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Lecture goals

• Vector space (linear space).


• Linear transformation.


• Base and change of basis.


• Eigenvalues and eigenvectors.


• Eigendecomposition of a matrix.


• SVD - singular value decomposition.


• Dimensionality reduction with SVD.


• Variance and covariance.


• PCA - principal component analysis.


• Relationship between PCA and SVD.



Vector space
A linear space is a collection of elements (called vectors) that can be scaled and added

Linear space (vector space) - a set of elements (called vectors) in which two actions are 
defined:


• adding vectors,


• scaling vectors, i.e. multiplication of vectors by numbers (called scalars) from a fixed field 
(for example the field of real numbers).


As always in math, these actions must fulfill some additional axioms defined their properties.


Natural examples of linear spaces are two- and three-dimensional Euclidean spaces:


• vectors are identified with pairs and triples of real numbers, respectively,


• vectors are represented by geometric vectors (characterized by direction and magnitude 
(value, size, length), usually represented as arrows; in Polish we describe each vector by 
kierunek, zwrot i moduł (sometimes called value)).


The properties of geometric vectors provide a good intuitive model for vectors in more 
abstract linear spaces that have no geometric interpretation. Examples are:


• the set of all polynomials with real coefficients - the polynomial is a non-geometric vector;


• a set of square matrices of the same dimension - the matrix is a non-geometric vector.



Linear transformation

In nonelementary mathematics (linear algebra), a linear map (also called a linear 
mapping, linear transformation or, in some contexts, linear function) is a function 
(mapping)  between two vector spaces  and  that preserves the 
operations of addition and scalar multiplication:


• mapping the sum of vectors from one space to another is equal to the sum of the 
mappings of individual vectors of this sum,


• the mapping of the product of a vector by the scalar is equal to the product of the 
scalar by mapping the given vector.


A linear map is said to be operation preserving as it does not matter whether the linear 
map is applied before or after the operations of addition and scalar multiplication.

f : U → V U V



Linear transformation

Let  and  be vector spaces over the same field  (e.g. real or complex numbers). A function  is said to 
be a linear map if for any two vectors  and any scalar  the following two conditions are satisfied:


• additivity (preserves adding vectors) 
,


• homogeneity (preserves scalar multiplication) 
.


For example:


• For real numbers, the map  is not linear.


• For real numbers, the map  is not linear (but is a linear equation, as the term is used in analytic 
geometry).


If ,  are linear spaces of a finite dimension, ,  then the linear transformation between them 
can be represented by a matrix .


If  is a real  matrix, then  defines a linear map from  to  by sending the column vector  to the 
column vector . Conversely, any linear map between finite-dimensional vector spaces can be represented 
in this manner.

U V K f : U → V
u, v ∈ U c ∈ K

f(u + v) = f(u) + f(v)

f(cu) = cf(u)

f(x) = x2

f(x) = x + 1

U V dim U = n dim V = m
m × n

A m × n A Rn Rm x ∈ Rn

Ax ∈ Rm



Linear transformation
Examples of linear transformation matrices
In two-dimensional space  linear maps are described 
by  real matrices. These are some examples:


rotation 
by 90 degrees counterclockwise: 




by an angle  counterclockwise:





reflection 
through the  axis: 




through the  axis:





through a line making an angle  with the origin:





scaling 
by 2 in all directions:





shear 

horizontal:





squeeze:





projection 
onto the  axis:


R2

2 × 2

A = (0 −1
1 0 )

Θ

A = (cos θ −sin θ
sin θ cos θ )

X

A = (1 0
0 −1)

Y

A = (−1 0
0 1)

Θ

A = (cos 2θ sin 2θ
sin 2θ −cos 2θ)

A = (2 0
0 2)

A = (1 m
0 1)

A = (
k 0
0 1

k )
Y

A = (0 0
0 1)



Vector space
Base - intuition

In mathematics, a set  of elements (vectors) in a vector space  is 
called a basis, if every element of  may be written in a unique way as 
a (finite) linear combination of elements of . The coefficients of this 
linear combination are referred to as components or coordinates on 

 of the vector. The elements of a basis are called basis vectors.


