
Natural Language Processing

word2vec
Into the search of usable word vectors

Piotr Fulmański

Lecture goals

• Sigmoid function, logistic function, softmax function

• Algorithmic method for searching a minimum of a function

• Artificial neural networks - fast introduction

• Interactive examples

• Practical examples

Frequency-based embedding
What we have been doing so far is know as word embeddings (or
word vectors or word vector representations). Generally speaking,
word embeddings are the texts converted into numbers.

So far we have seen deterministic methods to determine word
vectors:

• one-hot encoding,

• BOW,

• TF-IDF,

• LDA,

• LSA,

• COM.

All of them belongs to so called frequency-based embedding.

Prediction-based embedding
There are generally two types of vectors (methods of calculating them) that we
encounter under this category:

• Continuous Bag of Words (CBOW),

• Skip-Gram.

These methods are prediction based in the sense that they provided probabilities to the
words. This probability allow us to find the most probable word which depending on
the context (surrounding words).

The undeniable pros of this representation is its usability. This is the first method that
allows to do math on words. It may be hard to believe but thanks to these methods we
can make computation on words like

King - man + woman

and as a result we should get

Queen

Combination of both techniques give us one algorithm known under the name
word2vec. Both of these are shallow neural networks which map word(s) to the target
variable which is also a word(s). Weights of each neural network act as word vector
representations.

word2vec
word2vec vc. COM (co-occurence matrix)
We can think of word2vec as a more advanced version of co-
occurence matrix. The goal was to create usable system that
creates vectors that are similar to one another for similar words.

For example, the method should learn that backpack and
crampons are somewhat similar because they appear near
words like climbing and mountain in sentences. What is
important not only backpack should be close to crampons but
also both backpack and crampons should be closer to climbing
and mountain than to car and driving.

Word2vec’s approach is to train a models that predicts all of the
neighboring words for every occurrence of every center word in an
entire body of text (a corpus). We refer to each nearby word as the
context word and each word that we are focusing on as the center
word. Of course, as it was in case of COM (co-occurence matrix)
method, nearby actually means words from some window of a
predefined size (typicaly 5 or 10, which means 5 (10) words behind
and 5 (10) words ahead - 10 (20) in total).

word2vec
Continuous Bag of Words vs. Skip-Gram
Both models are opposite to each other. This applies to
both their structure and the purpose for which they serve
(the task they can solve).

Continuous Bag of Words (CBOW) model try to predict all
center word for every context words in the full body of text.
It can be thought of as learning word embeddings by
training a model to predict a word given its context.

Skip-Gram model try to predict all context words for every
occurrence of every center word in the full body of text. It
can be thought of as learning word embeddings by training
a model to predict context given a word.

word2vec
Both models are actually surprisingly simple in its most basic form.

Both are shallow neural networks which map word(s) to the target variable which is
also a word(s). Weights of each neural network act as word vector representations.

Word2Vec uses a trick you may have seen elsewhere in machine learning. We’re
going to train a simple neural network with a single hidden layer to perform a
certain task. Then we’re not actually going to use that neural network for the task
we trained it on. Instead, the weights of the hidden layer are used as some
parameters or codes for other process or algorithm which is a real task solver. In
our case these weights are the word vectors we are looking for.

Example of this approach we have seen in image compression with neural
networks. Generally speaking this is used in unsupervised feature learning, where
you train an auto-encoder to code (compress) an input vector in the hidden layer,
and decode (decompress) it back to the original in the output layer.

In some cases, as it is for word2vec, after training, you strip off the output layer
and just use such a distorted network consisting only of the hidden layer taken
from the initial network.

This approach is very useful as it allows to learn quite good object representation
with features without having labeled training data.

Skip-gram model

Skip-gram model
The idea: learning patterns
Our goal is to train the neural network to do the following. Given a specific word in the middle of a sentence (the center word
which becomes our input word), the network is going to tell us the probability for every word in our vocabulary of being the
nearby word.

We are going to train the neural network so we need some training data.

