
Wst¦p do informatyki
Elementy teorii jezyków formalnych

Piotr Fulma«ski

Wydziaª Matematyki i Informatyki,
Uniwersytet �ódzki, Polska

January 3, 2019

Table of contents

Formal language
Basic concepts

In mathematics, computer science, and linguistics,

De�nition

a formal language is a set of strings of symbols that may be
constrained by rules that are speci�c to it.

In short

The alphabet of a formal language is the set of symbols, letters, or
tokens from which the strings of the language may be formed.

The strings formed from this alphabet are called words. The words
that belong to a particular formal language are sometimes called
well-formed words or well-formed formulas.

A formal language is often de�ned by means of a formal grammar

such as a regular grammar or context-free grammar, also called its
formation rule.

Formal language
Basic concepts

In mathematics, computer science, and linguistics,

De�nition

a formal language is a set of strings of symbols that may be
constrained by rules that are speci�c to it.

In short

The alphabet of a formal language is the set of symbols, letters, or
tokens from which the strings of the language may be formed.

The strings formed from this alphabet are called words. The words
that belong to a particular formal language are sometimes called
well-formed words or well-formed formulas.

A formal language is often de�ned by means of a formal grammar

such as a regular grammar or context-free grammar, also called its
formation rule.

Formal language
Basic concepts

In mathematics, computer science, and linguistics,

De�nition

a formal language is a set of strings of symbols that may be
constrained by rules that are speci�c to it.

In short

The alphabet of a formal language is the set of symbols, letters, or
tokens from which the strings of the language may be formed.

The strings formed from this alphabet are called words. The words
that belong to a particular formal language are sometimes called
well-formed words or well-formed formulas.

A formal language is often de�ned by means of a formal grammar

such as a regular grammar or context-free grammar, also called its
formation rule.

Formal language
Basic concepts

In mathematics, computer science, and linguistics,

De�nition

a formal language is a set of strings of symbols that may be
constrained by rules that are speci�c to it.

In short

The alphabet of a formal language is the set of symbols, letters, or
tokens from which the strings of the language may be formed.

The strings formed from this alphabet are called words. The words
that belong to a particular formal language are sometimes called
well-formed words or well-formed formulas.

A formal language is often de�ned by means of a formal grammar

such as a regular grammar or context-free grammar, also called its
formation rule.

Formal language
Why we use them?

The �eld of formal language theory studies primarily the purely
syntactical aspects of such languages�that is, their internal structural
patterns. Formal language theory sprang out of linguistics, as a way of
understanding the syntactic regularities of natural languages. In computer
science, formal languages are used among others as the basis for de�ning
the grammar of programming languages and formalized versions of
subsets of natural languages in which the words of the language represent
concepts that are associated with particular meanings or semantics. In
computational complexity theory, decision problems are typically de�ned
as formal languages, and complexity classes are de�ned as the sets of the
formal languages that can be parsed by machines with limited
computational power. In logic and the foundations of mathematics,
formal languages are used to represent the syntax of axiomatic systems,
and mathematical formalism is the philosophy that all of mathematics can
be reduced to the syntactic manipulation of formal languages in this way.

Formal language
Why we use them?

An alphabet, in the context of formal languages, can be any set,
although it often makes sense to use an alphabet in the usual sense of
the word, or more generally a character set such as ASCII or Unicode.
The elements of an alphabet are called its letters.

Formal language
Why we use them?

A word over an alphabet can be any (�nite) sequence, or string, of
characters or letters, which sometimes may include spaces, and are
separated by speci�ed word separation characters. The set of all words
over an alphabet Σ is usually denoted by Σ∗ (using the Kleene star). The
length of a word is the number of characters or letters it is composed of.
For any alphabet there is only one word of length 0, the empty word,
which is often denoted by e, ε or λ. By concatenation one can combine
two words to form a new word, whose length is the sum of the lengths of
the original words. The result of concatenating a word with the empty
word is the original word.

Formal language
More details about alphabet, words and language

A formal language L over an alphabet Σ is a subset of Σ∗, that is, a set
of words over that alphabet. Sometimes the sets of words are grouped
into expressions, whereas rules and constraints may be formulated for
the creation of 'well-formed expressions'.
Formal language theory rarely concerns itself with particular

languages, but is mainly concerned with the study of various types

of formalisms to describe languages. For instance, a language can be
given as

those strings generated by some formal grammar;

those strings described or matched by a particular regular expression;

those strings accepted by some automaton, such as a Turing
machine or �nite state automaton.

