
NoSQL: Lecture 3

Querying graph
databases
Graph traversals

Piotr Fulmański

Graph
databases
In Action
by Dave Bechberger
and Josh Perryman
Manning Publications, 2020

What we need
Installation of Gremlin Console

• The easiest way to get started with Gremlin is to install the Gremlin Console. The
Gremlin Console is a REPL that allows immediate feedback on the results of
Gremlin traversals.

• As a prerequisite, Java 8 is required for the Gremlin Console to run.

• Download the Gremlin Console, unpack it wherever you want - no install is needed.

• Running the Gremlin Console is a simple as executing starting script from command
line.

In my case 
$TINKERPOP_DIR = ~/Desktop/tinkerpop

nosql@nosql:~$ $TINKERPOP_DIR/gremlin-console/bin$
./ gremlin.sh  
[cut some illegal reflective access warning lines
here]  
 \,,,/  
 (o o)  
 -----oOOo-(3)-oOOo-----  
plugin activated: tinkerpop.server  
plugin activated: tinkerpop.utilities  
plugin activated: tinkerpop.tinkergraph  
 
gremlin> Gremlin.version()  
==>3.4.8  
 
gremlin> :help  
 
Available commands:  
[cut some lines here]  
 :exit (:x) Exit the shell  
 :quit (:q) Alias to: :exit  
[cut some lines here]

What we need
Sample data

We will use sample data of secret agents network. As they are a secret
agents, we don't know their names. Instead we will use a short pseudonyms.

You can load sample data running console with script argument:

-i [PATH_TO_SAMPLE_DATA_FILE]agents.groovy  

Example:

nosql@nosql:~$./$TINKERPOP_DIR/gremlin-console/bin/
gremlin.sh -i ~/Desktop/nosql_2/agents.groovy  
[cut some lines here]  
gremlin> graph  
==>tinkergraph[vertices:4 edges:5]

Sample data
Secret agents net

Travers[e|al|al source|er]

• Traverse - The process of moving from vertex to edge or edge to vertex as we
navigate through a graph.

• Traversal - A specification of one or more steps or actions to perform on a graph.

• Traversal source - The traversal source is a concept specific to TinkerPop. It
represents the base or starting point from which steps traverse the graph. By
convention, this is usually represented with the variable g and is required to begin
any traversal.

• Traverser - The computing process; maintains all the metadata about the current
branch of the graph it’s moving through.

Graph traverse

• Querying in a graph database by traverse entails defining the
series of steps for moving through the graph from one element
to another.

• As we traverse through the graph every step starts at one
location and almost always ends at a different location.
Thus it is very important to exactly know where we are as
different locations modeled different entities with different set
of properties and relations and in consequence offer different
traversal possibilities.

Graph traverse
Keep track of where we are

• This idea is completely opposite to what we may infer
from relational experience:

• In a relational database we may use any two tables joining
them whenever we want.

• In a graph, we’re limited to using only the edges or
vertices which are next to currently considered node. To
be able to proceed further, we have to keep track of where
we are within the structure of our graph data model.

Graph traverse
Relations directedness

• In relational word we can combine what we want with
what we want. In graph databases edges directions
determines the way we traverse the graph by control if we
move on only incoming, outgoing, or both edge
directions.

Graph traverse
Amnesia

• The last one thing we have to be aware of is a lack of
backward memory. However it sounds, it means that at
the and of any traversal we have an access only to ending
node and data directly related to it. In contrast, in typical
SQL query we may retrieve data from all columns
belonging to tables joined together.

Graph traverse
Amnesia

Thus it is often useful to think traversal in terms of a stream
processing:

• enters from the previous step,

• an operation is performed on current,

• and data is transmitted on to the next step.

Practical part

Graph traverse
Very basic "traversal"

gremlin> graph  
==>tinkergraph[vertices:4 edges:5]

 
gremlin> g.V()  
==>v[0]  
==>v[2]  
==>v[4]  
==>v[6]  

gremlin> g.E()  
==>e[8][0-enlist->2]  
==>e[9][0-enlist->4]  
==>e[10][0-enlist->6]  
==>e[11][2-enlist->4]  
==>e[12][4-enlist->6]

Graph traverse
Very basic "traversal"

gremlin> g.V().elementMap()  
==>[id:0,label:agent,pseudonim:A1]  
==>[id:2,label:agent,pseudonim:A2]  
==>[id:4,label:agent,pseudonim:A3]  
==>[id:6,label:agent,pseudonim:A4]

gremlin> g.E().elementMap()  
==>[id:8,label:enlist,IN:[id:2,label:agent],OUT:[id:0,label:agent]]  
==>[id:9,label:enlist,IN:[id:4,label:agent],OUT:[id:0,label:agent]]  
==>[id:10,label:enlist,IN:[id:6,label:agent],OUT:[id:0,label:agent]]  
==>[id:11,label:enlist,IN:[id:4,label:agent],OUT:[id:2,label:agent]]  
==>[id:12,label:enlist,IN:[id:6,label:agent],OUT:[id:4,label:agent]]

