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Lecture goals

• Sigmoid function, logistic function, softmax function


• Algorithmic method for searching a minimum of a function


• Artificial neural networks - fast introduction


• Interactive examples


• Practical examples



Some useful functions 
we have to know



Sigmoid function
A sigmoid function is a mathematical function having a characteristic "S"-shaped curve 
or sigmoid curve.


There are many functions of this type but all of them share the same set of properties. A 
sigmoid function is a bounded, differentiable, real function that is defined for all real input 
values and has a non-negative derivative at each point and exactly one inflection point.


We will focus on the one, given by formula





and called logistic function.

f(x) =
1

1 + eλ(−x)



Logistic function
A logistic function or logistic curve is a curve (with equation


,


where


•  is the  value of the sigmoid's midpoint;


•  is the curve's maximum value;


•  is the logistic growth rate or steepness of the curve.


The standard logistic function is the logistic function with parameters ,  , ,


which yields


.


The standard logistic function has an easily calculated derivative (this derivative is known as the logistic distribution):


.


Because  than we have





For us the most important is this relation





as it allows to calculate derivative in only value  is known. This is very important property allowing us to reduce number of computation 
in case of neural networks where first we propagate signals forward calculating neuron's activation and next we propagate error signals back 
calculating activation's derivative.
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Logistic function
The standard logistic function with 
steepness parameter 





with derivative





takes the values from interval  which for 
some practical reasons is very undesirable 
feature. This function is sometimes called 
unipolar sigmoid function in contrast to its 
bipolar version of the form





with derivative





which takes the values from interval .


Both are often used as the activation function 
of an artificial neural network. Another 
frequent choice is





with derivative


.


Notice that


.
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Softmax function
argmax
We can define ,  function as a one-hot representation of 
the argument  (assuming there is a unique max arg)





where the output coordinate  if and only if  is the index of the unique greatest 
(maximum) value of all . 


For example





because the third argument is the maximum value of 4, 8 and 11.


This can be generalized to multiple  values (multiple equal  being the maximum) 
by dividing the 1 by the total number of argument taking maximum value. For example





because the first and fourth argument are both the maximum (of value 4). In case all 

arguments are equal, this is simply .

arg max(x) arg max : ℝn → ℝn

x

arg max(x1, …xi, …, xn) = (y1, …, yi, …, yn) = (0,…,0,1,0,…,0)

yi = 1 i
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Softmax function
softmax
The ,  function (also known as normalized 
exponential function) takes as input a vector  of  real numbers, and normalizes it 
into a probability distribution consisting of  probabilities proportional to the 
exponentials of the input numbers.


The standard (unit)  function is defined by the formula





for  and .


In words: we apply the standard exponential function to each element and 
normalize these values by dividing by the sum of all these exponentials; this 
normalization ensures that the sum of the components of the output vector is 1.


That is, prior to applying , even if some vector's components are negative 
or greater than one and all not sum to 1, after applying , each component 
will be in the interval , and the components will add up to 1. In consequence, 
they can be interpreted as probabilities. Furthermore, the larger input components 
will correspond to larger probabilities.

soft max(x) soft max : ℝn → ℝn

x n
n

soft max

soft max(x)i =
exi

∑n
j=1 exj

i = 1,…, n x = (x1, …, xn) ∈ ℝn

soft max
soft max

[0,1]



Softmax function
softmax
import numpy as np  
a = [4,8,11]  
print( np.exp(a) / np.sum(np.exp(a)) )  
b = [0.4,0.8,1.1]  
print( np.exp(b) / np.sum(np.exp(b)) )  
 
 
0.000867 0.047384 0.951747  
0.221947 0.331106 0.446946


If we take an input of , the  of that is . The output 
has most of its weight where the  was in the original input. This is what the function is normally 
used for: to highlight the largest values and suppress values which are significantly below the 
maximum value.


But be careful:  is not scale invariant, so if the input is divided by 10 to the form 
 the  is . Note that in the second case largest 

value is not as much large compared to the second largest value as in the first example:








We can say that larger values create a probability distribution that is more concentrated around the 
positions of the largest input values.

(4,8,11) soft max (0.000867,0.047384,0.951747)
11

soft max
(0.4,0.8,1.1) soft max (0.221947,0.331106,0.446946)

0.951747
0.047384

100 % = 20.085 ⋅ 100 % = 2008.5 %

0.446946
0.331106

100 % = 1.3498 ⋅ 100 % = 134.98 %



Softmax function
softmax
We can say that larger values create a probability 
distribution that is more concentrated around the positions 
of the largest input values.