A vector space can have several bases.


All the bases have the same number of elements, called the dimension 
of the vector space.

B V
V

B

B



Vector space
Base - more precisely

A basis  of a vector space  over a field  (such as the real numbers ) is a linearly independent subset of  
that spans . This means that a subset  of  is a basis if it satisfies the two following conditions:


• the linear independence property: 
for every finite subset  of , if  for some  in , then 

;


• the spanning property: 
for every vector  in , one can choose  in  and  in  such that .


The scalars  are called the coordinates of the vector  with respect to the basis , and by the first property 
they are uniquely determined.


For example, the coordinate vectors , , to , form a basis of , 
called the standard basis, since any vector  can be uniquely expressed as a linear combination of 
these vectors:





The corresponding coordinates  are just the Cartesian coordinates of the vector.


B V F R V
V B V

{v1, …, vm} B c1v1 + … + cmvm = 0 c1, …, cm F
c1 = … = cm = 0

v V a1, …, an F v1, …, vn B v = a1v1 + … + anvn

ai v B

e1 = (1,0,…,0) e2 = (0,1,…,0) en = (0,0,…,1) Fn

(x1, x2, …, xn)

(x1, x2, …, xn) = x1(1,0,…,0) + x2(0,1,…,0) + … + xn(0,0,…,0) = x1e1 + x2e2 + … + xnen

x1, x2, …, xn



Vector space
Change of basis

Let  be a vector space of dimension  over a field . Given two 
(ordered) bases  and  of , it is 
often useful to express the coordinates of a vector  which are given 
with respect to  in terms of the coordinates with respect to .


Often the space  with base  is called parent space, while space  
with base  is called child space.


It is useful to describe the old coordinates in terms of the new ones, 
because, in general, one has expressions involving the old coordinates, 
and one wants to obtain equivalent expressions in terms of the new 
coordinates. This is obtained by replacing the old coordinates by their 
expressions in terms of the new coordinates and can be done by the 
change-of-basis formula. 

V n F
Bold = (v1, …, vn) Bnew = (w1, …, wn) V

x
Bold Bnew

V Bold V
Bnew



Vector space
Change of basis
Let  and  are the coordinates of a vector  over the old ( ) and the new ( ) basis 
respectively. Then we have


(1) ,


and


(2) .


Typically, the new basis vectors are given by their coordinates over the old basis, that is


(3) 


for . The the change-of-basis formula is :


(4) 


for  - we express the old coordinates  in terms of the new ones . This formula is a simple consequence of the following


.


From the above and (2) we have





so we have .


(x1, …, xn) (y1, …, yn) x Bold = (v1, …, vn) Bnew = (w1, …, wn)

x =
n

∑
i=1

xivi

x =
n

∑
i=1

yiwi

wj =
n

∑
i=1

ai, jvi

i = 1,…, n x = Ay

xi =
n

∑
j=1

ai, jyj

i = 1,…, n xi yj

x =
n

∑
j=1

yjwj =
n

∑
j=1

yj (
n

∑
i=1

ai, jvi) =
n

∑
i=1

n

∑
j=1

ai, jyj vi

n

∑
i=1

xivi =
n

∑
i=1

n

∑
j=1

ai, jyj vi

xi =
n

∑
j=1

ai, jyj



Vector space
Transform from child space to parent space
When we want to go from some new coordinate system (child space) with basis vectors ,  to the old 
coordinates (parent space) with basis vectors , , where all vectors , , ,  are


• unit vectors,


• mutually perpendicular


and vectors  and  are expressed in parent space then the transformation matrix  is one whose columns are  
and . (Why? See next slide.)