Formal language
Example 1: alphabet and the set of all words over it

Je±li Σ = {a, b}, to Σ∗ = {e, a, b, aa, ab, bb, aaa, aab, . . . }.

Formal language
Example 2: simple language with unformal rules

The following rules describe a formal language L over the alphabet
Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,+,=}

Every nonempty string that does not contain + or = and does not
start with 0 is in L.

The string 0 is in L.

A string containing = is in L if and only if there is exactly one =, and
it separates two valid strings of L.

A string containing + but not = is in L if and only if every + in the
string separates two valid strings of L.

No string is in L other than those implied by the previous rules.

Formal language
Example 2: simple language with unformal rules

Under these rules, the string "23+4=555" is in L, but the string
"=234=+" is not.

Formal language
Example 2: simple language with unformal rules

This formal language expresses how
some strings look like (their syntax),
not what they mean (semantics).
For instance, nowhere in these rules is there any indication that "0"
means the number zero, or that "+" means addition.

Formal grammar
Basic concepts

De�nition

In formal language theory, a grammar (formal grammar) is a set of

production rules for strings in a formal language.

The rules describe how to form strings from the language's alphabet that
are valid according to the language's syntax. A grammar does not
describe the meaning of the strings or what can be done with them.
A formal grammar is a set of rules for rewriting strings, along with a
"start symbol" from which rewriting starts. Therefore, a grammar is
usually thought of as a language generator. However, it can also
sometimes be used as the basis for a "recognizer" � a function in
computing that determines whether a given string belongs to the
language or is grammatically incorrect.

Formal grammar
More details

In the classic formalization of generative grammars �rst proposed by
Noam Chomsky in the 1950s, a grammar G formally de�ned as the tuple

(N,Σ,P, S)

where

N is a �nite set of nonterminal symbols, that is disjoint with the
strings formed from G .

Σ is a �nite set of terminal symbols that is disjoint from N.

P is a �nite set of production rules, each rule of the form

(Σ ∪ N)∗N(Σ ∪ N)∗ → (Σ ∪ N)∗.

That is, each production rule maps from one string of symbols to
another, where the �rst string (the "head") contains an arbitrary
number of symbols provided at least one of them is a nonterminal.

S ∈ N is a distinguished symbol that is the start symbol.

Formal grammar
Example 1

A language L in which well-formed expressions are of the form
{1, 11, 111, . . . } could be de�ned as

N = S

Σ = {1}
P consists of the following production rules:

rule 1: S --> 1

rule 2: S --> S1

S = S

Now it can be prooved thet 1 and 111 belongs to the language L

Proof 1: S --(rule 1)--> 1

Proof 2: S --(rule 2)--> S1 --(rule 2)--> S11 --(rule 1)--> 111

Formal grammar
Example 2

Consider the grammar G where

N = {S ,B}
Σ = {a, b, c}
P consists of the following production rules:

rule 1: S --> aBSc

rule 2: S --> abc

rule 3: Ba --> aB

rule 4: Bb --> bb

S = S

This grammar de�nes the language L(G) = {anbncn|n ≥ 1} where an
denotes a string of n consecutive a's. Thus, the language is the set of
strings that consist of 1 or more a's, followed by the same number of b's,
followed by the same number of c's. Some examples of the derivation of
strings in L(G) are:

S --(2)--> abc

S --(1)--> aBSc --(2)--> aBabcc --(3)--> aaBbcc --(4)--> aabbcc

Backus�Naur Form Notation
Basic concepts

In computer science, BNF (Backus Normal Form or Backus�Naur Form)
is a notation techniques for context-free grammars, often used to
describe the syntax of languages used in computing, such as computer
programming languages, document formats, instruction sets and
communication protocols.
A BNF speci�cation is a set of derivation rules, written as

<symbol> ::= __expression__

where

<symbol> is a nonterminal symbol, and the expression
__expression__ consists of one or more sequences of symbols;

symbols that never appear on a left side are terminals;

symbols that appear on a left side are non-terminals and are always
enclosed between the pair <>;

symboll ::= means that the symbol on the left must be replaced
with the expression on the right.

Backus�Naur Form Notation
Example 1

Consider BNF rules for some context-free grammar

<binary number> ::=<binary number><digit>

<binary number> ::=<digit>

<digit> ::= 0

<digit> ::= 1

This is equivalent to the grammar G where

N = {<binary number>, <digit>}
Σ = {0, 1}
P consists of the following production rules:

rule 1: <binary number> --> <binary number><digit>

rule 2: <binary number> --> <digit>

rule 3: <digit> --> 0

rule 4: <digit> --> 1

S = <binary number>

Backus�Naur Form Notation
Example 2

Consider BNF rules for some context-free grammar (natural numbers
grammar)

<zero> ::= 0

<nonzero digit> ::= 1|2|3|4|5|6|7|8|9

<digit> ::= <zero> | <nonzero digit>

<sequence of digits> ::= <digit> | <digit><sequence of digits>

<natural number> ::= <digit> | <nonzero digit><sequence of digits>

Backus�Naur Form Notation
Why extend it?

