it to Hugs. Observe which files are loaded.
If there is a nasty error message “module List not previously loaded”, type
“:s i+” followed by ‘ENTER’ in the interpreter and the message will not come
up again.

27

9.2 Combining files into projects

There is a simple rule to follow when writing the import declarations: Each
module must import all modules containing functions used within its definitions.

If our modules are fully independent, we may have a single project file that
imports all other files like this:

module Project where

import Part01

import Part02

import Part03

--end of import

where declarations of parts are:

module Part01 where

--etc.

module Part02 where

--etc.

module Part03 where

--etc.

Usually, some functions will be shared among all modules. In this case, each
module must import the module where the function is defined. An example:

module Part01 where

class Persons p where

getName :: p -> String

getAge :: p -> Int

data Person = Pers String Int

instance Persons Person where

getName (Pers n a) = n

getAge (Pers n a) = a

--end of Part01

module Part02 where

import Part01

class Persons s => Students s where

getID :: s -> Int

data Student Stud String Int Int

instance Persons Student where

getName (Stud n a i) = n

getAge (Stud n a i) = a

instance Students Student where

getID (Stud n a i) = i

--end of Part02

module Project where

import Part01

import Part02

--end of Project

28

You can easily check what happens if you forget to write one of the import-
lines. Just comment out the second line in the file ‘Part02.hs’ and reload the
file ‘Project.hs’. You will get an error message.

Summary: Modularization is beneficial in functional programming for several
reasons. Program units get smaller and easier to manage, control over connec-
tions among various modules is transparent for future use and error detecting,
and a number of files can be loaded in a convenient way of loading the project
file only.

29

