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Lecture goals

• Counting term frequencies


• Represent document with vectors of term frequencies


• Finding relevant documents from a corpus using inverse 
document frequencies


• Estimating the similarity of pairs of documents with cosine 
similarity



Zipf's law

Zipf’s law ([zif] or [tsipf] named after the American linguist George Kingsley Zipf although the French 
stenographer Jean-Baptiste Estoup appears to have noticed the regularity before Zipf) states that 
given some corpus of natural language utterances, the frequency of any word is inversely 
proportional to its rank in the frequency table. Thus the most frequent word will occur 
approximately twice as often as the second most frequent word, three times as often as the third most 
frequent word, etc.


If frequency is inversely proportional to rank, then the product of frequency and rank should be a 
constant:





where  is the rank of a word in a text or group of texts,  the frequency of its occurrence and  is a 
constant value.


As a lot of real life things, not only linguistic, are governed by this law, so it usually refers to the "size" 
 of an occurrence of an event relative to it's rank . Zipf's law states that the "size"  of the 'th 

largest occurrence of the event is inversely proportional to it's rank:





where b is close to 1.0.


r ⋅ f = c

r f c

y r y r

y ∼ r−b



Zipf's law

CODE: Test Zipf's law


• lecture_06_01.py

Check for which constant  equality  holds in your case.c r ⋅ f = c

Number of 
document

s

Number of all 
words

Number of 
different words Word count from the most frequent to the less frequent

1 1379 123

count: w1:234, w2:63, w3:33, ...

percentage: w1:100%, w2:(63/234)*100%, w3:(33/63)*100%, ...

frequency: w1: 234/1379, w2: 63/1379, w3: 33/1379, ...

2 8237 ...

...

...

...



Zipf's law

If you complete all the calculations, please make a plot of 
frequency as a function of a rank (rank on x-axis, frequency 
on y-axis).



Herdan–Heaps law

Doing a test related to Zipf's law you may also verify another law, the Heaps' 
law (also called Herdan's law), which is also an empirical law. It describes the 
number of distinct words in a document (or set of documents) as a function of 
the document length (so called type-token relation) and is formulated as:





where:


 – the number of unique words,


 – the number of all words,


 and  are free parameters determined empirically for a given (corpora) 
language. Typically  is between 10 and 100, and  is between 0.4 and 0.6 
(approximately is equal to square root of ).
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Herdan–Heaps law

Please make a plot of number of distinct words in a 
document as a function of the document length  (document 
length on x-axis, number of distinct words on y-axis).


Then empirically please find such  and  so the curve:





best fits your data.

k β

V(x) = kxβ



Word counting
BOG (Bag Of Words) - quick remainder from last lecture
import pandas as pd  
 
sentences = ["a b c d", "c d e f", "a b e f"]  
 
tokens_of_sentences = [sentence.split() for sentence in sentences]  
print(tokens_of_sentences)  
 
bow = {}  
 
for tokens in tokens_of_sentences:  
    for token in tokens:  
        bow[token] = 1  
 
bow_sorted = sorted(bow.items())  
print(bow_sorted)  
 
corpus = {}  
 
for index, tokens in enumerate(tokens_of_sentences):  
    corpus['sentence_{}'.format(index)] = dict(  
        (token, 1) for token in tokens  
    )  
 
df = pd.DataFrame.from_records(corpus).fillna(0).astype(int).T  
print(df)

[['a', 'b', 'c', 'd'],  
['c', 'd', 'e', 'f'],  
['a', 'b', 'e', 'f']]  
 
[('a', 1), ('b', 1), ('c', 1),  
('d', 1), ('e', 1), ('f', 1)]  
 
            a  b  c  d  e  f  
sentence_0  1  1  1  1  0  0  
sentence_1  0  0  1  1  1  1  
sentence_2  1  1  0  0  1  1



Word counting
Counter  term frequency (TF)→

The number of times a word occurs in a given document is 
called the term frequency, commonly abbreviated TF.


Saying the truth, number of occurrences is not a frequency. 
For this reason, in some examples the count of word 
occurrences is normalized (divided) by the number of all 
terms in the document.


Normalized frequency should rather be called a probability, 
but you will use term TF which is a common practice.


Anyway, regardless of the terminology, with both (simple 
counter or normalized counter) you can infer importance.



Term frequency (TF)
Simple case – single document

CODE: lecture_06_02_01.py


Policzyć TF dla jednego dokumentu.



