
Introduction to NoSQL: Lecture 4

Column family stores

Piotr Fulmański

NoSQL 
Theory and
examples
by Piotr Fulmański
Piotr Fulmański, 2021

General overview of column family stores

• Basic ideas and features

• Working with HBase

The origins
From Big Data through Big Table to Hadoop

The story began when PageRank was developed in Google. Predicted large amount
of data to be processed, PageRank required the use of non-standard solutions.

• Google decided to extensively use massively parallelizing and distributing
processing across very large numbers of low budget servers.

• Instead of dedicated storage servers built and operated by other companies, they
use storage based on disks directly attached to the same servers which perform
data processing.

• Redefine unit of computation. No more individual servers. Instead the Google
Modular Data Center were used. The Modular Data Center comprises shipping
containers that house about a thousand custom-designed Intel based servers
running Linux. Each module includes an independent power supply and air
conditioning. Thus, data center capacity is increased not by adding new servers
individually but by adding new modules with 1,000 servers each.

The origins
From Big Data through Big Table to Hadoop

There were three major software layers to serve as the
foundation for the Google platform.

• GoogleFileSystem (GFS) is a distributed cluster
filesystem.

• MapReduce is a distributed processing framework.

• BigTable is a database system.

The origins
From Big Data through Big Table to Hadoop

In this architecture data which are going to be computed are
divided into smaller but still large blocks and distributed
across nodes. Then packaged code is transferred into
nodes to process the data in parallel. This approach takes
advantage of data locality, where nodes manipulate the
data they have access to. This allows the dataset to be
processed faster and more efficiently than it would be in a
more conventional supercomputer architecture that relies on
a parallel file system where computation and data are
distributed via high-speed networking.

The origins
From Big Data through Big Table to Hadoop

Based on Google's ideas, and having positively verified
working examples (Google itself), an open source Apache
project being an equivalent of Google stack, has been
started. This project is known under the Hadoop name.

The origins
From Big Data through Big Table to Hadoop

We can say that no any other project before has had as great influence on data processing as
Hadoop. The main reasons for this were (and still are):

• Accessibility. Hadoop was free–every one can download, install and work with it. Everyone can
do this because we don't need superserver to host this software stack – we can install it even on a
low budget laptop.

• One week of self training is enough to start using this platform thanks to good level of
abstraction:

• GFS abstracts the storage contained in the nodes.

• MapReduce abstracts the processing power contained within these nodes.

• BigTable allows easy storage of almost everything.

• Perfect scalability. We can start very small company almost without any costs. Over time, as we
become more and more recognizable, we can offer "more" without needs to architectural changes
– we simply add another nodes to get more power. This allows many start-ups to offer good
solutions, based on a proven architectural conception.

Hadoop

The base Apache Hadoop framework is composed of the following
modules:

• Hadoop Common contains libraries and utilities needed by other
Hadoop modules.

• Hadoop Distributed File System (HDFS) is a distributed file system
that stores data on commodity machines.

• Hadoop YARN is a platform responsible for managing computing
resources in clusters and using them for scheduling users' applications.

• Hadoop MapReduce is an implementation of the MapReduce
programming model for large-scale data processing.

Hadoop

All the modules in Hadoop are designed with a fundamental
assumption that

hardware failures are common situation and should be
automatically handled by the framework.

HBase

Although HBase is a schema free database it does enforce
some kind of structure on the data. This structure is very
basic and is based on well known terms: columns, rows,
tables and keys.

However, HBase tables vary significantly from the relational
tables with which we are familiar. To get a sense how the
HBase data model works, we have to familiarize ourself with
two concepts: aggregation oriented model and sparse
data.

HBase
Aggregation oriented model

HBase
Sparse data

HBase
Column family

A general idea behind column families data model is to support frequent
access to data used together.

Column families for a single row may or may not be near each other when
stored on disk, but columns within a one column family are kept together.

This is a fundamental element supporting (or supported) by aggregations.

And this is also one of the fundamental assumption made by Google stack
where nodes manipulate the data they have access to, taking a full
advantage of data locality.

Remember:

BigTable was created to support that model of computation.

HBase
Column family

HBase is a schema free database, so we can store

HBase
Column family

HBase is a schema free database, so we can store

• what we want,

HBase
Column family

HBase is a schema free database, so we can store

• what we want,

• when we want (we don't have to specify values for all
columns as well as we don't have to specify types of our
data)

HBase
Column family

HBase is a schema free database, so we can store

• what we want,

• when we want (we don't have to specify values for all
columns as well as we don't have to specify types of our
data)

• and how we want (no need to create tables and columns
ahead)

HBase
Column family

HBase is a schema free database, so we can store

• what we want,

• when we want (we don't have to specify values for all
columns as well as we don't have to specify types of our
data)

• and how we want (no need to create tables and columns
ahead)

but one thing should be decided before we start our
database: column families.

HBase
Column family

The BigTable database, in terms of structure, is completely different from relational databases.

It is a fixed (persistent) multidimensional ordered map.

Column family stores use row and column identifiers as general purposes keys for data lookup
in this map.

More precisely, map is indexed by four keys/names:

• row keys,

• column families,

• column keys,

• and time stamps (the latter defines different versions of the same data).

All values in this map appear as unmanaged character tables (their interpretation, such as
data type, is an application task).