Graph traverse
Very basic "traversal"

gremlin> g.V().elementMap().unfold()  
==>id=0  
==>label=agent  
==>pseudonim=A1  
==>id=2  
==>label=agent  
==>pseudonim=A2  
==>id=4  
==>label=agent  
==>pseudonim=A3  
==>id=6  
==>label=agent  
==>pseudonim=A4

Graph traverse
Very basic "traversal"

gremlin> g.E().elementMap().unfold()  
==>id=8  
==>label=enlist  
==>IN={id=2, label=agent}  
==>OUT={id=0, label=agent}  
==>id=9  
==>label=enlist  
==>IN={id=4, label=agent}  
==>OUT={id=0, label=agent}  
==>id=10  
==>label=enlist  
==>IN={id=6, label=agent}  
==>OUT={id=0, label=agent}  
==>id=11  
==>label=enlist  
==>IN={id=4, label=agent}  
==>OUT={id=2, label=agent}  
==>id=12  
==>label=enlist  
==>IN={id=6, label=agent}  
==>OUT={id=4, label=agent}

Graph traverse
What is g?

• The g step is always the first step in every Gremlin traversal.

• The g represents the traversal source for our graph and is the base
on which all traversals are written.

• This could be called anything, but the convention with a TinkerPop
graph in transactional mode is to use g.

• g is not a graph; it is a traversal source by convention, defined by 
g = graph.traversal()  

Graph traverse
First real traversal

Graph traverse
First real traversal

Task: Find all agents known by agent A2 (A2 -[enlist]->??).

We start by outlining the steps we need to take through the graph:

1. Given all the vertices in a graph.

2. Find all the agent vertices with a pseudonim of A2.

3. Walk the outgoing enlist edges to the incident vertex.

4. Return the pseudonim.

Graph traverse
First real traversal

Task: Find all agents known by agent A2 (A2 -[enlist]->??).

We start by outlining the steps we need to take through the graph:

1. Given all the vertices in a graph.

2. Find all the agent vertices with a pseudonim of A2.

3. Walk the outgoing enlist edges to the incident vertex.

4. Return the pseudonim.

Next, we map these plain English steps to the corresponding steps in Gremlin.

Graph traverse
First real traversal

Task: Find all agents known by agent A2 (A2 -[enlist]->??).

1. Given all the vertices in a graph.

2.

3.

4.

g.V()  
 
 

Graph traverse
First real traversal

Task: Find all agents known by agent A2 (A2 -[enlist]->??).

1. Given all the vertices in a graph.

2. Find all the agent vertices with a pseudonim of A2.

3.

4.

g.V().  
has('agent', 'pseudonim', 'A2')  
 

Graph traverse
First real traversal

Task: Find all agents known by agent A2 (A2 -[enlist]->??).

1. Given all the vertices in a graph.

2. Find all the agent vertices with a pseudonim of A2.

3. Walk the outgoing enlist edges to the incident vertex.

4.

g.V().  
has('agent', 'pseudonim', 'A2').  
out('enlist')  

Graph traverse
First real traversal

Task: Find all agents known by agent A2 (A2 -[enlist]->??).

1. Given all the vertices in a graph.

2. Find all the agent vertices with a pseudonim of A2.

3. Walk the outgoing enlist edges to the incident vertex.

4. Return the pseudonim.

g.V().  
has('agent', 'pseudonim', 'A2').  
out('enlist').  
values('pseudonim')

Graph traverse
First real traversal

g.V().has('agent', 'pseudonim', 'A2').  
out('enlist').values('pseudonim')

Traversal source 
Global step 
Filtering steps 
Traversal steps 
Values steps 
 
==>A3

Graph traverse
Filtering steps

• hasLabel(label) - Yields all vertices or edges of the specified
label type.

• has(key, value) - Yields all vertices and edges with a property
matching the specified key and value.