For example, we can define new basis over the old basis using formula (3) as follow:








In consequence matrix  takes the form:


u v
e1 e2 u v e1 e2

u v A u
v

w1 = u =
3
5
4
5

=
3
5

e1 +
4
5

e2 =
3
5

v1 +
4
5

v2 ⟶ a11 =
3
5

, a21 =
4
5

w2 = v =
− 4

5
3
5

= −
4
5

e1 +
3
5

e2 = −
4
5

v1 +
3
5

v2 ⟶ a12 = −
4
5

, a22 =
3
5

A

A = [a11 a12
a21 a22] =

3
5 − 4

5
4
5

3
5

u v



Vector space
Transform from child space to parent space - why is  matrix of the form it is?A

From (4) we have:





Than the point  from the  (child) space expressed in  parent 
coordinates as  is:





In consequence matrix  takes the form (values , , ,  are defined in 
previous slide as a consequence od new base definition):


xi =
n

∑
j=1

ai,jyj

pC = (y1, y2) uv e1e2
pP = (x1, x2)

pP = x = [x1
x2] =

∑2
j=1 a1,jyj

∑2
j=1 a2,jyj

= [a11y1 a12y2
a21y1 a22y2] = [a11 a12

a21 a22] [y1
y2] = A [y1

y2] = Ay

A a11 a12 a21 a22

A = [a11 a12
a21 a22] =

3
5 − 4

5
4
5

3
5



Vector space
Transform from child space to parent space - final calculation
When we want to go from child space with basis vectors ,  on a vector to its coordinates in the parent space with basis 
vectors ,  the transformation matrix is one whose columns are  and 


For example, if





and





then the point  from the  (child) space





expressed in  parent coordinates is


.  


u v
e1 e2 u v

u =
3
5
4
5

v =
− 4

5
3
5

pC uv

pC = [2
1]

e1e2

pP = ApC =
3
5 − 4

5
4
5

3
5

[2
1] =

6
5 − 4

5
8
5 + 3

5

=
2
5
11
5

u v



Vector space
Transform from parent space to child space
Conversely, when we want to go from parent space on a vector to its coordinates in the child space with basis vectors , 

, the transformation matrix is one whose rows are  and 


For example, if





and





then the point  from the  (parent) space





expressed in  child coordinates is


.  

u
v u v

u =
3
5
4
5

v =
− 4

5
3
5

pP e1e2

pP =
2
5
11
5

uv

pC = ApP =
3
5

4
5

− 4
5

3
5

2
5

11
5

=
6

25 + 44
25

− 8
25 + 33

25

= [2
1]

u

v



Eigenvalues and eigenvectors
Definition
If  is a linear transformation from a vector space  over a field  into itself and  is a nonzero vector in , then  is an eigenvector of  if





where  is a scalar in , known as the eigenvalue, characteristic value, or characteristic root associated with .


If the dimension of  is finite, and a basis has been chosen,  and  may be represented, respectively, by a square matrix  and a 
column matrix (vertical vector) ; the equation defining eigenvectors and eigenvalues becomes


.


Using the identity matrix , whose entries are all zero, except those of the main diagonal, which are equal to one, this may be rewritten


.


As  is supposed to be nonzero, this means that  is a singular matrix (is not invertible), and thus


. 


The eigenvalues are thus the roots of the polynomial


.


An -by-  square matrix  is called invertible (also nonsingular or nondegenerate), if there exists an -by-  square matrix  such that


. 


A square matrix that is not invertible is called singular or degenerate. A square matrix is singular if and only if its determinant is zero.

f V F v V v f

f (v) = λv

λ F v

V f v M
u

Mu = λu

I

(M − λI )u = 0

u M − λI

det(M − λI ) = 0

g(x) = det(xI − M )

n n A n n B

AB = BA = I



Eigenvalues and eigenvectors
Interpretation

Loosely speaking, in a multidimensional vector space, the 
eigenvectors are vectors which are not changed (rotated) by 
the transformation - they stays the same (preserves the 
same direction) but may be scaled (stretched).


Geometrically, an eigenvector, corresponding to a real 
nonzero eigenvalue, points in the same direction in which it 
is stretched by the transformation as it points before 
applying the transformation. The eigenvalue is the factor by 
which it is stretched. If the eigenvalue is negative, the 
direction is reversed.



