
NoSQL: Lecture 1

Graphs and graph
databases
Introduction to graph databases

Piotr Fulmański

Graph
databases
In Action
by Dave Bechberger
and Josh Perryman
Manning Publications, 2020

NoSQL 
Theory and
examples
by Piotr Fulmański
Piotr Fulmański, 2021

Graphs and graph terminology

• Vertices (singular: vertex) a.k.a. nodes.

• Edges a.k.a. relationships, links, or connections.

• Properties.

• Graph - A set of vertices and edges along with their
properties.

Comparison with other types of databases

Database engine types ordered by data complexity. Source: [Bec]

Do you really need another one database?
WHAT IS IMPORTANT

All of them stores data in one of the characteristic way. So you have few
different methods to store data, but your data are dumb – they are just data.
Anything more than this you have to infer on your own. There are situation
when you want your data to „speak”.

Sometimes the way we organize our data is also a kind of information.

Relations between entities are as important, or more important, than
the entities within data.

Graph stores are built around the simple and general-purpose

node-relationship-node

data structure. The key question is: Do we really need a new database type?

Do you really need another one database?
DIFFERENT RESULT TYPES - RELATIONAL DATABASE

Do you really need another one database?
DIFFERENT RESULT TYPES - RELATIONAL DATABASE

Do you really need another one database?
DIFFERENT RESULT TYPES - GRAPH DATABASE

All data as vertices in a graph

Do you really need another one database?
PATHS

River crossing puzzle: you have a fox, a goose, and a bag of barley that
must be transported across a river by a farmer on a boat. However, this
movement is bound by the following constraints:

• The boat can only carry one item in addition to the farmer on each trip.

• The farmer must go on each trip.

• The fox cannot be left alone with the goose or it will eat it.

• The goose cannot be left alone with the grain or it will eat it.

Do you really need another one database?
PATHS

Let’s start by modeling the initial state of your system as a vertex in your graph,
which you’ll call: TGFB_ with each character representing part of the problem:

T – the boat & farmer

G – the goose

F – the fox

B – the barley

_ – the river

Do you really need another one database?
PATHS

River crossing puzzle full graph:

[Let's play and draw it here]

Do you really need another one database?
PATHS

River crossing puzzle full graph:

 F_TGB  
 |  
FG_TB F_TGB -> TFG_B  
 | / \  
TFGB_ -> FB_TG -> TFB_G G_TBF -> TG_FB -> _TGFB  
 | \ /  
GB_TF B_TFG -> TGB_F  
 |  
 B_TGF  
 
Red state - unacceptable state

\ - bidirectional edge

Do you really need another one database?
PATHS

River crossing puzzle full graph:

[Put drawing here]

TFGB_ -take goose-> FB_TG -take empty-> TFB_G -take barley-> F_TGB -return
goose-> TFG_B -take fox-> G_TBF -return empty-> TG_FB -take goose-> _TGFB

TFGB_ -take goose-> FB_TG -take empty-> TFB_G -take fox-> B_TFG -return goose->
TGB_F -take barley-> G_TBF -return empty-> TG_FB -take fox-> _TGFB

Do you really need another one database?
RELATIONAL DEPENDENCIES
Table: person  
PK : id  
 : name

Table: project  
PK : id  
 : name

Table: team_member  
PK, FK1 : person_id  
PK, FK2 : project_id  
 : role

Do you really need another one database?
RELATIONAL DEPENDENCIES
Table: person  
PK : id  
 : name

Table: project  
PK : id  
 : name

Table: team_member  
PK, FK1 : person_id  
PK, FK2 : project_id  
 : role You want to find all persons who have ever

worked with XYZ in the same project.

Do you really need another one database?
RELATIONAL DEPENDENCIES
Table: person  
PK : id  
 : name

Table: project  
PK : id  
 : name

Table: team_member  
PK, FK1 : person_id  
PK, FK2 : project_id  
 : role If you want to find all persons who have

ever worked with XYZ in the same project
you can use the following SQL query:

SELECT p2.name, p.name  
FROM person p1  
 JOIN team_member t1 ON (p1.id = t1.person_id)  
 JOIN project p ON (t1.project_id = p.id)  
 JOIN team_member t2 ON (p.id = t2.person_id)  
 JOIN person p2 ON (t2.person_id = p2.id)  
WHERE p1.name = 'XYZ';

Do you really need another one database?
RECURSIVE QUERIES USING CTE

id | name | manager_id  
---+----------+-----------  
 1 | Alice | NULL  
 2 | Betty | 1  
 3 | Carolina | 1  
 4 | Diana | 3

WITH RECURSIVE hierarchy AS ( 
 SELECT id, name, manager_id, 1 as level  
 FROM employee  
 WHERE id = 1  
 UNION  
 SELECT e.id, e.name, e.manager_id, h.level + 1 AS level  
 FROM employee AS e  
 INNER JOIN hierarchy AS h ON h.id = e.manager_id  
)  
SELECT * FROM hierarchy;

id | name | manager_id | level  
---+----------+------------+------  
 1 | Alice | NULL | 1  
 2 | Betty | 1 | 2  
 3 | Carolina | 1 | 2  
 4 | Diana | 3 | 3

Do you really need another one database?
RECURSIVE QUERIES USING CTE
Very often SQL recursive data are no longer recursive in graph
databases, so it's much simpler to make a query.