Term frequency (TF)
Multiple documents

CODE: lecture_06_02_02.py


Podobnie jak poprzednio, ale liczymy dla każdego 
dokumentu TF na dwa sposoby:


• tak jak poprzednio (traktując każdy dokument 
samodzielnie);


• traktując dokument jako część pewnego dużego korpusu.



Inverse document frequency (IDF)

Word counts for sure are useful, but pure word count, even when normalized 
by the length of the document, doesn’t tell us much about the importance 
of that word in that document relative to the rest of the documents in 
the corpus. 


For example, if we have a corpus of many books focused on the same topic 
or discipline, some words may occur many times in every document – that 
doesn’t provide any new information as it doesn’t help distinguish between 
those documents. On the other hand for sure there will be some words 
which are not so common across the entire corpus – they may exists in just 
a few of them and this is how we may know more about each document’s 
nature.


So we need another tool, different than TF. Term frequencies must be 
weighted by something to ensure the most important, most meaningful 
words are given the highest value.




Inverse document frequency (IDF)

Inverse document frequency is the way we look in topic analysis through Zipf's law to 
bring out the most important details.


A good way to think of a term’s inverse document frequency is this: 


If a term appears in one document a lot of times and occurs rarely in the rest of the 
corpus, one could assume it’s important to that document specifically. It could mean 
that this document is about this term.


Other words: if a term is rare among documents, but concentrate in one or few of 
them, it may be important. 

So, term importance is inversely proportional to its presence in all documents.


This way of thinking lead us to new definition. You define inverse document 
frequency, IDF in short, as the ratio of the total number of documents to the 
number of documents the term appears in.


This is how you can start very basic topic analysis.




Inverse document frequency (IDF)

So you can think about IDF parameter as a way to 
strengthen or weaken a frequency parameter TF depending 
on importance of a given term.


If term is important being characteristic for a given type of 
documents, then it should be strengthen. Otherwise, when 
term is so common among various classes that it does not 
allow to discriminate them, it should be weaken.




TF + IDF = TF-IDF

Rule for TF: 
The more times a word appears in the document, the TF (and hence the TF-IDF) will 
go up.


Rule for IDF: 
As the number of documents that contain a word goes up, the IDF (and hence the 
TF-IDF) for that word will go down.


For a given term , in a given document , in a corpus (collection of documents)  we 
calculate TF-IDF as








t d D

tf(t, d) =
count(t, d)
count(d)

=
num of term t in doc d

num of all terms in doc d

idf(t, D) =
count(D)

count(t, D)
=

num of all docs in D
num of docs from D containing term t

tfidf(t, d, D) = tf(t, d) ⋅ idf(t, D)



TF + IDF = TF-IDF

For a given term , in a given document , in a corpus (collection of documents)  we 
calculate TF-IDF as











Note that:


• 


• , 


t d D

tf(t, d) =
count(t, d)
count(d)

=
num of term t in doc d

num of all terms in doc d

idf(t, D) =
count(D)

count(t, D)
=

num of all docs in D
num of docs from D containing term t

tfidf(t, d, D) = tf(t, d) ⋅ idf(t, D)

tf(t, d) ∈ [0,1]

idf(t, D) ∈ [1, |D | ] |D | = num of all docs in D



TF + IDF = TF-IDF
Why we need log()
Let’s say, you have a huge collection of documents; for example 1000000 (1 million).


Now imagine that term T1 is present in only 1 document, while T2 in 10. Both 1 and 10 is a tiny drop 
compared to 1 million. When you count IDF for both terms you get:








That's a big difference in terms of Zipf's law. According to this law, when you compare the frequencies 
of two terms, like IDF's you have just calculated for T1 and T2, even if they occur a similar number of 
times (which is in our case: 1 and 10 is quite similar, or close to each other, compared to 1 milion), the 
more frequent word (ranked higher) will have an exponentially higher frequency than the less frequent 
one


1 is 0.0001% of 1 million, 1000000 is 100% of 1 million


10 is 0.001% of 1 million, 100000 is 10% of 1 million


You may say that drawing all four percentage values on a number line, for fixed unit, 0.0001 is much 
closer to 0.001 than 10 to 100.


