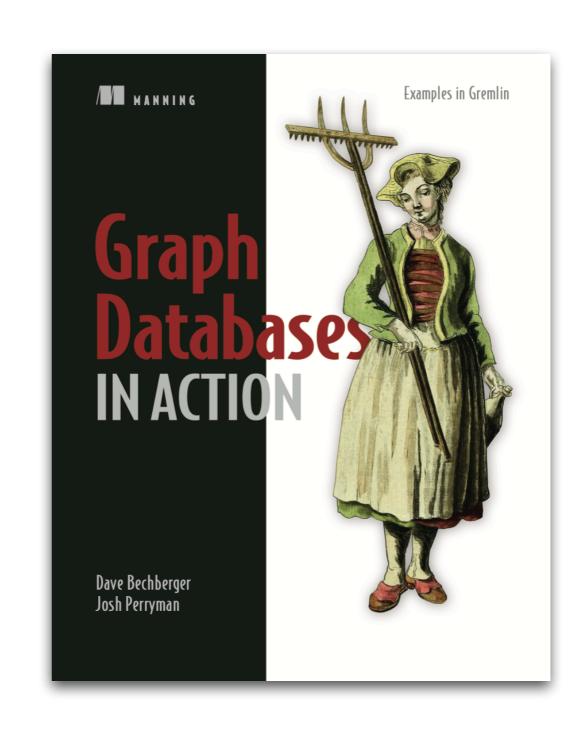
Graphs and graph databases

Introduction to graph databases


NoSQL: Lecture 1, part 1

Graph databases In Action

by Dave Bechberger and Josh Perryman

Manning Publications, 2020

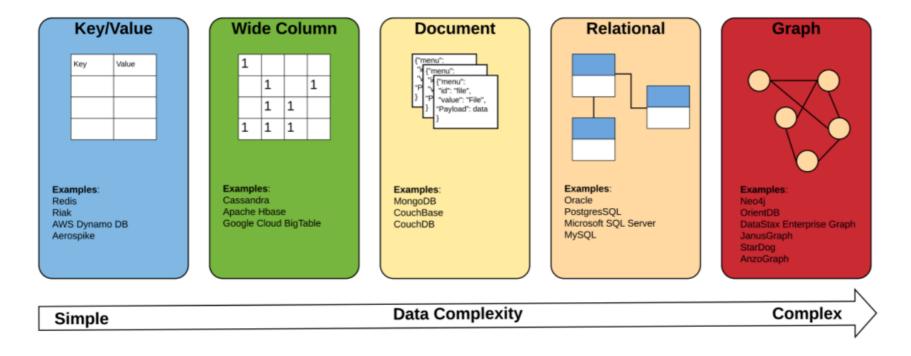
NoSQL Theory and examples by Piotr Fulmański

Piotr Fulmański, 2021

PIOTR FULMAŃSKI

NoSQL Theory and examples

SIMPLE INTRODUCTION SERIES


Vertices (singular: vertex) a.k.a. nodes.

- Vertices (singular: vertex) a.k.a. nodes.
- Edges a.k.a. relationships, links, or connections.

- Vertices (singular: vertex) a.k.a. nodes.
- Edges a.k.a. relationships, links, or connections.
- Properties.

- Vertices (singular: vertex) a.k.a. nodes.
- Edges a.k.a. relationships, links, or connections.
- Properties.
- Graph A set of vertices and edges along with their properties.

Comparison with other types of databases

Database engine types ordered by data complexity. Source: [Bec]

Do we really need another one database? RECURSIVE QUERIES

EXAMPLE

Orders			
id	name	address	
1	John Smith	123 Main. St	
2	Jane Right	643 Park St.	

Products			
id	product_name	cost	
123	widget 1	5.95	
234 widget 2		10.76	

Orders		
id name address		address
1	John Smith	123 Main. St
2	Jane Right	643 Park St.

Products			
id	product_name	cost	
123	widget 1	5.95	
234 widget 2		10.76	

Orders			
id	name	address	
1	John Smith	123 Main. St	
2	Jane Right	643 Park St.	