Eigenvalues and eigenvectors
Properties

• Eigenvectors corresponding to different eigenvalues are linearly independent.


• The matrix  is invertible if and only if every eigenvalue is nonzero.


• Determinant of matrix  is equal to product of eigenvalues of  as given below: 
.


• If  is an  triangular matrix (upper triangular, lower triangular, or diagonal), 
then the eigenvalues of  are entries of the main diagonal of .


• If an  matrix  has  distinct eigenvalues, then  is diagonalizable.


• If a basis exists that consists only of eigenvectors, the matrix of transformation 
on this basis has a very simple structure: it is a diagonal matrix such that the 
entries on the main diagonal are eigenvalues, and the other entries are zero. 

A

A A
det(A) = λ1λ2…λn

A n × n
A A

n × n A n A



Eigenvalues and eigenvectors
Properties

If  is an  matrix, then the following are equivalent:


•  is invertible.


•  is not an eigenvalue of .


• .


•  is diagonalizable.


•  has  linearly independent eigenvectors.


•  is expressible as a product of elementary matrices.


• The column vectors of  are linearly independent.


• The row vectors of  are linearly independent.


• The column vectors of  span 


• The row vectors of  span .


• The column vectors of  form a basis for .


• The row vectors of  form a basis for .

A n × n

A

λ = 0 A

det(A) ≠ 0

A

A n

A

A

A

A Rn

A Rn

A Rn

A Rn



Eigenvalues and eigenvectors
Properties - diagonalizable matrices

In linear algebra, a square matrix  is called diagonalizable if it 
is similar to a diagonal matrix, i.e., if there exists an invertible 
matrix  and a diagonal matrix  such that , or 
equivalently  (such ,  are not unique).


An  matrix  over a field  is diagonalizable if and only if 
there exists a basis of  consisting of eigenvectors of . If 
such a basis has been found, one can form the matrix  
having these basis vectors as columns, and  will be a 
diagonal matrix whose diagonal entries are the eigenvalues of 

.

A

P D P−1AP = D
A = PDP−1 P D

n × n A F
F A

P
P−1AP

A



Eigenvalues and eigenvectors
Diagonalizable matrices

An  matrix  over a field  is diagonalizable if and only 
if there exists a basis of  consisting of eigenvectors of .


TODO: How to diagonalize a matrix in Diagonalizable matrix:


https://en.wikipedia.org/wiki/
Diagonalizable_matrix

n × n A F
F A

https://en.wikipedia.org/wiki/Diagonalizable_matrix
https://en.wikipedia.org/wiki/Diagonalizable_matrix


Eigenvalues and eigenvectors
Diagonalizable matrices

Diagonalize procedure is the way we can decompose some 
matrices.


If there exists a basis of  consisting of eigenvectors of  
then an  matrix  over a field  is diagonalizable and 
in consequence we can decompose  according to the 
following formula





F A
n × n A F

A

A = PDP−1



Eigendecomposition of a matrix
Theory

Let  be a square  matrix with  linearly independent eigenvectors , where .


Then  can be factorized as





where  is the square  matrix whose -th column is the eigenvector  of , and  is the diagonal matrix whose diagonal 
elements are the corresponding eigenvalues: .


This decomposition can be derived from the fundamental property of eigenvectors:





As it was stated before, only diagonalizable matrices can be factorized in this way.


The  eigenvectors  are usually normalized, but they need not be. A non-normalized set of  eigenvectors can also be used as 
the columns of . That can be understood by noting that the magnitude of the eigenvectors in  gets canceled in the 
decomposition by the presence of matrix .


A n × n n qi i = 1,…, n

A

A = QΛQ−1

Q n × n i qi A Λ
Λii = λi

Av = λv
AQ = QΛ

A = QΛQ−1

n qi n
Q Q

Q−1



Eigendecomposition of a matrix
Theory - matrix inverse via eigendecomposition
One of the most important question is: Why we do this? You can guess that not only for pleasure but for some profits. A 
decomposition operation does not result in a compression of the matrix; instead, it breaks it down into constituent 
parts to give valuable insights into the properties of the matrix and make certain operations on the matrix easier to 
perform or/and less error prone.