Consider the below example for very simple corpus consisting of only one document (which in fact is a single sentence). The
word highlighted in red is the input word while blue words are nearby words. For simplicity I have used a small window of size 2.

corpus = ["Those who know nothing of foreign languages know nothing of their own."]  
words = [['those', 'who', 'know', 'nothing', 'of', 'foreign', 'languages', 'know', 'nothing',
'of', 'their', 'own']]  

SOURCE TEXT: PAIRS  
 
those who know nothing of foreign languages know nothing of their own (those, who)  
 (those, know)  
those who know nothing of foreign languages know nothing of their own (who, those)  
 (who, know)  
 (who, nothing)  
those who know nothing of foreign languages know nothing of their own (know, those)  
 (know, who)  
 (know, nothing)  
 (know, of)  
those who know nothing of foreign languages know nothing of their own (nothing, who)  
 (nothing, know)  
 (nothing, of)  
 (nothing, foreign)  
those who know nothing of foreign languages know nothing of their own (of, know)  
 (of, nothing)  
 (of, foreign)  
 (of, languages)  

Skip-gram model
The idea: learning patterns
Every set of pairs generate one training pair where words are encoded with one-hot encoding.

Consider the following set of pairs

those who know nothing of foreign languages know nothing of their own [(nothing, who)  
 (nothing, know)  
 (nothing, of)  
 (nothing, foreign)]

Our vocabulary is

foreign know languages nothing of own their those who

We have two options (in this example we use window of size 2):

1. Code center word and every context word as a separate one-hot vector (where is the position (index) of a central word in a sentence)

nothing => x = w(t) = [0,0,0,1,0,0,0,0,0]  
who => y_{-2}= w(t-2) = [0,0,0,0,0,0,0,0,1]  
know => y_{-1}= w(t-1) = [0,1,0,0,0,0,0,0,0]  
of => y_{1} = w(t+1) = [0,0,0,0,1,0,0,0,0]  
foreign => y_{2} = w(t+2) = [1,0,0,0,0,0,0,0,0]

In this case training pair is of the form

(input, target) = (x, (y_{-2},y_{-1},y_{1},y_{2}))

2. Combine all context vectors into one (so center word is encoded as one-hot vector while context vectors are encoded as BOW (bag-of
words) vector)

nothing => x = w(t) = [0,0,0,1,0,0,0,0,0]  
who => y_{-2}= w(t-2) = [0,0,0,0,0,0,0,0,1]  
know => y_{-1}= w(t-1) = [0,1,0,0,0,0,0,0,0]  
of => y_{1} = w(t+1) = [0,0,0,0,1,0,0,0,0]  
foreign => y_{2} = w(t+2) = [1,0,0,0,0,0,0,0,0]  
BOW => y = [1,1,0,0,1,0,0,0,1]

In this case training pair is of the form

(input, target) = (x, y)

t

Skip-gram model
The idea: learning patterns
Every set of pairs generate one training pair where words are encoded with one-hot encoding.

Consider the following set of pairs

those who know nothing of foreign languages know nothing of their own [(nothing, who)  
 (nothing, know)  
 (nothing, of)  
 (nothing, foreign)]

Our vocabulary is

foreign know languages nothing of own their those who

We have two options (in this example we use window of size 2):

1. Code center word and every context word as a separate one-hot vector (where is the position (index) of a central word in a sentence)

nothing => x = w(t) = [0,0,0,1,0,0,0,0,0]  
who => y_{-2}= w(t-2) = [0,0,0,0,0,0,0,0,1]  
know => y_{-1}= w(t-1) = [0,1,0,0,0,0,0,0,0]  
of => y_{1} = w(t+1) = [0,0,0,0,1,0,0,0,0]  
foreign => y_{2} = w(t+2) = [1,0,0,0,0,0,0,0,0]

In this case training pair is of the form

(input, target) = (x, (y_{-2},y_{-1},y_{1},y_{2}))

2. Combine all context vectors into one (so center word is encoded as one-hot vector while context vectors are encoded as BOW (bag-of
words) vector)

nothing => x = w(t) = [0,0,0,1,0,0,0,0,0]  
who => y_{-2}= w(t-2) = [0,0,0,0,0,0,0,0,1]  
know => y_{-1}= w(t-1) = [0,1,0,0,0,0,0,0,0]  
of => y_{1} = w(t+1) = [0,0,0,0,1,0,0,0,0]  
foreign => y_{2} = w(t+2) = [1,0,0,0,0,0,0,0,0]  
BOW => y = [1,1,0,0,1,0,0,0,1]

In this case training pair is of the form

(input, target) = (x, y)

t

This should explains, why the name of
this model is skip-gram. We have an n-
gram (in our case 5-gram) but we skip
one of its element, so we have n-gram

with one element left.

Skip-gram model
The idea: learning patterns
Every set of pairs generate one training pair where words are encoded with one-hot encoding.