IDFT1 =
1000000

1
= 1000000

IDFT2 =
1000000

10
= 100000



TF + IDF = TF-IDF
Why we need log()

Do you remember? The frequency of any word is inversely 
proportional to its rank in the frequency table. The most frequent 
word will occur approximately twice as often as the second most 
frequent word, three times as often as the third most frequent word, etc.


  rank  freq or size      log(rank)  log(freq or size)  
     1  100                   0                  4.6  
     2   50                   0.693              3.91  
     5   20                   1.6                2.99  
    10   10                   2.3                2.33  
    20    5                   2.99               1.6  
    50    2                   3.91               0.693  
   100    1                   4.6                0



TF + IDF = TF-IDF
Why we need log()

log(rank)  log(freq or size)  
        0              4.6  
    0.693              3.91  
    1.6                2.99  
    2.3                2.33  
    2.99               1.6  
    3.91               0.693  
    4.6                0

  rank  freq or size  
     1  100         
     2   50        
     5   20       
    10   10      
    20    5     
    50    2    
   100    1  



TF + IDF = TF-IDF
Why we need log()

So Zipf’s Law suggests that you scale all your frequencies (both for words and 
document) with the  function which is the inverse of . This ensures 
that terms such as T1 and T2 which have similar counts, aren’t exponentially 
different in frequency. And this (log-log) distribution of word frequencies will 
ensure that your TF-IDF scores are more uniformly distributed.


For this reason, TF-IDF is calculated as (note that in this case IDF part is defined 
with directly included logarithm):








log() exp()

tf(t, d) =
count(t, d)
count(d)

=
num of term t in doc d

num of all terms in doc d

idf(t, D) = log ( count(D)
count(t, D) ) = log ( num of all docs in D

num of docs from D containing term t )
tfidf(t, d, D) = tf(t, d) ⋅ idf(t, D)



TF + IDF = TF-IDF
Why we need log()

Sometimes we make all the calculations in log space (below 
IDF part itself is defined without logarithm):





If you use logarithm only for IDF part (as it is given on 
previous slide) then both TF and IDF are positive. Otherwise, 
when logarithm is also applied to TF, the term frequency 
component would be negative.


tfidf(t, d, D) = log(tf(t, d)) ⋅ log(idf(t, D))



TF + IDF = TF-IDF
Some notes

TF-IDF relates a specific word or token  to a specific 
document  in a specific corpus , and then it assigns a 
numeric value to the importance of that word in the 
given document, given its usage across the entire 
corpus.


t
d D



TF + IDF = TF-IDF

CODE: lecture_06_03_01.py


Create K-dimensional vector representation for each 
document in the corpus.



TF + IDF = TF-IDF

Base on lecture_06_03_01.py:


Test behaviour of TF-IDF vector: when and how it changes, 
how it reflects structure of documents and whole corpus.


CODE (to do as an exercise)


• lecture_06_03_02.py

• lecture_06_03_02_results.py



TF + IDF = TF-IDF

documents = ['a a b c',  
             'a a a a b b c c',  
             'a a b c d e',  
             'a a a a b b c c d e',  
             ]  
 
=== TF ===  
[('a', 0.5),   ('b', 0.25),  ('c', 0.25),  ('d', 0),     ('e', 0)]  
[('a', 0.5),   ('b', 0.25),  ('c', 0.25),  ('d', 0),     ('e', 0)]  
[('a', 0.333), ('b', 0.167), ('c', 0.167), ('d', 0.167), ('e', 0.167)]  
[('a', 0.4),   ('b', 0.2),   ('c', 0.2),   ('d', 0.1),   ('e', 0.1)]  
 
=== IDF ===  
[('a', 0.0),   ('b', 0.0),   ('c', 0.0),   ('d', 0.693), ('e', 0.693)]  
 
=== TF-IDF ===  
[('a', 0.0),   ('b', 0.0),   ('c', 0.0),   ('d', 0),     ('e', 0)]  
[('a', 0.0),   ('b', 0.0),   ('c', 0.0),   ('d', 0),     ('e', 0)]  
[('a', 0.0),   ('b', 0.0),   ('c', 0.0),   ('d', 0.116), ('e', 0.116)]  
[('a', 0.0),   ('b', 0.0),   ('c', 0.0),   ('d', 0.069), ('e', 0.069)]  
 
 



How to measure similarity

• With euclidean distance


• With cosine similarity



How to measure similarity
Cosine similarity




A cosine similarity of 1 represents vectors that point in exactly the 
same direction; the vectors may have different lengths or 
magnitudes.


When a cosine similarity is close to 1, you know that the documents are 
using similar words in similar proportion. So the documents whose 
document vectors are close to each other are likely talking about the 
same thing.