The main problem with BNF (beeing far from human readable) is that
repetitions and optional parts can not be expressed directly. Instead, we
have indirect rule and recursive way of de�ning repetitions and options.

Repetition

BNF <number> ::= <digit>

<number> ::= <number> <digit>

Extended BNF <number> ::= { digit }+

Option

BNF <signed number> ::= <sign> <number>

<signed number> ::= <number>

EBNF <signed number> ::= [<sign>] <number>

Backus�Naur Form Notation
Variants and extensions of BNF

Many BNF speci�cations found online today are intended to be human

readable and are non-formal. These often include many of the
following syntax rules and extensions:

Optional items enclosed in square brackets: [<item>].

Items repeating 0 or more times are enclosed in curly brackets or
su�xed with an asterisk ('*'), such as

<word> ::= <letter> {<letter>}

<word> ::= <letter> <letter>*

Items repeating 1 or more times are su�xed with an addition (plus)
symbol (+).

Terminals may appear in bold rather than italics, and nonterminals
in plain text rather than angle brackets.

Alternative choices in a production are separated by the vertical bar,
|, indicating a choice.

Where items are grouped, they are enclosed in simple parentheses.

Backus�Naur Form Notation
Which Extended BNF is the right one?

The earliest EBNF was originally developed by Niklaus Wirth
incorporating some of the concepts (with a di�erent syntax and notation)
from Wirth syntax notation. However, as we have seen, many variants of
EBNF are in use. The International Organization for Standardization has
adopted an EBNF standard (ISO/IEC 14977). Other EBNF variants use
somewhat di�erent syntactic conventions. The most important thing
about (E)BNF is not to follow precise and strictly formal rules about it
but to keep in mind why we use it and how to make it human readable
and easy to use.

Regular expressions
Basic concepts

A regular expression, often called a pattern, is an expression used to
specify a set of strings required for a particular purpose. A simple way to
specify a set of strings is simply to list its elements or members.
However, there are often more concise ways to specify the desired set of
strings. For example, the set containing the three strings Handel,
Händel, and Haendel can be speci�ed by the pattern H(ä|ae?)ndel; we
say that this pattern matches each of the three strings.

Regular expressions
Basic concepts

Most formalisms provide the following operations to construct regular
expressions.

Boolean "or". A vertical bar separates alternatives. For example,
gray|grey can match gray or grey.

Grouping. Parentheses are used to de�ne the scope and precedence
of the operators (among other uses). For example, gray|grey and
gr(a|e)y are equivalent patterns which both describe the set of
gray or grey.

Regular expressions
Basic concepts

Quanti�cation. A quanti�er after a token (such as a character) or
group speci�es how often that preceding element is allowed to occur.
The most common quanti�ers are the question mark ?, the asterisk
* (derived from the Kleene star), and the plus sign + (Kleene cross).

The question mark indicates there is zero or one of the preceding

element. For example, colou?r matches both color and colour.

The asterisk indicates there is zero or more of the preceding element.

For example, ab*c matches ac, abc, abbc, abbbc, and so on.

The plus sign indicates there is one or more of the preceding element.

For example, ab+c matches abc, abbc, abbbc, and so on, but not ac.

These constructions can be combined to form arbitrarily complex
expressions, much like one can construct arithmetical expressions from
numbers and the operations +, −, etc. For example, H(ae?|ä)ndel and
H(a|ae|ä)ndel are both valid patterns which match the same strings as
the earlier example, H(ä|ae?)ndel. Note!!! The precise syntax for
regular expressions varies among tools and with context.

Regular expressions
Regular exppressions may be useful

Regular expression
Examples

Visit http://regexpal.com/ to verify

.at matches any three-character string ending with "at",

including "hat", "cat", and "bat".

[hc]at matches "hat" and "cat".

[^b]at matches all strings matched by .at except "bat".

[^hc]at matches all strings matched by .at other than "hat" and "cat".

^[hc]at matches "hat" and "cat", but only at the beginning

of the string or line.

[hc]at$ matches "hat" and "cat", but only at the end

of the string or line.

\[.\] matches any single character surrounded by "[" and "]" since

the brackets are escaped, for example: "[a]" and "[b]".