Consider the following set of pairs

those who know nothing of foreign languages know nothing of their own [(nothing, who)  
 (nothing, know)  
 (nothing, of)  
 (nothing, foreign)]

Our vocabulary is

foreign know languages nothing of own their those who

We have two options (in this example we use window of size 2):

1. Code center word and every context word as a separate one-hot vector (where is the position (index) of a central word in a sentence)

nothing => x = w(t) = [0,0,0,1,0,0,0,0,0]  
who => y_{-2}= w(t-2) = [0,0,0,0,0,0,0,0,1]  
know => y_{-1}= w(t-1) = [0,1,0,0,0,0,0,0,0]  
of => y_{1} = w(t+1) = [0,0,0,0,1,0,0,0,0]  
foreign => y_{2} = w(t+2) = [1,0,0,0,0,0,0,0,0]

In this case training pair is of the form

(input, target) = (x, (y_{-2},y_{-1},y_{1},y_{2}))

2. Combine all context vectors into one (so center word is encoded as one-hot vector while context vectors are encoded as BOW (bag-of
words) vector)

nothing => x = w(t) = [0,0,0,1,0,0,0,0,0]  
who => y_{-2}= w(t-2) = [0,0,0,0,0,0,0,0,1]  
know => y_{-1}= w(t-1) = [0,1,0,0,0,0,0,0,0]  
of => y_{1} = w(t+1) = [0,0,0,0,1,0,0,0,0]  
foreign => y_{2} = w(t+2) = [1,0,0,0,0,0,0,0,0]  
BOW => y = [1,1,0,0,1,0,0,0,1]

In this case training pair is of the form

(input, target) = (x, y)

t

This should explains, why the name of
this model is skip-gram. We have an n-
gram (in our case 5-gram) but we skip
one of its element, so we have n-gram

with one element left.

Notice that one-hot vectors have a lot of
components (usually thousands or
millions) as our corpus has a lot of words.

Skip-gram model
The idea: network architecture
As it was announced, we use a simple neural network
with a single hidden layer.

 

Skip-gram model
The idea: network architecture
As it was announced, we use a simple neural network
with a single hidden layer.

  One-hot vectors

Skip-gram model
The idea: network architecture
In this model we have three layers: 
input layer, hidden layer and output 
layer with dense connection - every 
neuron is connected with every neuron located in the
preceding and/or following layer.

Input layer

This is not true layer as there are 
no neurons in this layer. We can think 
of it as a receptors which accept 
some signals and simply pass them to the subsequent layers.

In this case input is a vector with components, each is 0
and 1, and representing one central word encoded in one-hot
vector form. is the size of our vocabulary (number of
different words in our corpus).

N

N

Skip-gram model
The idea: network architecture
Hidden layer

In this layer simple neurons with linear 
activation function are used.

Dimension of this layer is , where 
.

Output from this layer is our 
word vector representation 
(word embedding).

M
M ≪ N

Skip-gram model
The idea: network architecture
Output layer

In this layer neurons with sofmax 
function are used.

Dimension of this layer may be one of 
the following

• , where is the window size. 
This is a case for output 
represented as separate one-hot 
vector. 
See comment on the next slide.

• - this is a case for output represented as BOW (many
one-hot vectors combined into one vector) with exactly
1's (and all others are 0's).

N ⋅ 2k k

N
2k

Skip-gram model
The idea: network architecture
Output layer - comment to a first case 
(and also a second)

Define

Other words is every integer satisfying

, .

Then the equations of forward data flow in this 
model are as follow

where

.

As we can see the output vectors , are all identical because all are 
calculated with the same matrix and vector

.

c ∈ C = {−k, …, − 2, − 1,1,2,…, k}

c

−k ≤ c ≤ k c ≠ 0

h = Wx

uc = W′ h

yc = softmax(uc)

yc, j = softmax(uc)j =
euc, j

∑N
i=1 euc,i

yc
W′ h

yc = softmax(uc) = softmax(W′ h)

One-hot vectors

Skip-gram model
The idea: training cycle
To be able to calculate weights updates we have to define an error function and then calculate required
derivatives.

Our goal is to maximize the likelihood of the context words given the center word, i.e. we will calculate the
probability of our model predicting the context words given the center word and we will try to
maximize that probability. This likelihood can be represented using this formula:

where

is a set of weights and

is a conditional probabilities of the context word , given the center word , where is an index of
word in your one-hot vector representation, and is a total number of all different words (the size of our
vocabulary).

