
Introduction to NoSQL: Lecture 2

SQL
Relational model

Piotr Fulmański



NoSQL 
Theory and 
examples
by Piotr Fulmański
Piotr Fulmański, 2021



• Relational theory key concepts


• Normal forms


• Transactional model and ACID



Why we are talking about SQL?

• If there are situations where relational databases aren’t the best 
match for our business problem, we should know why this pattern 
is not suitable for us and what solution(s) we can choose instead.


• Relational model is well known and has very good support in terms 
of software, documentation, specialist – before you will resign from 
this patter, you should be sure what you are doing.


• To correctly understand NoSQL databases and all pros and cons 
we need some reference – in this case we will compare them with 
one mode we know best – the relational model.



Toward relational supremacy
Pre-relational era

• US census was a first large-scale example of storing some data in a form suitable for 
further automatic processing.


• The appearance of the term database coincided with the availability of versatile, high-
speed access storages like tapes and next drums and disks which made work with 
individual records possible and effective.


• It became quite natural to do all database related stuff once and use many times for 
different databases. This way database handling logic was moved from the applications 
to the intermediate layer – the Database Management System, or DBMS.


• Early database management systems, from performance reasons and lack of any other 
preceding experiences and premises, enforced both schema and path to get an access 
to data.



Toward relational supremacy
Pre-relational era

• A schema defines the physical structure of the data 
within the database. The system to deliver adequate 
performance enforced data representation so it was fine-
tuned to the underlying access mechanisms.


• An access path (a way we get the data) defines a fixed 
sequence of navigating steps from one record to another 
– there was no option to have a free access to any record 
we want as it is in today's systems.



Toward relational supremacy
Pre-relational era

• Pre-relational databases 
were designed 
by manufacturers, 
not users.



Toward relational supremacy
Relational era

• Existing databases mixed logical and physical implementations. The representation of data 
in existing databases matched the format of the physical storage in the database, rather than 
a logical representation of the data that could be comprehended by a nontechnical user.


• There were no common formal structures and operations we could do on different 
databases.


• Existing databases lacked a theoretical foundations guarantee their reliability. Based on 
arbitrary representations that did not ensure logical consistency it wasn't possible to deal 
with failures and consistencies problems.


• In consequence, existing databases were too hard to use. Databases of the day could only 
be accessed by people with specialized technical and programming skills which was very 
distant from business needs and applications.



Toward relational supremacy
Relational era

• While all of them differentiate in terms of performance, 
availability, functionality, or economy, they all share three 
key principles:


• Codd’s relational model,


• the SQL language,


• and the ACID transaction model.



Toward relational supremacy
Object-oriented era



Relational theory key concepts
Row oriented model

The relational model has a very well-ordered and organized nature. It is a row oriented model and row is its fundamental 
concept. 


• Row is a basic storage unit used to keep data.


• Set of rows is called a table.


• One single data field in a row is called column.


• All rows within one table consist of a fixed number of column.


• Every data field is associated with a column name and a data type.


• Columns must have unique names within a table and a single data type which is created when a table is first defined.


• The entire table, with all column definitions and their data types, must be created before the first row is inserted into the 
table.


• Rows are always added, changed and deleted as atomic units.


• Relation between data stored in different tables are only through data itself and no any other "external" properties.


• We get data in usable form by selecting all related rows from different tables with JOIN statements.


• Data are stored as tables, however the physical storage of the data is independent of the way the data are logically 
organized.



Relational theory key concepts
Row oriented model

All the constraints helps to make this model "predictable" in 
a sense that can be described in a strict and formalized 
way. Formalization is important because allow us to get rid 
of all physical dependencies among data (as it is in the 
hierarchical and network model case) and focus only on its 
(data) logical structure. 


In other words, having formal description we can discuss 
database properties with no knowledge about its 
physical organization.



Relational theory key concepts
Row oriented model

• The source of the power of relational model is a 
separation of logical and physical structure of data.


