
Natural Language Processing

Artificial neural
networks
In the search of the brain

Piotr Fulmański

Lecture goals

• Sigmoid function, logistic function, softmax function

• Algorithmic method for searching a minimum of a function

• Artificial neural networks - fast introduction

• Interactive examples

• Practical examples

Some useful functions
we have to know

Sigmoid function
A sigmoid function is a mathematical function having a characteristic "S"-shaped curve
or sigmoid curve.

There are many functions of this type but all of them share the same set of properties. A
sigmoid function is a bounded, differentiable, real function that is defined for all real input
values and has a non-negative derivative at each point and exactly one inflection point.

We will focus on the one, given by formula

and called logistic function.

f(x) =
1

1 + eλ(−x)

Logistic function
A logistic function or logistic curve is a curve (with equation

,

where

• is the value of the sigmoid's midpoint;

• is the curve's maximum value;

• is the logistic growth rate or steepness of the curve.

The standard logistic function is the logistic function with parameters , , ,

which yields

.

The standard logistic function has an easily calculated derivative (this derivative is known as the logistic distribution):

.

Because than we have

For us the most important is this relation

as it allows to calculate derivative in only value is known. This is very important property allowing us to reduce number of computation
in case of neural networks where first we propagate signals forward calculating neuron's activation and next we propagate error signals back
calculating activation's derivative.

f (x) =
L

1 + e−λ(x−x0)

x0 x

L

λ

λ = 1 x0 = 0 L = 1

f (x) =
1

1 + e−x
=

ex

ex + 1
=

1
2

+
1
2

tanh (x
2)

d
dx

f (x) =
ex ⋅ (1 + ex) − ex ⋅ ex

(1 + ex)2
=

ex

(1 + ex)2
= f (x)(1 − f (x))

1 − f (x) = f (−x)
d

dx
f (x) = f (x)f (−x)

d
dx

f (x) = f (x)(1 − f (x))
f (x)

Logistic function
The standard logistic function with
steepness parameter

with derivative

takes the values from interval which for
some practical reasons is very undesirable
feature. This function is sometimes called
unipolar sigmoid function in contrast to its
bipolar version of the form

with derivative

which takes the values from interval .

Both are often used as the activation function
of an artificial neural network. Another
frequent choice is

with derivative

.

Notice that

.

λ

f(x) =
1

1 + e−λx

d
dx

f(x) = λf(x)(1 − f(x))
(0,1)

f(x) =
2

1 + e−λx
− 1

d
dx

f(x) = λ
1
2 (1 − (f(x))2)

(−1,1)

f(x) = tanh(x) =
ex − e−x

ex + e−x

d
dx

f(x) = 1 − tanh2(x)

tanh(x) =
2

1 + e−2x
− 1

Softmax function
argmax
We can define , function as a one-hot representation of
the argument (assuming there is a unique max arg)

where the output coordinate if and only if is the index of the unique greatest
(maximum) value of all .

For example

because the third argument is the maximum value of 4, 8 and 11.

This can be generalized to multiple values (multiple equal being the maximum)
by dividing the 1 by the total number of argument taking maximum value. For example

because the first and fourth argument are both the maximum (of value 4). In case all

arguments are equal, this is simply .

arg max(x) arg max : ℝn → ℝn

x

arg max(x1, …xi, …, xn) = (y1, …, yi, …, yn) = (0,…,0,1,0,…,0)

yi = 1 i
x1, …, xn

arg max(4,8,11) = (0,0,1)

arg max xi

arg max(4,3,2,4) = (1
2

,0,0,
1
2) = (0.5,0,0,0.5)

arg max(x1, …, xn) = (1
n

, …,
1
n)

Softmax function
softmax
The , function (also known as normalized
exponential function) takes as input a vector of real numbers, and normalizes it
into a probability distribution consisting of probabilities proportional to the
exponentials of the input numbers.

The standard (unit) function is defined by the formula

for and .

In words: we apply the standard exponential function to each element and
normalize these values by dividing by the sum of all these exponentials; this
normalization ensures that the sum of the components of the output vector is 1.

That is, prior to applying , even if some vector's components are negative
or greater than one and all not sum to 1, after applying , each component
will be in the interval , and the components will add up to 1. In consequence,
they can be interpreted as probabilities. Furthermore, the larger input components
will correspond to larger probabilities.

soft max(x) soft max : ℝn → ℝn

x n
n

soft max

soft max(x)i =
exi

∑n
j=1 exj

i = 1,…, n x = (x1, …, xn) ∈ ℝn

soft max
soft max

[0,1]

Softmax function
softmax
import numpy as np  
a = [4,8,11]  
print(np.exp(a) / np.sum(np.exp(a)))  
b = [0.4,0.8,1.1]  
print(np.exp(b) / np.sum(np.exp(b)))  
 
 
0.000867 0.047384 0.951747  
0.221947 0.331106 0.446946

If we take an input of , the of that is . The output
has most of its weight where the was in the original input. This is what the function is normally
used for: to highlight the largest values and suppress values which are significantly below the
maximum value.