To put this equation in a form such that it is easy to take derivatives and make it a minimization problem, we
will just take the log of the equation and multiply it by -1. Note that now multiplication will turn to summation as
we have taken the log

wt+c wt

L(θ) = ∏
c∈C

P(wt+c |wt; θ)

θ = {W, W′ }

P(wt+c |wt; θ) =
euc,t*

∑N
i=1 euc,i

wt+c wt t*c
wt+c N

J(θ) = − log L(θ) = − ∑
c∈C

log P(wt+c |wt; θ)

Skip-gram model
The idea: training cycle
Substituting

,

to

we obtain

Having error (or loss) function defined we can calculate derivatives with respect to weight in hidden-
output layer and with respect to weight in input-hidden layer.

Notation denotes weight between neuron from layer and neuron from layer (we will
use this notation).

There is also alternative notation, very popular: where denotes weight between neuron from layer
 and neuron from layer .

P(wt+c |wt; θ) =
euc,t*c

∑N
i=1 euc,i

J(θ) = − log L(θ) = − ∑
c∈C

log P(wt+c |wt; θ)

J(θ) = −∑
c∈C

log
euc,t*

∑N
i=1 euc,i

= − ∑
c∈C

(log euc,t*c − log
N

∑
i=1

euc,i) =

−∑
c∈C

uc,t*c + ∑
c∈C

log
N

∑
i=1

euc,i

W′ ab
Wab

Wab a n b n + 1

Wab a
n + 1 b n

Skip-gram model
The idea: training cycle
Having error (or loss) function defined

we can calculate derivatives with respect to weight in hidden-output layer
and with respect to weight in input-hidden layer.

It is clear that this function depends on the weights and through the
(because we have output vectors) variables each with components of
the form .

The derivatives then simply follow from the chain rule for multivariate functions,

, ,

, , .

J(θ) = − ∑
c∈C

uc,t*c + ∑
c∈C

log
N

∑
i=1

euc,i

W′ ab
Wab

W W′ 2k
2k u uc N

(uc,1, …, uc,N)

∂J
∂W′ ab

=
N

∑
k=1

∑
c∈C

∂J
∂uc,k

∂uc,k

∂W′ ab
a = 1,…, M b = 1,…, N

∂J
∂Wab

=
N

∑
k=1

∑
c∈C

∂J
∂uc,k

∂uc,k

∂Wab
a = 1,…, N b = 1,…, M

Skip-gram model
The idea: training cycle
For error (or loss) function of the form

we can calculate

J(θ) = − ∑
c∈C

uc,t*c +∑
c∈C

log
N

∑
i=1

euc,i

∂J
∂uc,k

= −δkt*c +(log
N

∑
i=1

eu−k,i)
′

+ … + (log
N

∑
i=1

euc,i)
′

… + (log
N

∑
i=1

euk,i)
′

=

−δkt*c +
1

∑N
i=1 eu−k,i

N

∑
i=1

(eu−k,i)′ + …+
1

∑N
i=1 euc,i

N

∑
i=1

(euc,i)′ … +
1

∑N
i=1 euk,i

N

∑
i=1

(euk,i)′ =

−δkt*c +
1

∑N
i=1 euc,i

euc,k = −δjt*c +
euc,k

∑N
i=1 euc,i

=

−δkt*c + yc,k

Skip-gram model
The idea: training cycle

 is the -th component from context word (one-hot
vector).

uc,k k c

uc,k =
M

∑
m=1

(W′ mk ⋅ hm) =
M

∑
m=1 (W′ mk ⋅

N

∑
n=1

Wnmxn)
∂uc,k

∂W′ ab
= (

M

∑
m=1 (W′ mk ⋅

N

∑
n=1

Wnmxn))
′

= δkb ⋅
N

∑
n=1

Wnaxn

∂uc,k

∂Wab
= (

M

∑
m=1 (W′ mk ⋅

N

∑
n=1

Wnmxn))
′

= W′ bk ⋅ xa

Skip-gram model
The idea: training cycle
Finally the derivative of with respect to takes the form
J W′ ab

∂J
∂W′ ab

=
N

∑
k=1

∑
c∈C

∂J
∂uc,k

∂uc,k

∂W′ ab
=

N

∑
k=1

∑
c∈C

(−δkt*c + yc,k) (δkb ⋅
N

∑
n=1

Wnaxn) =

N

∑
k=1

∑
c∈C

δkb (−δkt*c + yc,k) (
N

∑
n=1

Wnaxn) =

∑
c∈C

(−δbt*c + yc,b) (
N

∑
n=1

Wnaxn)