Sometimes we define  as


.


The greater  is, the probability distribution is more 
concentrated around the positions of the largest input 
values.

soft max

soft max(x)i =
eβxi

∑n
j=1 eβxj

β



Softmax function
softmax
If we look closer to the first example, input of  and its 

 of value  we can 
approximate the result by .


Taking into account last definition of 





it can be proved that as   converges to .


Other words, we can say that   is not a smooth maximum 
(a smooth approximation to the maximum function), but is rather a 
smooth approximation to the  function and this is why 
sometimes it is called (correctly) . The term softmax 
is used in machine learning.

(4,8,11)
soft max (0.000867,0.047384,0.951747)

(0,0,1)

soft max

soft max(x)i =
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j=1 eβxj

β → ∞ soft max arg max

soft max

arg max
soft arg max



Softmax function
Neural networks
The softmax function is used in various multiclass classification 
methods, such as


• multinomial logistic regression (also known as softmax 
regression),


• multiclass linear discriminant analysis,


• naive Bayes classifiers,


• and artificial neural networks.


Because of its properties (interpretability as probability distribution) 
the softmax function is often used in the final layer of a neural 
network-based classifier. Such networks are commonly trained 
under a log loss (or cross-entropy) regime, giving a non-linear 
variant of multinomial logistic regression (a classification method 
that generalizes logistic regression to multiclass problems).



Softmax function
Derivative of softmax function
Now we will calculate derivative of softmax function as we will need it if we want to use it in neural networks (why we need derivatives we explain in the 
following part).


To simplify notation we will write


.


Softmax is a vector function therefore, when we try to find its derivative, we talk about a Jacobian matrix, which is the matrix of all first-order partial 
derivatives of a vector-valued function.


.


Our goal is to compute  for some arbitrary  and . To make it simpler, real first rule for calculating derivative of quotient: for  we have


.


In our case


,


,





and we have to calculate


.
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Softmax function
Derivative of softmax function

We have to calculate  and .


Surprisingly calculating derivative of  is simpler than derivative of . 
Computing the derivative of  with respect to , no matter for which 

, the answer will always be 


 


because


 for all  and


 for .
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Softmax function
Derivative of softmax function
The derivative of  with respect to  equal to  only for 

.


Otherwise, with respect to , it is a constant and its 
derivative is 0.


gi xk exk

i = k

xk



Softmax function
Derivative of softmax function
Case 1  

 







So finally in this case, when , we have
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Softmax function
Derivative of softmax function
Case 2  

 







So finally in this case, when , we have
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Softmax function
Derivative of softmax function
Summarizing 

.


Sometimes, this piecewise function can be put together using 
Kronecker delta function 


,


where


.

∂Si

∂xk
(x) = {

Si(x)(1 − Sk(x))  for i = k

Si(x)(0 − Sk(x))  for i ≠ k

δik

∂Si

∂xk
(x) = Si(x)(δik − Sk(x))

δik = {1 for i = k
0 for i ≠ k



In the search of 
minimum function value



Analogy
A man in the blizzard.



Derivative




If  and  are real numbers, and if the graph of  is plotted 
against , the derivative is the slope of this graph at each 
point.








See below links for some examples and animations:


https://en.wikipedia.org/wiki/Derivative

f′￼(a) = lim
x→∞

f(a + h) − f(a)
h

x y f
x

m =
Δy
Δx

f(x) = mx + b

https://en.wikipedia.org/wiki/Derivative


Gradient
The gradient of a scalar-valued differentiable function  of 
several variables is the vector field (or vector-valued 
function)  whose value at a point  is the vector whose 
components are the partial derivatives of  at . That is, for 

, its gradient  is defined at the 
point  in -dimensional space as the vector:


.

f

∇f p
f p

f : Rn → R ∇f : Rn → Rn

p = (x1, …, xn) n

∇f(p) =

∂f
∂x1

(p)

⋮
∂f
∂xn

(p)



Gradient descent
Gradient descent is a first-order iterative optimization algorithm for finding 
a local minimum of a differentiable function.


The idea is to take repeated steps in the opposite direction of the 
gradient of the function at the current point, because this is the 
direction of steepest descent.


If the multi-variable function  is defined and differentiable in a 
neighborhood of a point , then  decreases fastest if one goes from  
in the direction of the negative gradient of  at  ( ):


.


If  is small enough, then .


See below links for some examples and animations:


https://en.wikipedia.org/wiki/Gradient_descent


See also [FulSD].