• has(label, key, value) - Yields all vertices and edges with
both the specified label and with a property matching the specified
key and value. This performs the same function as this combination: 
 
g.V().hasLabel('agent').has('pseudonim', 'A2')

Graph traverse
Traversal steps: in, out

g.V().  
has('agent', 'pseudonim', 'A2').  
out('enlist').  
values('pseudonim')  
==>A3

Graph traverse
Traversal steps: in, out

g.V().  
has('agent', 'pseudonim', 'A2').  
in('enlist').  
values('pseudonim')  
==>A1

Graph traverse
Traversal steps: in, out

g.V().  
has('agent', 'pseudonim', 'A2').  
both('enlist').  
values('pseudonim')  
==>A3  
==>A1

Graph traverse
Traversal steps

• out(string…): Move to the outgoing adjacent vertices given the edge labels.

• in(string…): Move to the incoming adjacent vertices given the edge labels.

• both(string…): Move to both the incoming and outgoing adjacent vertices given the edge labels.

• outE(string…): Move to the outgoing incident edges given the edge labels. Traverses from the current
vertex onto the outgoing incident edges.

• inE(string…): Move to the incoming incident edges given the edge labels. Traverses from the current
vertex onto the incoming incident edges.

• bothE(string…): Move to both the incoming and outgoing incident edges given the edge labels.
Traverses from the current vertex onto the incident edges, regardless of direction.

• outV(): Move to the outgoing vertex. Traverses from the current edge to the outgoing vertex.

• inV(): Move to the incoming vertex. Traverses from the current edge to the incoming vertex.

• bothV(): Move to both vertices. Traverses from the current edge to both of the incident vertices.

• otherV(): Move to the vertex that was not the vertex that was moved from.

Graph traverse
Traversal steps: out() vs outE()

• g.V().has('agent','pseudonim','A2').out()  
 
 
 
 

• g.V().has('agent','pseudonim','A2').outE()

Graph traverse
Traversal steps: out() vs outE()

When possible, don’t traverse an edge to the other vertex.

Compare:

1. g.V().out().count()

2. g.V().outE().count()

In the first case, we go through each edge and count the
vertices on the other side.

In the second case, we count the edge that we see from our
vertex.

Graph traverse
Traversal steps

g.V().  
has('agent', 'pseudonim', 'A2').  
out('enlist').  
values('pseudonim')  
==>A3

g.V().  
has('agent', 'pseudonim', 'A2').  
outE('enlist').  
inV().  
values('pseudonim')  
==>A3

Recursive graph traverse
The essence of graph querying

Recursive graph traverse
The essence of graph querying

Task: Find all agents known by agents who A2 knows (A2 -[enlist]-> A? -[enlist]-> ??).

Recursive graph traverse
The essence of graph querying

Task: Find all agents known by agents who A2 knows (A2 -[enlist]-> A? -[enlist]-> ??).

This friends-of-friends-type question is a common pattern in all kind of "social" networks. If we
want to accomplish this in our social network graph, we would need to execute the following
steps

Recursive graph traverse
The essence of graph querying

Task: Find all agents known by agents who A2 knows (A2 -[enlist]-> A? -[enlist]-> ??).

This friends-of-friends-type question is a common pattern in all kind of "social" networks. If we
want to accomplish this in our social network graph, we would need to execute the following
steps

1. Given all the vertices in a graph.

Recursive graph traverse
The essence of graph querying

Task: Find all agents known by agents who A2 knows (A2 -[enlist]-> A? -[enlist]-> ??).

This friends-of-friends-type question is a common pattern in all kind of "social" networks. If we
want to accomplish this in our social network graph, we would need to execute the following
steps

1. Given all the vertices in a graph.

2. Find all the agent vertices with a pseudonim of A2.

Recursive graph traverse
The essence of graph querying

Task: Find all agents known by agents who A2 knows (A2 -[enlist]-> A? -[enlist]-> ??).

This friends-of-friends-type question is a common pattern in all kind of "social" networks. If we
want to accomplish this in our social network graph, we would need to execute the following
steps

1. Given all the vertices in a graph.

2. Find all the agent vertices with a pseudonim of A2.

3. Traverse the outgoing enlist edges to the incident vertex.

Recursive graph traverse
The essence of graph querying

Task: Find all agents known by agents who A2 knows (A2 -[enlist]-> A? -[enlist]-> ??).

This friends-of-friends-type question is a common pattern in all kind of "social" networks. If we
want to accomplish this in our social network graph, we would need to execute the following
steps

1. Given all the vertices in a graph.

2. Find all the agent vertices with a pseudonim of A2.

3. Traverse the outgoing enlist edges to the incident vertex.

4. Traverse to the incoming vertex (at this point, we’re at A?).

Recursive graph traverse
The essence of graph querying

Task: Find all agents known by agents who A2 knows (A2 -[enlist]-> A? -[enlist]-> ??).