Skip-gram model
The idea: training cycle
Finally the derivative of with respect to takes the form
J Wab

∂J
∂Wab

=
N

∑
k=1

∑
c∈C

∂J
∂uc,k

∂uc,k

∂Wab
=

N

∑
k=1

∑
c∈C

(−δkt*c + yc,k) W′ bk ⋅ xa

Skip-gram model
The idea: training cycle
Finally the derivative of with respect to and takes
the form

J W′ ab Wab

∂J
∂W′ ab

= ∑
c∈C

(−δbt*c + yc,b) (
N

∑
n=1

Wnaxn)
∂J

∂Wab
=

N

∑
k=1

∑
c∈C

(−δkt*c + yc,k) W′ bk ⋅ xa

Vectorize formulas for
derivatives

Skip-gram model
Vectorize formulas for derivatives
Outer product

Given two vectors

their outer product, denoted is defined as the
matrix obtained by multiplying each element of by each
element of

u = (u1, u2, …, um)
v = (v1, v2, …, vn)

u ⊗ v m × n
A u

v

u ⊗ v = A =

u1v1 u1v2 … u1vn
u2v1 u2v2 … u2vn

⋮ ⋮ ⋱ ⋮
umv1 umv2 … umvn

Skip-gram model
Vectorize formulas for derivatives

u = (u1, u2, …, um)
v = (v1, v2, …, vn)

u ⊗ v = A =

u1v1 u1v2 … u1vn
u2v1 u2v2 … u2vn

⋮ ⋮ ⋱ ⋮
umv1 umv2 … umvn

∂J
∂W′ ab

= ∑
c∈C

(−δbt* + yc,b)

Ab

(
N

∑
n=1

Wnaxn)
Ba

∂J
∂W′

=

∂J
∂W′ 11

∂J
∂W′ 12

… ∂J
∂W′ 1N

∂J
∂W′ 21

∂J
∂W′ 22

… ∂J
∂W′ 2N

⋮ ⋮ ⋱ ⋮
∂J

∂W′ M1

∂J
∂W′ M2

… ∂J
∂W′ MN

∂J
∂W′

=

B1A1 B1A2 … B1AN

B2A1 B2A2 … B2AN
⋮ ⋮ ⋱ ⋮

BM A1 BM A2 … BM AN

B = (B1, B2, …, BM)
A = (A1, A2, …, AN)

∂J
∂W′

= B ⊗ A

Skip-gram model
Vectorize formulas for derivatives

∂J

∂W′ ab
= ∑

c∈C
(−δbt* + yc,b)

Ab

(
N

∑
n=1

Wnaxn)
Ba

B = (B1, B2, …, BM)
A = (A1, A2, …, AN)
∂J

∂W′

=

B1A1 B1A2 … B1AN

B2A1 B2A2 … B2AN
⋮ ⋮ ⋱ ⋮

BMA1 BMA2 … BMAN

∂J
∂W′

= B ⊗ A

Ba = (
N

∑
n=1

Wnaxn)
W =

W11 W12 … W1a … W1M

W21 W22 … W2a … W2M
⋮ ⋮ ⋱ ⋮ ⋱ ⋮

Wn1 Wn2 … Wna … WnM
⋮ ⋮ ⋱ ⋮ ⋱ ⋮

WN1 WN2 … WNa … WNM

Skip-gram model
Vectorize formulas for derivatives
The most natural way of thinking about
vector is to treat it as a 1-D array or a list.

In NumPy we have 

import numpy as np  
 
Create a 1-D (horizontal) list  
listH = [1, 2, 3]  
 
Create a 1-D (vertical) list  
listV = [[10],  
 [20],  
 [30]]  
 
Create a vector based on listH  
This would be row vector  
vectorH = np.array(listH)  
 
Create a vector based on listV  
This would be column vector  
vectorV = np.array(listV)  
 

 
Verify it  
print("Row (horizontal) vector")  
print(vectorH)  
print("----------------")  
print("Column (vertical)
vector")  
print(vectorV)

which prints

Row (horizontal) vector  
[1 2 3]  

Column (vertical) vector  
[[10]  
 [20]  
 [30]]

Thats why we may say, that in NumPy
vectors are row (horizontal) oriented. This
is really very important when you are
close to implementing some
mathematical formulas, as we do now.

Skip-gram model
Vectorize formulas for derivatives
NumPy seems to be very tolerant in case of multiplying matrix
and vector.