But be careful: is not scale invariant, so if the input is divided by 10 to the form
 the is . Note that in the second case largest

value is not as much large compared to the second largest value as in the first example:

We can say that larger values create a probability distribution that is more concentrated around the
positions of the largest input values.

(4,8,11) soft max (0.000867,0.047384,0.951747)
11

soft max
(0.4,0.8,1.1) soft max (0.221947,0.331106,0.446946)

0.951747
0.047384

100 % = 20.085 ⋅ 100 % = 2008.5 %

0.446946
0.331106

100 % = 1.3498 ⋅ 100 % = 134.98 %

Softmax function
softmax
We can say that larger values create a probability
distribution that is more concentrated around the positions
of the largest input values.

Sometimes we define as

.

The greater is, the probability distribution is more
concentrated around the positions of the largest input
values.

soft max

soft max(x)i =
eβxi

∑n
j=1 eβxj

β

Softmax function
softmax
If we look closer to the first example, input of and its

 of value we can
approximate the result by .

Taking into account last definition of

it can be proved that as converges to .

Other words, we can say that is not a smooth maximum
(a smooth approximation to the maximum function), but is rather a
smooth approximation to the function and this is why
sometimes it is called (correctly) . The term softmax
is used in machine learning.

(4,8,11)
soft max (0.000867,0.047384,0.951747)

(0,0,1)

soft max

soft max(x)i =
eβxi

∑n
j=1 eβxj

β → ∞ soft max arg max

soft max

arg max
soft arg max

Softmax function
Neural networks
The softmax function is used in various multiclass classification
methods, such as

• multinomial logistic regression (also known as softmax
regression),

• multiclass linear discriminant analysis,

• naive Bayes classifiers,

• and artificial neural networks.

Because of its properties (interpretability as probability distribution)
the softmax function is often used in the final layer of a neural
network-based classifier. Such networks are commonly trained
under a log loss (or cross-entropy) regime, giving a non-linear
variant of multinomial logistic regression (a classification method
that generalizes logistic regression to multiclass problems).

Softmax function
Derivative of softmax function
Now we will calculate derivative of softmax function as we will need it if we want to use it in neural networks (why we need derivatives we explain in the
following part).

To simplify notation we will write

.

Softmax is a vector function therefore, when we try to find its derivative, we talk about a Jacobian matrix, which is the matrix of all first-order partial
derivatives of a vector-valued function.

.

Our goal is to compute for some arbitrary and . To make it simpler, real first rule for calculating derivative of quotient: for we have

.

In our case

,

,

and we have to calculate

.

Si(x) =
exi

∑n
j=1 exj

∂S
∂x

=

∂S1

∂x1
⋯ ∂S1

∂xn

⋮ ⋱ ⋮
∂Sn

∂x1
⋯

∂Sn

∂xn

∂Si

∂xk
i k f (x) =

g(x)
h(x)

f′￼(x) =
g′￼(x)h(x) − g(x)h′￼(x)

(h(x))2

f (x) = Si(x) =
gi(x)
h(x)

gi(x) = exi

h(x) =
n

∑
j=1

exj

∂
∂xk

Si(x) =
∂

∂xk
gi(x)h(x) − gi(x) ∂

∂xk
h(x)

(hi(x))2

Softmax function
Derivative of softmax function

We have to calculate and .

Surprisingly calculating derivative of is simpler than derivative of .
Computing the derivative of with respect to , no matter for which

, the answer will always be

because

 for all and

 for .

∂
∂xk

gi(x)
∂

∂xk
h(x)

h gi
h xk

k ∈ {1,2,…, n} exk

∂h
∂xk

(x) =
∂

∂xk

n

∑
j=1

exj =
n

∑
j=1

∂
∂xk

exj = exk

∂
∂xk

exj = 0 j ≠ k

∂
∂xk

exk = exk j = k

Softmax function
Derivative of softmax function
The derivative of with respect to equal to only for

.