• If a matrix  can be eigendecomposed and if none of its eigenvalues are zero, then  is nonsingular and its inverse is 
given by 
 

 
 
If  is a symmetric matrix, since  is formed from the eigenvectors of  it is guaranteed to be an orthogonal matrix, 
therefore . Furthermore, because  is a diagonal matrix, its inverse is easy to calculate: 
 

. 

 
As we can see, if a matrix  can be eigendecomposed, calculating its inverse is very fast thanks to 
eigendecomposition.


• Also computing the power of the matrix, become much easier when we use the eigendecomposition of the matrix.


A real square matrix is an orthogonal matrix if  or equivalently  because  can be expressed 
as  where  is called the inverse  of  and is denoted as .

A A

A−1 = QΛ−1Q−1

A Q A
Q−1 = QT Λ

[Λ−1]ii
=

1
λi

A

QTQ = QQT = I Q−1 = QT I
QB = BQ = I B Q Q−1



Eigendecomposition of a matrix
Practice

• Calculation of eigendecomposition 
lecture_04_01_01.py


• Confirm an eigenvector and eigenvalue 
lecture_04_01_02.py


• Reconstruct original matrix 
lecture_04_01_03.py




SVD - singular value decomposition

The singular value decomposition (SVD) is a factorization of a real or complex matrix  that generalizes the eigendecomposition of a 
square matrix to any  matrix.


Specifically, it takes  the form


,


where 


•  is an  real or complex unitary matrix, 


•  is an  rectangular diagonal matrix with non-negative real numbers on the diagonal,


• and  is an  real or complex unitary matrix.


If matrix  is real then  and  are real orthogonal matrices.


The diagonal entries  of  are known as the singular values of . The number of non-zero singular values is equal to the rank of . 
The columns of  and the columns of  are called the left-singular vectors and right-singular vectors of , respectively.


The SVD is not unique. It is always possible to choose the decomposition so that the singular values  are in descending order. In this case 
 (but not always  and ) is uniquely determined by .


Every rectangular matrix has a singular value decomposition, although the resulting matrices may contain complex numbers and the 
limitations of floating point arithmetic may cause some matrices to fail to decompose neatly.


• A complex square matrix  is unitary if its conjugate transpose  is also its inverse, that is, if  where  is the identity 
matrix.


• The number of linearly independent rows or columns is called the rank of matrix.

A
m × n

A = U ΣV*

U m × m

Σ m × n

V n × n

A U VT = V*

σi = Σii Σ A A
U V A

Σii
Σ U V A

U U* U*U = UU* = I I



Dimensionality reduction with SVD
How to reduce dimension with SVD
As we know SVD decomposition takes a form :


Analyzing carefully this representation


we discover alternative representation 


So, if  is decomposed as we can write it equivalently as





where .

M = UΣV*

Am×n Um×mΣm×n [VT]n×n

Am×n = σ1u1[vT]1 + … + σquq[vT]q

q = min(m, n)



Dimensionality reduction with SVD
How to reduce dimension with SVD
So, if  is decomposed as we can write it equivalently as





where .


Data with a large number of features, such as more features (columns) than observations (rows) may be reduced to a smaller 
subset of features that are most relevant to the prediction problem.


In a practical application, you will observe that only the first few, say , singular values are large. The rest of the singular 
values approach zero. As a result, terms except the first few can be ignored without losing much of the information





This way we obtain a matrix  which approximate given matrix .


How close this approximation is? 
Eckat-Young-Mirsky theorem for matrix methods describes about the Low-Rank-Approximation. It states that , which is addition 
of singular matrices up to  largest singular value, is the closest matrix of rank  for the matrix .


In natural language processing, this approach can be used on matrices of word occurrences or word frequencies in 
documents and is called Latent Semantic Analysis or Latent Semantic Indexing.