As you know, to multiply two matrices or matrix by vector (which
can be interpreted as 1-D row or column vector) their dimensions
should match

Formally in the following example vector vectorH is of the
shape , vector vectorV is and matrix m is

import numpy as np  
 
listH = [1, 2]  
listV = [[10],  
 [20]]  
 
vectorH = np.array(listH)  
vectorV = np.array(listV)  
 
m = np.array([[1, 2],  
 [3, 4],  
 [5, 6]])  
 
print(vectorH.shape)  
print(vectorV.shape)  
print(m.shape)  
 
print("--- correct -------------")  
x = np.matmul(m, vectorH)  
print(x)  
 
print("--- correct -------------")  
x = np.matmul(m, vectorV)  
print(x)  
 
print("--- incorrect -----------")  

x = np.matmul(vectorH, m)  
print(x)

which prints

(2,)  
(2, 1)  
(3, 2)  
--- correct -------------  
[5 11 17]  
--- correct -------------  
[[50]  
 [110]  
 [170]]  
--- incorrect -----------  
Traceback (most recent call last):  
 File "<string>", line 21, in <module>  
ValueError: matmul: Input operand 1 has a
mismatch in its core dimension 0, with gufunc
signature (n?,k),(k,m?)->(n?,m?) (size 3 is
different from 2)

The following multiplication, from mathematical point of view is
not feasible (because we have [3,2] x [1,2]=???)

|1 2|  
|3 4|*[1,2]=[1*1+2*2,3*1+4*2,5*1+6*2]=[5,11,17]  
|5 6|  

but this is what NumPy does. The following is correct (because
we have [3,2] x [2,1] = [3,1])

1 2		10		1*10 + 2*20		50
3 4	*	20	=	3*10 + 4*20	=	110
5 6		5*10 + 6*20		170		

An,m ⋅ Bm,k = Cn,k

1 × 2 2 × 1 3 × 2

Skip-gram model
Vectorize formulas for derivatives

Finally we have

Ba = (

N

∑
n=1

Wnaxn)
W =

W11 W12 … W1a … W1M

W21 W22 … W2a … W2M
⋮ ⋮ ⋱ ⋮ ⋱ ⋮

Wn1 Wn2 … Wna … WnM
⋮ ⋮ ⋱ ⋮ ⋱ ⋮

WN1 WN2 … WNa … WNM N×M

WT =

W11 W21 … Wn1 … WN1
W12 W22 … Wn2 … WN2
⋮ ⋮ ⋱ ⋮ ⋱ ⋮

W1a W2a … Wna … WNa
⋮ ⋮ ⋱ ⋮ ⋱ ⋮

W1M W2M … WnM … WNM M×N

B = WTx

Skip-gram model
Vectorize formulas for derivatives
Component

is an error.

If -th context word should be coded at position
then, if output is correct which means that (
-th context word, encoded as on-hot vector, at position

 has correctly 1), we have

•

•

•

If -th context word should be coded at position
then, if output is incorrect which means that (
-th context word, encoded as on-hot vector, at

position has incorrectly 0), we have

•

•

•

If -th context word shouldn't be coded at position
then, if output is correct which means that (
-th context word, encoded as on-hot vector, at position

 has correctly 0), we have

•

•

•

If -th context word shouldn't be coded at position
then, if output is incorrect which means that (
-th context word, encoded as on-hot vector, at

position has incorrectly 1), we have

•

•

•

Ab = ∑
c∈C

(−δbt*c + yc,b)

c b
yc,b = 1 c

b

t*c = b

−δbt*c = − δbb = 1

−δbb + yc,b = − 1 + 1 = 0

c b
yc,b = 0

c
b

t*c = b

−δbt*c = − δbb = 1

−δbb + yc,b = − 1 + 0 = − 1

c b
yc,b = 0 c

b

t*c ≠ b

−δbt*c = 0

−δbt*c + yc,b = 0 + 0 = 0

c b
yc,b = 1

c
b

t*c ≠ b

−δbt*c = 0

−δbt*c + yc,b = 0 + 1 = 1

Skip-gram model
Vectorize formulas for derivatives
Component

is an error. We introduce a new symbol as

So every component of is a sum of values. This is equal to sum of corresponding
components of vectors

Ab = ∑
c∈C

(−δbt*c + yc,b)
ecb

ecb = − δbt*c + yc,b

Ab = ∑
c∈C

ec,b

A = (A1, A2, …, AN) = (∑
c∈C

ec,1, ∑
c∈C

ec,2, …, ∑
c∈C

ec,N)

A C
C

ec = (ec1, ec2, …, ecN)