Products			
id product_name		cost	
123	widget 1	5.95	
234 widget 2 10.76			

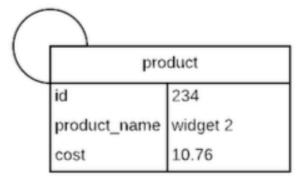
```
SELECT id,
name,
address,
null AS product_name,
null AS cost,
'Order' AS object_type

FROM Orders
UNION

SELECT id,
null AS name,
null AS address,
product_name,
cost,
'Product' AS object_type

FROM Products;
```

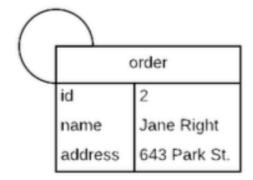
id	Name	Address	product_name	cost	object_type
1	John Smith	123 Main St	<null></null>	<null></null>	Order
2	Jane Right	234 Park St	<null></null>	<null></null>	Order
123	<null></null>	<null></null>	widget 1	5.95	Product
234	<null></null>	<null></null>	widget 2	10.76	Product

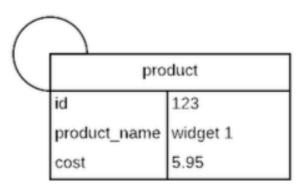

Orders			
id	name	address	
1	John Smith	123 Main. St	
2	Jane Right	643 Park St.	

Products			
id product_name		cost	
123	widget 1	5.95	
234 widget 2		10.76	

	order
id	1
name	John Smith
address	123 Main St

(order
id	2
name	Jane Right
address	643 Park St.


pro	duct
id	123
product_name	widget 1
cost	5.95



Orders			
id	name	address	
1	John Smith	123 Main. St	
2	Jane Right	643 Park St.	

Products				
id	product_name	cost		
123	widget 1	5.95		
234	widget 2	10.76		

order		
id	1	
name	John Smith	
address	123 Main St	

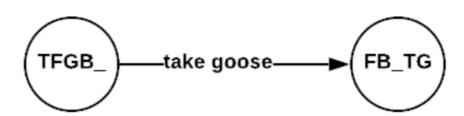

```
product
id 234
product_name widget 2
cost 10.76
```

```
gremlin> g.V().valueMap(true)
==>[label:order, address:[123 Main St], name:[John Smith], id:1]
==>[label:order, address:[234 Park St], name:[Jane Right], id:2]
==>[label:product, cost:[10.76], id:234, product_name:[widget 2]]
==>[label:product, cost:[5.95], id:123, product_name:[widget 1]]
```

River crossing puzzle: we have a fox, a goose, and a bag of barley that must be transported across a river by a farmer on a boat. However, this movement is bound by the following constraints:

- The boat can only carry one item in addition to the farmer on each trip.
- The farmer must go on each trip.
- The fox cannot be left alone with the goose or it will eat it.
- The goose cannot be left alone with the grain or it will eat it.

Let's start by modeling the initial state of our system as a vertex in our graph, which we'll call: **TGFB**_ with each character representing part of the problem:


T – the boat & farmer

G – the goose

F – the fox

B – the barley

_ – the river

River crossing puzzle full graph:

[draw it here]

River crossing puzzle full graph:

[draw it here]

```
g.V('TFGB_').
   repeat(
     out()
   ).until(hasId('_TGFB')).
   path().next()
```

Is my problem a graph problem?

What problem are we trying to solve?

- What problem are we trying to solve?
 - Selection / search

- What problem are we trying to solve?
 - Selection / search
 - Related or recursive data

- What problem are we trying to solve?
 - Selection / search
 - Related or recursive data
 - Aggregation

- What problem are we trying to solve?
 - Selection / search
 - Related or recursive data
 - Aggregation
 - Pattern matching, influence

Is my problem a graph problem?

- What problem are we trying to solve?
 - Selection / search
 - Related or recursive data
 - Aggregation
 - Pattern matching, influence

•

Is my problem a graph problem?

 Do we care about the relationships between entities as much or more than the entities themselves?

- Do we care about the relationships between entities as much or more than the entities themselves?
- Does my sql query perform multiple joins on the same table or require a recursive CTE?

- Do we care about the relationships between entities as much or more than the entities themselves?
- Does my sql query perform multiple joins on the same table or require a recursive CTE?
- Is the structure of my data continuously evolving?

- Do we care about the relationships between entities as much or more than the entities themselves?
- Does my sql query perform multiple joins on the same table or require a recursive CTE?
- Is the structure of my data continuously evolving?
- Is my domain a natural fit for a graph?

Bibliography

- [Bec] Dave Bechberger, Josh Perryman, *Graph Databases in Action*, Manning Publications, 2020
- [Ful] Piotr Fulmański, NoSQL. Theory and examples, Piotr Fulmański, 2021