This friends-of-friends-type question is a common pattern in all kind of "social" networks. If we
want to accomplish this in our social network graph, we would need to execute the following
steps

1. Given all the vertices in a graph.

2. Find all the agent vertices with a pseudonim of A2.

3. Traverse the outgoing enlist edges to the incident vertex.

4. Traverse to the incoming vertex (at this point, we’re at A?).

5. Traverse the outgoing enlist edges to the incident vertex.

Recursive graph traverse
The essence of graph querying

Task: Find all agents known by agents who A2 knows (A2 -[enlist]-> A? -[enlist]-> ??).

This friends-of-friends-type question is a common pattern in all kind of "social" networks. If we
want to accomplish this in our social network graph, we would need to execute the following
steps

1. Given all the vertices in a graph.

2. Find all the agent vertices with a pseudonim of A2.

3. Traverse the outgoing enlist edges to the incident vertex.

4. Traverse to the incoming vertex (at this point, we’re at A?).

5. Traverse the outgoing enlist edges to the incident vertex.

6. Traverse to the incoming vertex (at this point, we’re at ??).

Recursive graph traverse
The essence of graph querying

Task: Find all agents known by agents who A2 knows (A2 -[enlist]-> A? -[enlist]-> ??).

This friends-of-friends-type question is a common pattern in all kind of "social" networks. If we
want to accomplish this in our social network graph, we would need to execute the following
steps

1. Given all the vertices in a graph.

2. Find all the agent vertices with a pseudonim of A2.

3. Traverse the outgoing enlist edges to the incident vertex.

4. Traverse to the incoming vertex (at this point, we’re at A?).

5. Traverse the outgoing enlist edges to the incident vertex.

6. Traverse to the incoming vertex (at this point, we’re at ??).

7. Return the pseudonim property value.

Recursive graph traverse
The essence of graph querying

Recursive graph traverse
The essence of graph querying

Using explicit query

Recursive graph traverse
The essence of graph querying

Using explicit query

g.V().has('agent', 'pseudonim', 'A2').  
out('enlist').  
out('enlist').  
values('pseudonim')  
 
==>A4

Recursive graph traverse
The essence of graph querying

Using explicit query

g.V().has('agent', 'pseudonim', 'A2').  
out('enlist').  
out('enlist').  
values('pseudonim')  
 
==>A4

This works and provides the correct answer, but it only works
because we knew that we needed to repet out() step two times.
In many cases, we don’t know how many repetitions we’ll need.

Recursive graph traverse
The essence of graph querying

Recursive graph traverse
The essence of graph querying

• repeat(traversal) - Repeatedly loops thorough the steps
until instructed to stop. The traversal parameter represents
the set of Gremlin steps to be repeated within the loop.

Recursive graph traverse
The essence of graph querying

• repeat(traversal) - Repeatedly loops thorough the steps
until instructed to stop. The traversal parameter represents
the set of Gremlin steps to be repeated within the loop.

• times(integer) - A modifier for a repeat() loop. The
integer parameter represents the number of operations for
the loop to execute.

Recursive graph traverse
The essence of graph querying

• repeat(traversal) - Repeatedly loops thorough the steps
until instructed to stop. The traversal parameter represents
the set of Gremlin steps to be repeated within the loop.

• times(integer) - A modifier for a repeat() loop. The
integer parameter represents the number of operations for
the loop to execute.

• until(traversal) - A modifier for a repeat() loop. The
traversal parameter represents the set of Gremlin steps
that evaluate for each loop. When the traversal evaluates to
true, the repeat() step exits.

Recursive graph traverse
The essence of graph querying

Recursive graph traverse
The essence of graph querying

Now all the steps expressed in plain English are as follow:

Recursive graph traverse
The essence of graph querying

Now all the steps expressed in plain English are as follow:

1. Given all the vertices in a graph.

Recursive graph traverse
The essence of graph querying

Now all the steps expressed in plain English are as follow:

1. Given all the vertices in a graph.

2. Find all the agent vertices with a pseudonim of A2.

Recursive graph traverse
The essence of graph querying

Now all the steps expressed in plain English are as follow:

1. Given all the vertices in a graph.

2. Find all the agent vertices with a pseudonim of A2.

3. Repeat the following step(s):

a) Walk the outgoing enlist edges to the incident vertex.

b) Execute the repeated step(s) two times.

Recursive graph traverse
The essence of graph querying

Now all the steps expressed in plain English are as follow:

1. Given all the vertices in a graph.

2. Find all the agent vertices with a pseudonim of A2.

3. Repeat the following step(s):

a) Walk the outgoing enlist edges to the incident vertex.

b) Execute the repeated step(s) two times.