F(x)
a F(x) a

F a −∇F(a)

an+1 = an − η∇F(an)

η ∈ ℝ+ F(an) ≥ F(an+1)

https://en.wikipedia.org/wiki/Gradient_descent


1D case
, , 
f(x) = x2 f′￼(x) = 2x η = 0.2



1D case
, , 
f(x) = x2 f′￼(x) = 2x η = 0.4



1D case
, , 
f(x) = x2 f′￼(x) = 2x η = 0.5



1D case
, , 
f(x) = x2 f′￼(x) = 2x η = 1.0



1D case
, , 
f(x) = x2 f′￼(x) = 2x η = 1.05



Artificial neural networks



Fast introduction
Into the learning
1. prezentacja_ldi_2019.pdf (artificial neuron, all-or-

nothing rule, typical architectures).

2. Idea of backpropagation (continue with red path following 
blue path included in presentation) with emphasis on what 
does it mean learn neural network - adjust neural network's 
weights.


3. Explain what does adjust neural network's weights mean - 
adjust to what? Adjust, so the neural network error is 
minimal - other words, find such a parameters of a neural 
network (weight are the only parameters we have), so it 
makes the smallest possible error 
 

, 
 
where  is the most crucial part.

wij(t + 1) = wij(t)+Δwij(t)

Δwij(t)



Fast introduction
1. Perceptron rule 

 



2. Define neural network error function 
 




3. Delta rule 
 




4. Delta rule is important because it can be generalized (if only activation function is 
differentiable - this explains why we use sigmoid functions which approximates a 
stepwise functions). Generalized delta rule 
 
output layer :  
 
all other layers :  
 
modify weights in each layer :  

Δwi = η[t − f(net)]xi

E(w) =
1
2

m

∑
k=1

(tk − yk)2

Δwi = η [t − f(net)] f′￼(net)

δ

x

l δl = [t − f(net)] f′￼(net)

i = 1,…, l − 1 δi = δi+1wf′￼(net)

i = 1,…, l wi = wi + ηδixi



Fast introduction
Other materials
• One of the following:


• Group 1:


1. [FulGrzAI], chapter 16 (16.1-16.5) i 17 (17.1-17.4)


• Group 2:


1. WSTĘP DO UCZENIA MASZYNOWEGO – WYKŁAD 1 
(https://www.math.uni.lodz.pl/~kosmatka/wdum-
wstep/)


2. WSTĘP DO UCZENIA MASZYNOWEGO – WYKŁAD 2 
(https://www.math.uni.lodz.pl/~kosmatka/
wstep-do-uczenia-maszynowego-wyklad-2/)


• David Kriesel, A Brief Introduction to Neural Networks, 2007, 
http://www.dkriesel.com/en/science/neural_networks


• Michael Nielsen, Neural Networks and Deep Learning, 
http://neuralnetworksanddeeplearning.com

https://www.math.uni.lodz.pl/~kosmatka/wdum-wstep/
https://www.math.uni.lodz.pl/~kosmatka/wdum-wstep/
https://www.math.uni.lodz.pl/~kosmatka/wdum-wstep/
https://www.math.uni.lodz.pl/~kosmatka/wstep-do-uczenia-maszynowego-wyklad-2/
https://www.math.uni.lodz.pl/~kosmatka/wstep-do-uczenia-maszynowego-wyklad-2/
https://www.math.uni.lodz.pl/~kosmatka/wstep-do-uczenia-maszynowego-wyklad-2/
http://www.dkriesel.com/en/science/neural_networks
http://neuralnetworksanddeeplearning.com


Interactive examples



Examples
Interactive examples
• perceptronDemo.jar  
 

• backpropDemo.jar  
 
(generalized) delta rule: 
 

Δwi = η[t − f(net)]xi

Δwi = η [t − f(net)]f′￼(net)

δ

x



Examples
Interactive examples
• Feed-forward neural networks


• Plane separation (ssn1.jar).


• Simple image recognition (ssn2.jar).


• XOR problem (ssn3.jar).


• Simple game - tanks (ssn4.jar).


• Recurent neural networks


• Hopfield neural network (ssn6.jar).


• Self-organizing neural networks


• Example (ssn7.jar).


• Image compression (ssn5.jar).



Examples
Interactive examples - image compression
• Idea 

 
 
 
 
 
 
 
 
 
 
 
 
 

• Image compression (ssn5.jar).



Neural networks in 
practice



Task 1
Tanks in Python
1. Implement missing code in Python.


2. Test if it works for game (macOS version).



Task 2
Solving XOR problem with Keras
• Code


• lecture_06_02.py - XOR in Keras.


For more information about Keras, see for example [Bur, 
Cho, Mol] .
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