You can try this query:

g.V().  
 repeat( 
 out('works_for')  
).path().next()

Ask yourselves
Is my problem a graph problem?

• What problem are you trying to solve?

• Selection / search

Ask yourselves
Is my problem a graph problem?

• What problem are you trying to solve?

• Selection / search

• Give me everyone who works at X?

• Who in my system has a first name like John?

• Locate all stores within X miles?

Ask yourselves
Is my problem a graph problem?

• What problem are you trying to solve?

• Selection / search

• These sorts of questions do not require rich
relationships within the data. In most databases,
answering these questions requires using a single
filtering criterion or, potentially, an index. While you can
answer these with a graph database, these prob- lems
do not use or require graph-specific functionality.

Ask yourselves
Is my problem a graph problem?

• What problem are you trying to solve?

• Selection / search

• Related or recursive data

Ask yourselves
Is my problem a graph problem?

• What problem are you trying to solve?

• Selection / search

• Related or recursive data

• What’s the easiest way for me to be introduced to an executive
at X?

• How do John and Paula know each other?

• How’s company X related to company Y?

Ask yourselves
Is my problem a graph problem?

• What problem are you trying to solve?

• Selection / search

• Related or recursive data

• Graph databases leverage this information better
than any other type of data engine, and their query
languages are better suited to reasoning over the
relationships within the data.

Ask yourselves
Is my problem a graph problem?
• What problem are you trying to solve?

• Selection / search

• Related or recursive data

• Aggregation

• How many companies are in my system?

• What are my average sales for each day over the
past month?

• What’s the number of transactions processed by
my system each day?

Ask yourselves
Is my problem a graph problem?
• What problem are you trying to solve?

• Selection / search

• Related or recursive data

• Aggregation

• These same sorts of queries can be performed in
graph databases, but the nature of graph traversals
requires that much more of the data is touched.

Ask yourselves
Is my problem a graph problem?
• What problem are you trying to solve?

• Selection / search

• Related or recursive data

• Aggregation

• Pattern matching, influence

• Who in my system has a similar profile to me?

• Does this transaction look like other known
fraudulent transactions?

• Is the user J. Smith the same as Johan S.?

Ask yourselves
Is my problem a graph problem?
• What problem are you trying to solve?

• Selection / search

• Related or recursive data

• Aggregation

• Pattern matching, influence

• Pattern-matching use cases are so commonly done
in graph databases that graph query languages
have specific, built-in features to handle precisely
these sorts of queries.

Ask yourselves
Is my problem a graph problem?
• What problem are you trying to solve?

• Selection / search

• Related or recursive data

• Aggregation

• Pattern matching, influence

Ask yourselves
Is my problem a graph problem?

• Do you care about the relationships between entities as
much or more than the entities themselves?

• Does my sql query perform multiple joins on the same
table or require a recursive CTE?

• Is the structure of my data continuously evolving?

• Is my domain a natural fit for a graph?

Querying a graph

In a relational database you use a query to answer the
question. But in a graph, you perform a traversal
(imperative querying) or pattern matching (declarative
querying).

Querying a graph
Imperative form
Traversal is the process of moving through the graph
defined as the set of steps and actions you perform to
retrieve data. Thus querying in a graph database may
focuses on how to traverse from one element to another.

Get the names of the creatures that the creature
represented by vertex with the unique identifier of 1 classify
as enemy:

g.V(1).outE('enemy').inV().values('name')

Querying a graph
Declarative form
Another possibility is querying by specifying a pattern like
for example

(c:Customer {name:’C3PO'})-[rel:ORDERED]->(i:Item)

where you match items ordered by customers.

As any declarative language, it allows you to state what
you want to do with your graph data (select, insert, update
or delete) without requiring you to describe exactly how to
do it.

Bibliography

• [Bec] Dave Bechberger, Josh Perryman, Graph Databases
in Action, Manning Publications, 2020

• [Ful] Piotr Fulmański, NoSQL. Theory and examples, Piotr
Fulmański, 2021