• In other words, the way we navigate through our data 
depends only on data itself and nothing else.


• This model is totally abstract – it may no assumption 
about real object (represented as data) dependency.


• Whether we will make only on-table select or very 
complex multi-join queries data organization into tables 
will be exactly the same.



Normal forms



Normal forms
First normal form (1NF)

A relation is in first normal form if and only if the domain of each 
attribute contains only atomic (indivisible) values, and the value 
of each attribute contains only a single value from that domain. 
Moreover, for every row there should exist primary key – one or 
more columns uniquely identifying that row.


In practice it means that we have to:


• Eliminate repeating groups in individual tables.


• Create a separate table for each set of related data.


• Identify each set of related data with a primary key.



Normal forms
First normal form (1NF)



Normal forms
First normal form (1NF)



Normal forms
Second normal form (2NF)

Second normal form (2NF) addresses the concept of 
removing duplicative data.


No non-prime attributes have part-key dependencies on any 
of candidate keys. 
Other words, any functional dependency on part of any 
candidate key is a violation of 2NF. 


In practice it means that we have to:


• Remove subsets of data that apply to multiple rows of a 
table and place them in separate tables.



Normal forms
Second normal form (2NF)



Normal forms
Second normal form (2NF)

+



Normal forms
Third normal form (3NF)

Third normal form (3NF) removes columns that are not 
dependent upon the primary key which is one step further in 
the concept of removing duplicative data.


In practice it means that we have to:


• Remove columns that are not dependent upon the 
primary key. Each column must depend directly on the 
primary key and nothing else than primary key.



Normal forms
Third normal form (3NF)



Normal forms
Third normal form (3NF)

Primary key



Normal forms
For what?

Now we have data in the third normal form and we may ask


For what? What profits do I have making this? Is it worth it? 

Normal forms help keeping data consistent. 

We can say, that normal forms just ensures that we don’t make rookie 
mistakes when designing the architecture of a database.


Side negative effect of normal forms is high data "fragmentation" which we 
have mentioned before (recall analogy to a garage and parking a car in it). This 
force us to massively use joins – additional join tables as well as JOIN statements 
to combine pieces of informations into one real object.



Transaction

Relational model itself, even with all data organized 
according to normal form rules, doesn’t guarantee data 
consistency, and system reliability. This is achieved by 
implementing transaction model.



Transaction
ACID

ACID transaction model ensures that:


• Data are always as we expect them to be.


• If we change value now, it will be changed also in the future – if there are no 
other actions, we will never see the value before change again.


• If two attempts to data change occur at the same time, the result is the same 
as for their sequential execution.


• If one change depends on the other, then both will be performed in a specific, 
desired order. If one fails, the effect of any of them will not be visible.


• After finalizing current changes other new changes cannot appear till next 
action is taken.



Transaction
ACID

• Atomic The transaction can not be divided – either all the statements in the 
transaction are applied to the database or none are.


• Consistent It refers to the correctness of a database. The database remains in a 
consistent state before and after transaction execution. All stored data are correct 
and in accordance with their logic order of processing.


• Isolated While multiple transactions can be executed by one or more users 
simultaneously, one transaction should not see the effects of other in-progress 
transactions. This property ensures that the execution of transactions 
concurrently will result in a state that is equivalent to a state achieved these were 
executed serially in some order.


• Durable Once a transaction is saved (committed) to the database, its changes are 
expected to persist even if there is a failure of operating system or hardware. The 
effects of the transaction, thus, are never lost.



Transaction
ACID

Note that:


• ACID features are not independent – lack of one of them 
may affect others. For example, lack of isolation may 
affect consistency.


• Paradoxically by trying to increase the overall system 
performance by adding more machines we achieve the 
opposite effect: the more machines constitutes our 
system, the more time we may lost trying to ensure ACID 
properties.



Bibliography

• [Ful] Piotr Fulmański, NoSQL. Theory and examples, Piotr 
Fulmański, 2021