Note: A cosine similarity of 0 represents orthogonal vectors. When 
cosine similarity is equal to -1 vectors are opposite – vectors point in 
opposite directions.


cos Θ =
A ⋅ B

|A | |B |



How to measure similarity
Cosine similarity




A = [1,2]  
B = [2,4]  
AB = 2 + 8 = 10  
|A| = sqrt(5) = 2.2361  
|B| = sqrt(20) = 2 * sqrt(5)  
cos(theta) = 10/(2*sqrt(5)*sqrt(5)) = 1

A = [1,2]  
B = [-2,-4]  
AB = (-2) + (-8) = -10  
|A| = sqrt(5) = 2.2361  
|B| = sqrt(20) = 2 * sqrt(5)  
cos(theta) = -10/(2*sqrt(5)*sqrt(5)) = -1

A = [1,2]  
B = [4,-2]  
AB = 4 - 4 = 0  
|A| = sqrt(5) = 2.2361  
|B| = sqrt(20) = 2 * sqrt(5)  
cos(theta) = 10/(2*sqrt(5)*sqrt(5)) = 0

cos Θ =
A ⋅ B

|A | |B |



Documents relevance

In the last lecture you used BOW (bag-of-words) vectors to 
find documents overlap.


Extension of BOW with simple words counting (and even 
words frequency - TF) isn't a big step forward.


You get a new value replacing each word’s counter (TF) with 
the word’s TF-IDF. With this your vectors will more 
thoroughly reflect the meaning, or topic, of the document



Documents relevance

Compute a new document relevance in context of corpus 
we have.


CODE (to do as an exercise)


• lecture_06_04.py

• lecture_06_04_results.py



Documents relevance

documents = ['a',  
             'a b',  
             'a b c',  
             'a b c d',  
             'a b c d e',  
             'a b c d e f',  
             'a b c d e f g']  
 
doc_test = 'a b c g h'  
 
 
 
 
 
 
 
 
 
 

 
 
Skip token "h"  
Compare with document 0:  
None  
Compare with document 1:  
0.07782269645297861  
Compare with document 2:  
0.18684518797064792  
Compare with document 3:  
0.10276244576838443  
Compare with document 4:  
0.06392858530379265  
Compare with document 5:  
0.041787650286784016  
Compare with document 6:  
0.7754668111919074



Speedup with indexing
Technical remarks: forward and inverse index

Calculating TF and IDF requires a lot of counting which 
could be speed-up with proper indexing.




Speedup with indexing
Technical remarks: forward and inverse index
In computer science, an inverted index is a database index storing a mapping from content, such as words or numbers, 
to its locations in a table, or in a document or a set of documents. It is named inverted in contrast to a forward index, 
which maps from documents to content.


There is no real technical distinction between a forward index and an inverted index. An inverted index is just an index... 
but backwards. The concept of an inverted index only makes sense if the concept of a regular (forward) index already 
exists. Other words, first you need to have something to be able to talk about inverting (it).


"Forward" and "inverted", in the context of a search engine, are just descriptive terms to distinguish between:


• A list of words contained in a document.


• A list of documents containing a word.


For example, forward index would store


{ Document1: ["Text", "from", "a", "document", "number", "1"],  
  ...  
},


an inverted index would store:


{ "Text": [Document1, Document100, ...],  
  "from": [Document1, Document2, ...],  
  ...  
} 


One lets you look up a document and find the contents, the other lets you look up a word and get a list of documents.




Speedup with indexing
Technical remarks: forward and inverse index

Advantage of inverted index is:


• Inverted index is to allow fast full text searches, at a cost of increased 
processing when a document is added to the database.


Disadvantage of inverted index is:


• Large storage overhead and high maintenance costs on update, delete and 
insert.


You can say this:


• Forward index: fast indexing, less efficient query's


• Inverted index: fast query, slower indexing




Another kind of speedup
Technical remarks: forward and inverse index

What about vectors with only relevant words?



How we can use it in chatbot
Technical remarks: forward and inverse index

But most chatbots rely heavily on a search engine. And 
some chatbots rely exclusively on a search engine as their 
only algorithm for generating responses. You need to take 
one additional step to turn your simple search index (TF-
IDF) into a chatbot. You need to store your training data in 
pairs of questions (or statements) and appropriate 
responses. Then you can use TF-IDF to search for a 
question (or statement) most like the user input text. Instead 
of returning the most similar statement in your database, 
you return the response associated with that statement.