Am×n Um×mΣm×n [VT]n×n

Am×n = σ1u1[vT]1 + … + σquq[vT]q

q = min(m, n)

k

Am×n ≃ σ1u1[vT]1 + … + σkuk[vT]k

Bm×n = σ1u1[vT]1 + … + σkuk[vT]k A

Ak
kth k A



SVD - singular value decomposition
Practice

For the case of simplicity we will focus on the SVD for real-valued matrices and 
ignore the case for complex numbers. In this case we will have simply





• Calculate singular-value decomposition 
lecture_04_02_01.py


• Reconstruct original matrix from SVD 
lecture_04_02_02_01.py - square case 
lecture_04_02_02_02.py - general (rectangular) case


• Dimensionality reduction with SVD 
lecture_04_02_03_01.py - calculations with the svd method 
lecture_04_02_03_02.py - calculations with the TruncatedSVD class 
lecture_04_02_04.py - SVD for image compression


A = UΣVT



Variance and covariance

The formula for variance is given by





where  is the number of samples and  is the mean of the random variable .


The covariance  of two random variables  and  is given by





with  samples. The variance  of a random variable  can be also expressed as the 
covariance with itself by .


This can be written as





where the operator  denotes the expected value (mean) of its argument.

σ2
x =

1
n − 1

n

∑
i=1

(xi − x̄)2

n x̄ x

σ(x, y) x y

σ(x, y) =
1

n − 1

n

∑
i=1

(xi − x̄)(yi − ȳ)

n σ2
x x

σ(x, x)

cov(X, Y) = E [(X − E[X])(Y − E[Y])T]
E



PCA - principal component analysis

Principal component analysis (PCA) is the process of computing the principal components and using them 
to perform a change of basis on the data.


A data set consisting of  observations, each of which includes  variables, can be interpreted as a cloud of 
 points in a -dimensional space. The goal of PCA is to rotate the coordinate system in such a way as to 

maximize first the variance of the first coordinate, then the variance of the second coordinate, etc. The 
coordinate values transformed in this way are called the principal components. In this way, a new observation 
space is constructed in which the most variability is explained by the initial factors.


N K
N K



PCA - principal component analysis

Principal component analysis (PCA) is the process of computing the principal components and using them 
to perform a change of basis on the data.


A data set consisting of  observations, each of which includes  variables, can be interpreted as a cloud of 
 points in a -dimensional space. The goal of PCA is to rotate the coordinate system in such a way as to 

maximize first the variance of the first coordinate, then the variance of the second coordinate, etc. The 
coordinate values transformed in this way are called the principal components. In this way, a new observation 
space is constructed in which the most variability is explained by the initial factors.


N K
N K



PCA - principal component analysis

PCA is often used to reduce the size of a statistical data set by discarding recent factors. You can 
also look for a substantive interpretation of the factors, depending on the type of data, which 
allows you to better understand the nature of the data, although it can be difficult with a greater 
number of variables. In signal processing, PCA is used e.g. for signal compression. Smetimes 
using only the first few principal components and ignoring the rest. PCA can be thought of as 
fitting a -dimensional ellipsoid to the data, where each axis of the ellipsoid represents a principal 
component. If some axis of the ellipsoid is small, then the variance along that axis is also small.


To find the axes of the ellipsoid, we must:


1. First subtract the mean of each variable from the dataset to center the data around the origin.


2. Then, we compute the covariance matrix of the data


3. and next calculate the eigenvalues and corresponding eigenvectors of this covariance matrix.


4. Next we normalize each of the orthogonal eigenvectors to turn them into unit vectors.


Once this is done, each of the mutually orthogonal, unit eigenvectors can be interpreted as an 
axis (principal component) of the ellipsoid fitted to the data.


This choice of basis will transform our covariance matrix into a diagonalised form with the 
diagonal elements representing the variance of each axis.

p



PCA - principal component analysis
Example - method 1 (base)

TODO: Example from my book [FulGrzAI] - liczone z definicji


Rozdział 18.3.1 Analiza głównych składowych, z: 
Piotr Fulmański, Marta Grzanek, Sztuczna inteligencja. 
Podręcznik do wykładów i ćwiczeń 
ai.pdf



PCA - principal component analysis

So to make PCA we need eigenvectors of the covariance matrix 
 of the data matrix .