Otherwise, with respect to , it is a constant and its
derivative is 0.

gi xk exk

i = k

xk

Softmax function
Derivative of softmax function
Case 1

So finally in this case, when , we have

i = k
∂h
∂xk

(x) = exk

∂gi

∂xk
(x) = exk

∂
∂xk

Si(x) =
∂

∂xk
gi(x)h(x) − gi(x) ∂

∂xk
h(x)

(h(x))2 =
exkh(x) − exkexk

(h(x))2 =
exk (h(x) − exk)

(h(x))2 =

exk

h(x)
⋅

h(x) − exk

h(x)
=

exk

h(x)
⋅ (1 −

exk

h(x)) =
gk(x)
h(x)

⋅ (1 −
gk(x)
h(x)) =

Sk(x)(1 − Sk(x))

i = k
∂Si

∂xk
(x) = Sk(x)(1 − Sk(x))

Softmax function
Derivative of softmax function
Case 2

So finally in this case, when , we have

i ≠ k
∂h
∂xk

(x) = exk

∂gi

∂xk
(x) = 0

∂
∂xk

Si(x) =
∂

∂xk
gi(x)h(x) − gi(x) ∂

∂xk
h(x)

(h(x))2 =
0 ⋅ h(x) − exiexk

(h(x))2 =
−exiexk

(h(x))2 =

−
exi

h(x)
⋅

exk

h(x)
= − Si(x)Sk(x) = Si(x)(0 − Sk(x))

i ≠ k
∂Si

∂xk
(x) = − Si(x)Sk(x) = Si(x)(0 − Sk(x))

Softmax function
Derivative of softmax function
Summarizing

.

Sometimes, this piecewise function can be put together using
Kronecker delta function

,

where

.

∂Si

∂xk
(x) = {

Si(x)(1 − Sk(x)) for i = k

Si(x)(0 − Sk(x)) for i ≠ k

δik

∂Si

∂xk
(x) = Si(x)(δik − Sk(x))

δik = {1 for i = k
0 for i ≠ k

In the search of
minimum function value

Analogy
A man in the blizzard.

Derivative

If and are real numbers, and if the graph of is plotted
against , the derivative is the slope of this graph at each
point.

See below links for some examples and animations:

https://en.wikipedia.org/wiki/Derivative

f′￼(a) = lim
x→∞

f(a + h) − f(a)
h

x y f
x

m =
Δy
Δx

f(x) = mx + b

https://en.wikipedia.org/wiki/Derivative

Gradient
The gradient of a scalar-valued differentiable function of
several variables is the vector field (or vector-valued
function) whose value at a point is the vector whose
components are the partial derivatives of at . That is, for

, its gradient is defined at the
point in -dimensional space as the vector:

.

f

∇f p
f p

f : Rn → R ∇f : Rn → Rn

p = (x1, …, xn) n

∇f(p) =

∂f
∂x1

(p)

⋮
∂f
∂xn

(p)

Gradient descent
Gradient descent is a first-order iterative optimization algorithm for finding
a local minimum of a differentiable function.

The idea is to take repeated steps in the opposite direction of the
gradient of the function at the current point, because this is the
direction of steepest descent.

If the multi-variable function is defined and differentiable in a
neighborhood of a point , then decreases fastest if one goes from
in the direction of the negative gradient of at ():

.

If is small enough, then .

See below links for some examples and animations:

https://en.wikipedia.org/wiki/Gradient_descent

See also [FulSD].

F(x)
a F(x) a

F a −∇F(a)

an+1 = an − η∇F(an)

η ∈ ℝ+ F(an) ≥ F(an+1)

https://en.wikipedia.org/wiki/Gradient_descent

1D case
, ,
f(x) = x2 f′￼(x) = 2x η = 0.2

1D case
, ,
f(x) = x2 f′￼(x) = 2x η = 0.4

1D case
, ,
f(x) = x2 f′￼(x) = 2x η = 0.5

1D case
, ,
f(x) = x2 f′￼(x) = 2x η = 1.0

1D case
, ,
f(x) = x2 f′￼(x) = 2x η = 1.05

Artificial neural networks

Fast introduction
Into the learning
1. prezentacja_ldi_2019.pdf (artificial neuron, all-or-

nothing rule, typical architectures).

2. Idea of backpropagation (continue with red path following
blue path included in presentation) with emphasis on what
does it mean learn neural network - adjust neural network's
weights.