A = ∑
c∈C

ec

Skip-gram model
Vectorize formulas for derivatives
So far we have the following results

Putting this together we obtain

∂J
∂W′

= B ⊗ A

B = WTx

A = ∑
c∈C

ec

∂J
∂W′

= (WTx) ⊗ ∑
c∈C

ec

Skip-gram model
Vectorize formulas for derivatives

∂J
∂Wab

=
N

∑
k=1

∑
c∈C

(−δkt*c + yc,k) W′ bk ⋅ xa

∂J
∂Wab

= (
N

∑
k=1

∑
c∈C

(−δkt*c + yc,k) W′ bk)
Ab

⋅ xa⏟
Ba

∂J
∂W

=

∂J
∂W11

∂J
∂W12

… ∂J
∂W1M

∂J
∂W21

∂J
∂W22

… ∂J
∂W2M

⋮ ⋮ ⋱ ⋮
∂J

∂WN1

∂J
∂WN2

… ∂J
∂WNM

∂J
∂W

=

B1A1 B1A2 … B1AM

B2A1 B2A2 … B2AM
⋮ ⋮ ⋱ ⋮

BN A1 BN A2 … BN AM

B = (B1, B2, …, BM)
A = (A1, A2, …, AN)
∂J
∂W

= B ⊗ A

Skip-gram model
Vectorize formulas for derivatives

∂J
∂Wab

= (
N

∑
k=1

∑
c∈C

(−δkt*c + yc,k) W′ bk)
Ab

⋅ xa⏟
Ba

∂J
∂W

=

B1A1 B1A2 … B1AM

B2A1 B2A2 … B2AM
⋮ ⋮ ⋱ ⋮

BN A1 BN A2 … BN AM

B = (B1, B2, …, BM)
A = (A1, A2, …, AN)
∂J
∂W

= B ⊗ A

B = (B1, B2, …, BM)
Ba = xa

B = (x1, x2, …, xM)
B = x

Skip-gram model
Vectorize formulas for derivatives

eck = − δkt*c + yc,k

∂J
∂Wab

=
N

∑
k=1

∑
c∈C

(−δkt*c + yc,k)
ec,k

W′ bk

Ab

⋅ xa⏟
Ba

∂J
∂W

=

B1A1 B1A2 … B1AM

B2A1 B2A2 … B2AM
⋮ ⋮ ⋱ ⋮

BN A1 BN A2 … BN AM

B = (B1, B2, …, BM)
A = (A1, A2, …, AN)

∂J
∂W

= B ⊗ A

A = (A1, A2, …, AN)

A1 =
N

∑
k=1

∑
c∈C

ec,kW′ 1k

A1 = ∑
c∈C

ec,1W′ 11 + ∑
c∈C

ec,2W′ 12 + … + ∑
c∈C

ec,NW′ 1N

Skip-gram model
Vectorize formulas for derivatives

So every component of (there are
components) is a sum of values. This
is equal to sum of corresponding
components of vectors of the form

A = (A1, A2, …, AN)

A1 =
N

∑
k=1

∑
c∈C

ec,kW′ 1k

A1 = ∑
c∈C

ec,1W′ 11 + ∑
c∈C

ec,2W′ 12 + … + ∑
c∈C

ec,NW′ 1N

Ab = ∑
c∈C

ec,1W′ b1 + ∑
c∈C

ec,2W′ b2 + … + ∑
c∈C

ec,NW′ bN

W′ 11 W′ 12 … W′ 1N

W′ 21 W′ 22 … W′ 2N
⋮ ⋮ ⋱ ⋮

W′ b1 W′ b2 … W′ bN
⋮ ⋮ ⋱ ⋮

W′ M1 W′ M2 … W′ MN

∑c∈C ec,1

∑c∈C ec,2

⋮
∑c∈C ec,N

A1 = C1D

Ab = CbD

A = W′ D

ec = (ec1, ec2, …, ecN)

D N
C

C ec

ec = (ec1, ec2, …, ecN)

D = ∑
c∈C

ec

A = W′ ∑
c∈C

ec

C1

D

Skip-gram model
Vectorize formulas for derivatives
So far we have the following results

Putting this together we obtain

∂J
∂W

= B ⊗ A

B = x

A = W′ ∑
c∈C

ec

∂J
∂W

= x ⊗ W′ ∑
c∈C

ec

Skip-gram model
Vectorize formulas for derivatives

∂J
∂W′ ab

= ∑
c∈C

(−δbt*c + yc,b) (
N

∑
n=1

Wnaxn)
∂J

∂W′

= (WTx) ⊗ ∑
c∈C

ec

∂J
∂Wab

=
N

∑
k=1

∑
c∈C

(−δkt*c + yc,k) W′ bk ⋅ xa

∂J
∂W

= x ⊗ W′ ∑
c∈C

ec

Implementation

Skip-gram model
Practical implementation, stage 1:

Some notes

CBOW model
The idea: training cycle
The CBOW model is essentially the inverse of the skip-gram
model.