If  is our data matrix with  with rows being the observations 
and with mean-centered columns, then





is the covariance matrix. It is a symetric matrix, and therefore to 
find eigenvalues of   we can use eigendecomposition.


If we can use eigendecomposition, we can also use more 
general method, namely SVD.

C A

A n

C =
1

n − 1
ATA

C



PCA - principal component analysis
PCA and SVD

As we stated before: "the goal of PCA is to rotate the coordinate 
system". From the beginning of this lecture we know that any rotation 
can be expressed in matrix form. On the other hand, from material 
proceedings this part we know that any matrix  can be  
decomposed with SVD method:


.


Taking this into account, the matrix  can be written





where  is the square diagonal matrix with the singular values of  
and the excess zeros chopped off that satisfies .

A

A = UΣVT

ATA

ATA = VΣTUTUΣVT

= VΣTΣVT

= V Σ̂2VT

Σ̂ A
Σ̂2 = ΣTΣ



PCA - principal component analysis
PCA and SVD
Making eigendecomposition of covariance matrix  we have (from the definition of 
eigendecomposition)





On the other hand we know that





and in consequence





Having in mind that , comparison with the eigenvector factorization of  
establishes that


• the right singular vectors  of  are equivalent to the eigenvectors of ,


• while the singular values  of  are equal to the square-root of the eigenvalues  of : 

.

C

C = QΛQ−1

C =
1

n − 1
ATA

QΛQ−1 = C =
1

n − 1
ATA = V

Σ̂2

n − 1
VT

A = UΣVT ATA

V A ATA
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PCA - principal component analysis
PCA and SVD
Making eigendecomposition of covariance matrix  we have (from the definition of 
eigendecomposition)
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PCA - principal component analysis

Thus, the principal components are often computed


• either by eigendecomposition of the data covariance matrix


• or singular value decomposition of the data matrix (because  the 
right singular vectors  of  are equivalent to the eigenvectors of 

 which in turn is equal to covariance matrix multiplied by 
).


Have in mind that PCA can be interpreted as the SVD of a data 
matrix when the columns have first been centered by their 
means.


We can say, that today computing the SVD is the standard way to 
calculate a principal components analysis from a data matrix.
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PCA - principal component analysis
Example - method 2 (eigendecomposition of )ATA

TODO: Example from my book [FulGrzAI]  ale jako XTX, na 
bazie przykładu 11.2


z


http://infolab.stanford.edu/~ullman/mmds/ch11.pdf

http://infolab.stanford.edu/~ullman/mmds/ch11.pdf


PCA - principal component analysis
Example - method 3 (with SVD)

TODO: Example from my book [FulGrzAI] ale jako XTX, na 
bazie przykładu 11.2


z


http://infolab.stanford.edu/~ullman/mmds/ch11.pdf


Teraz liczone z SVD

http://infolab.stanford.edu/~ullman/mmds/ch11.pdf


PCA - principal component analysis
Practice

• Calculate PCA decomposition 
lecture_04_03_01_01.py - calculations with method 1: base method 
lecture_04_03_01_02.py - calculations with method 2: 
eigendecomposition of  
lecture_04_03_01_03.py - calculations with method 3: with SVD 
lecture_04_03_01_04.py - calculations with the PCA class 
 
 
 
 
 
 
 

ATA



Relationship between PCA and SVD

PCA refers to data analysis technique, while the SVD is a 
general operation defined on all matrices. 

For example, it doesn’t really make sense to talk about 
“applying PCA” to a matrix  unless the rows of  have clear 
semantics - typically, as data points  in . By 
contrast, the SVD is well defined for every matrix , whatever 
the semantics for . In the particular case where  is a 
matrix where the rows represent data points, the SVD can 
be interpreted as performing the calculations required by 
PCA. 
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