3. Explain what does adjust neural network's weights mean -
adjust to what? Adjust, so the neural network error is
minimal - other words, find such a parameters of a neural
network (weight are the only parameters we have), so it
makes the smallest possible error 
 

, 
 
where is the most crucial part.

wij(t + 1) = wij(t)+Δwij(t)

Δwij(t)

Fast introduction
1. Perceptron rule 

 

2. Define neural network error function 
 

3. Delta rule 
 

4. Delta rule is important because it can be generalized (if only activation function is
differentiable - this explains why we use sigmoid functions which approximates a
stepwise functions). Generalized delta rule 
 
output layer :  
 
all other layers :  
 
modify weights in each layer :  

Δwi = η[t − f(net)]xi

E(w) =
1
2

m

∑
k=1

(tk − yk)2

Δwi = η [t − f(net)] f′￼(net)

δ

x

l δl = [t − f(net)] f′￼(net)

i = 1,…, l − 1 δi = δi+1wf′￼(net)

i = 1,…, l wi = wi + ηδixi

Fast introduction
Other materials
• One of the following:

• Group 1:

1. [FulGrzAI], chapter 16 (16.1-16.5) i 17 (17.1-17.4)

• Group 2:

1. WSTĘP DO UCZENIA MASZYNOWEGO – WYKŁAD 1
(https://www.math.uni.lodz.pl/~kosmatka/wdum-
wstep/)

2. WSTĘP DO UCZENIA MASZYNOWEGO – WYKŁAD 2
(https://www.math.uni.lodz.pl/~kosmatka/
wstep-do-uczenia-maszynowego-wyklad-2/)

• David Kriesel, A Brief Introduction to Neural Networks, 2007, 
http://www.dkriesel.com/en/science/neural_networks

• Michael Nielsen, Neural Networks and Deep Learning, 
http://neuralnetworksanddeeplearning.com

https://www.math.uni.lodz.pl/~kosmatka/wdum-wstep/
https://www.math.uni.lodz.pl/~kosmatka/wdum-wstep/
https://www.math.uni.lodz.pl/~kosmatka/wdum-wstep/
https://www.math.uni.lodz.pl/~kosmatka/wstep-do-uczenia-maszynowego-wyklad-2/
https://www.math.uni.lodz.pl/~kosmatka/wstep-do-uczenia-maszynowego-wyklad-2/
https://www.math.uni.lodz.pl/~kosmatka/wstep-do-uczenia-maszynowego-wyklad-2/
http://www.dkriesel.com/en/science/neural_networks
http://neuralnetworksanddeeplearning.com

Interactive examples

Examples
Interactive examples
• perceptronDemo.jar  
 

• backpropDemo.jar  
 
(generalized) delta rule: 
 

Δwi = η[t − f(net)]xi

Δwi = η [t − f(net)]f′￼(net)

δ

x

Examples
Interactive examples
• Feed-forward neural networks

• Plane separation (ssn1.jar).

• Simple image recognition (ssn2.jar).

• XOR problem (ssn3.jar).

• Simple game - tanks (ssn4.jar).

• Recurent neural networks

• Hopfield neural network (ssn6.jar).

• Self-organizing neural networks

• Example (ssn7.jar).

• Image compression (ssn5.jar).

Examples
Interactive examples - image compression
• Idea 

 
 
 
 
 
 
 
 
 
 
 
 
 

• Image compression (ssn5.jar).

Neural networks in
practice

Task 1
Tanks in Python
1. Implement missing code in Python.

2. Test if it works for game (macOS version).

Task 2
Solving XOR problem with Keras
• Code

• lecture_06_02.py - XOR in Keras.

For more information about Keras, see for example [Bur,
Cho, Mol] .

Bibliography

• [FulSD] Algorytm najszybszego spadku 
https://fulmanski.pl/zajecia/sztuczna/zajecia_old/materialy/cw08/cw08.htm

• [Bur] Christoph Burgdorf, Understanding XOR with Keras and TensorFlow, 
https://blog.thoughtram.io/machine-learning/2016/11/02/understanding-XOR-
with-keras-and-tensorlow.html

• [Cho] Francois Chollet, Deep Learning with Python, Manning, 2018.

• [FulGrzAI] Piotr Fulmański, Marta Grzanek, Sztuczna inteligencja. Podręcznik do wykładów i ćwiczeń 
ai.pdf

• David Kriesel, A Brief Introduction to Neural Networks, 2007, 
http://www.dkriesel.com/en/science/neural_networks

• [Mol] Jojo Moolayil, Learn Keras for Deep Neural Networks, Apress, 2019.

• Michael Nielsen, Neural Networks and Deep Learning, 
http://neuralnetworksanddeeplearning.com

https://fulmanski.pl/zajecia/sztuczna/zajecia_old/materialy/cw08/cw08
https://blog.thoughtram.io/machine-learning/2016/11/02/understanding-XOR-with-keras-and-tensorlow.html
https://blog.thoughtram.io/machine-learning/2016/11/02/understanding-XOR-with-keras-and-tensorlow.html
http://www.dkriesel.com/en/science/neural_networks
http://neuralnetworksanddeeplearning.com