Speed-up training
Training of word2vec is a very computationally expensive
process. With millions of word the training may take a lot of
time. To speed up this process we can apply

• subsampling frequent words,

• negative sampling,

• hierarchical softmax.

Pre-trained
• Example 
 
from gensim.models import Word2Vec  
 
Loading the model.  
model = Word2Vec.load_word2vec_format('GoogleNews-vectors-negative300.bin',
binary=True, norm_only=True)  
 
The model is loaded - now it can be used.  
dog = model['dog']  
 
Performing king queen magic.  
print(model.most_similar(positive=['woman', 'king'], negative=['man']))  
 
Picking odd one out.  
print(model.doesnt_match("breakfast cereal dinner lunch".split()))  
 
Printing similarity index.  
print(model.similarity('woman', 'man'))  
 
Define our own corpus.  
sentence=[[‘Neeraj’,’Boy’],[‘Sarwan’,’is’],[‘good’,’boy’]]  
 
Training word2vec on our corpus.  
model = gensim.models.Word2Vec(sentence, min_count=1,size=300,workers=4)  
 
#Using the model. The new trained model can be used similar to the pre-trained
ones.

• See pre-trained word2vec section in Bibliography.

Bibliography

• Math related to word2vec

• The backpropagation algorithm for Word2Vec 
http://www.claudiobellei.com/2018/01/06/backprop-word2vec/

• Ankur Tomar, A math-first explanation of Word2Vec 
https://medium.com/analytics-vidhya/maths-behind-word2vec-explained-38d74f32726b

• Pre-trained word2vec:

• Usman Malik, Implementing Word2Vec with Gensim Library in Python, 
https://stackabuse.com/implementing-word2vec-with-gensim-library-in-python/

• Gensim Word2Vec Tutorial, 
https://www.kaggle.com/pierremegret/gensim-word2vec-tutorial

• Python | Word Embedding using Word2Vec, 
https://www.geeksforgeeks.org/python-word-embedding-using-word2vec/

• word2vec in Python

• Rahuljha, Word2Vec Implementation, 
https://towardsdatascience.com/a-word2vec-implementation-using-numpy-and-python-d256cf0e5f28

• Ivan Chen, Word2vec from Scratch with NumPy, 
https://towardsdatascience.com/word2vec-from-scratch-with-numpy-8786ddd49e72

http://www.claudiobellei.com/2018/01/06/backprop-word2vec/
https://medium.com/analytics-vidhya/maths-behind-word2vec-explained-38d74f32726b
https://stackabuse.com/implementing-word2vec-with-gensim-library-in-python/
https://www.kaggle.com/pierremegret/gensim-word2vec-tutorial
https://www.geeksforgeeks.org/python-word-embedding-using-word2vec/
https://towardsdatascience.com/a-word2vec-implementation-using-numpy-and-python-d256cf0e5f28
https://towardsdatascience.com/word2vec-from-scratch-with-numpy-8786ddd49e72

Don't read this section

CBOW - !!! note to be used in a future !!!
The idea: training cycle
To be able to calculate weights updates we have to define an error function and then calculate required
derivatives.

Our goal is to maximize the likelihood of the context words given the center word, i.e. we will calculate the
probability of our model predicting the context words given the center word and we will try to
maximize that probability. This likelihood can be represented using this formula:

where

is a set of weights and

is a conditional probabilities of the target word , given the context word , where is an index of
word in your one-hot vector representation, and is a total number of all different words (the size of our
vocabulary).

To put this equation in a form such that it is easy to take derivatives and make it a minimization problem, we
will just take the log of the equation and multiply it by -1. Note that now multiplication will turn to summation as
we have taken the log

wt+c wt

L(θ) = ∏
c∈C

P(wt+c |wt; θ)

θ = {W, W′ }

P(wt+c |wt; θ) =
euc,t*

∑N
i=1 euc,i

wt wt+c t*
wt N

J(θ) = − log L(θ) = − ∑
c∈C

log P(wt+c |wt; θ)