4. Return the pseudonim property value.

Recursive graph traverse
The essence of graph querying

Now all the steps expressed in plain English are as follow:

1. Given all the vertices in a graph.

2.

3.

a)

b)

4.

g.V().  
 
 
 
 
 

Recursive graph traverse
The essence of graph querying

Now all the steps expressed in plain English are as follow:

1. Given all the vertices in a graph.

2. Find all the agent vertices with a pseudonim of A2.

3.

a)

b)

4.

g.V().  
has('agent', 'pseudonim', 'A2').  

 
 
 

Recursive graph traverse
The essence of graph querying

Now all the steps expressed in plain English are as follow:

1. Given all the vertices in a graph.

2. Find all the agent vertices with a pseudonim of A2.

3. Repeat the following step(s):

a)

b)

4.

g.V().  
has('agent', 'pseudonim', 'A2').  
repeat( 
  
)
 

Recursive graph traverse
The essence of graph querying

Now all the steps expressed in plain English are as follow:

1. Given all the vertices in a graph.

2. Find all the agent vertices with a pseudonim of A2.

3. Repeat the following step(s):

a)

b) Execute the repeated step(s) two times.

4.

g.V().  
has('agent', 'pseudonim', 'A2').  
repeat( 
  
).  
times(2).  

Recursive graph traverse
The essence of graph querying

Now all the steps expressed in plain English are as follow:

1. Given all the vertices in a graph.

2. Find all the agent vertices with a pseudonim of A2.

3. Repeat the following step(s):

a) Walk the outgoing knows edges to the incident vertex.

b) Execute the repeated step(s) two times.

4.

g.V().  
has('agent', 'pseudonim', 'A2').  
repeat( 
 out('enlist')  
).  
times(2).  

Recursive graph traverse
The essence of graph querying

Now all the steps expressed in plain English are as follow:

1. Given all the vertices in a graph.

2. Find all the agent vertices with a pseudonim of A2.

3. Repeat the following step(s):

a) Walk the outgoing knows edges to the incident vertex.

b) Execute the repeated step(s) two times.

4. Return the pseudonim property value.

g.V().  
has('agent', 'pseudonim', 'A2').  
repeat( 
 out('enlist')  
).  
times(2).  
values('pseudonim')

Recursive graph traverse
The essence of graph querying

Now all the steps expressed in plain English are as follow:

1. Given all the vertices in a graph.

2. Find all the agent vertices with a pseudonim of A2.

3. Repeat the following step(s):

a) Walk the outgoing knows edges to the incident vertex.

b) Execute the repeated step(s) two times.

4. Return the pseudonim property value.

g.V().  
has('agent', 'pseudonim', 'A2').  
repeat( 
 out('enlist')  
).  
times(2).  
values('pseudonim')  
==>A4

Recursive graph traverse
Remarks

If we have no knowledge how many edges we should
expect: one, two or more we can use until() step:

g.V().  
has('agent', 'pseudonim', 'A2').  
until(outE('enlist').count().is(0)).  
repeat( 
 out('enlist')  
).  
values('pseudonim')  
 
==>A4

Recursive graph traverse
Remarks

If we have no knowledge how many edges we should
expect: one, two or more we can use until() step:

g.V().  
has('agent', 'pseudonim', 'A2').  
until(outE('enlist').count().is(0)).  
repeat( 
 out('enlist')  
).  
values('pseudonim')  
 
==>A4 BUT BE C

AREFUL!

Recursive graph traverse
Remarks

If we have a knowledge about initial vertex and final vertex, our
traversal is less probable to become an unbounded traversal.

g.V().  
has('agent', 'pseudonim', 'A2').  
until(has('agent', 'pseudonim', 'A4')).  
repeat( 
 out('enlist')  
).  
values('pseudonim')  
 
==>A4

Recursive graph traverse
Remarks

To determine the intermediate steps, we need to introduce a modifier step to the
repeat() step, known as emit().

g.V().  
has('agent', 'pseudonim', 'A2').  
until( 
 has('pseudonim', 'A4')  
).  
repeat( 
 out('enlist')  
).  
emit().  
values('pseudonim')  
 
==>A3  
==>A4  
==>A4

Recursive graph traverse
Remarks

To determine the intermediate steps, we need to introduce a modifier step to the
repeat() step, known as emit().

g.V().  
has('agent', 'pseudonim', 'A2').  
until( 
 has('pseudonim', 'A4')  
).  
emit().  
repeat( 
 out('enlist')  
).  
values('pseudonim')  
 
==>A2  
==>A3  
==>A4

Bibliography

• [Bec] Dave Bechberger, Josh Perryman, Graph Databases
in Action, Manning Publications, 2020