HBase
Column family
{  
 "character0001": { ⟵ row key  
 "info": { ⟵ column family  
 "livingPlace": { ⟵ column name  
 t2: "Star Destroyer" ⟵ version  
 t1: "Tatooine"  
 },  
 "name": {  
 t2: "Darth Vader"  
 t1: "Anakin Skywalker"  
 }  
 },  
 
 "history": {  
 ...  
 }  
 },  
 
 "character0002": {  
 "info": {  
 "livingPlace" : {  
 t1: "unknown"  
 },  
 "name": {  
 t1: "Boba Fett"  
 }  
 },  
 "history": {  
 ...  
 }  
 }  
}

HBase
Rows

The basic unit of storing information is the row identified by a key.

The row key is a string of arbitrary characters from a typical length of 10 to 100
bytes (the maximum length is 64KiB).

Saving and reading rows is an atomic operation regardless of the number
of columns we read or write to.

BigTable stores rows structured lexicographically according to theirs keys.

Rows in the table are dynamically partitioned (divided into smaller subsets).
Each of these subset (row ranges), called a tablet, determines a distribution unit
in a cluster. Wise use of the tablet(s) helps to balance the database load.
Readings from small row ranges are more efficient, because they typically
require communication between fewer machines, in the best case we use data
from one machine.

HBase
Columns

The rows consists of columns.

Each row may have a different number of columns storing different data types
(including compound types).

The column keys are grouped into sets called column families. They are the basic unit
when accessing data.

Data stored in a given family is usually of the same type.

Column families must be created before starting data placement. Once created, you
cannot use a column key that does not belong to any family.

The number of different column families in the table should not exceed 100 and should be
rarely changed at work (their change requires a database stop and restart).

The number of columns is not limited. They can be added and removed while the
database is running.

HBase
Versions

There may be different versions of the same cell in the BigTable
database identified by timestamp.

Different versions of cells are stored in the descending order of
the date.

There are two options to not store too many versions and
automatically remove older data:

• keep the last n versions,

• or for example versions from some time period (e.g. the last
week).

HBase
Ways of data access

We may use one set of four keys (row key, column family name, column name, time stamp) to create
compound key and have this way an access to one specific data version.

Key: ["character0001", "info", "name", t1]

Result:

HBase
Ways of data access

We may use one set of four keys (row key, column family name, column name, time stamp) to create
compound key and have this way an access to one specific data version.

Key: ["character0001", "info", "name", t1]

Result:

{  
 "character0001": { ⟵ row key  
 "info": { ⟵ column family  
 "livingPlace": { ⟵ column name  
 t2: "Star Destroyer" ⟵ version  
 t1: "Tatooine"  
 },  
 "name": {  
 t2: "Darth Vader"  
 t1: "Anakin Skywalker"  
 }  
 },  
 
 "history": {  
 ...  
 }  
 },  
 
 "character0002": {  
 "info": {  
 "livingPlace" : {  
 t1: "unknown"  
 },  
 "name": {  

HBase
Ways of data access

We may use one set of four keys (row key, column family name, column name, time stamp) to create
compound key and have this way an access to one specific data version.

Key: ["character0001", "info", "name", t1]

Result:

"Anakin Skywalker"  
 
 
 
 
 
 
 
 
 
 
 

{  
 "character0001": { ⟵ row key  
 "info": { ⟵ column family  
 "livingPlace": { ⟵ column name  
 t2: "Star Destroyer" ⟵ version  
 t1: "Tatooine"  
 },  
 "name": {  
 t2: "Darth Vader"  
 t1: "Anakin Skywalker"  
 }  
 },  
 
 "history": {  
 ...  
 }  
 },  
 
 "character0002": {  
 "info": {  
 "livingPlace" : {  
 t1: "unknown"  
 },  
 "name": {  

HBase
Ways of data access

Using a set of three keys (row key, column family name, column name) we get all versions of a given cell.

Key: ["character0001", "info", "name"]

Result:

HBase
Ways of data access

Using a set of three keys (row key, column family name, column name) we get all versions of a given cell.

Key: ["character0001", "info", "name"]

Result:

{  
 "character0001": { ⟵ row key  
 "info": { ⟵ column family  
 "livingPlace": { ⟵ column name  
 t2: "Star Destroyer" ⟵ version  
 t1: "Tatooine"  
 },  
 "name": {  
 t2: "Darth Vader"  
 t1: "Anakin Skywalker"  
 }  
 },  
 
 "history": {  
 ...  
 }  
 },  
 
 "character0002": {  
 "info": {  
 "livingPlace" : {  
 t1: "unknown"  
 },  
 "name": {  

HBase
Ways of data access

Using a set of three keys (row key, column family name, column name) we get all versions of a given cell.

Key: ["character0001", "info", "name"]

Result:

{  
 t2: "Darth Vader",  
 t1: "Anakin Skywalker"  
}  
 
 
 
 
 
 
 
 
 

{  
 "character0001": { ⟵ row key  
 "info": { ⟵ column family  
 "livingPlace": { ⟵ column name  
 t2: "Star Destroyer" ⟵ version  
 t1: "Tatooine"  
 },  
 "name": {  
 t2: "Darth Vader"  
 t1: "Anakin Skywalker"  
 }  
 },  
 
 "history": {  
 ...  
 }  
 },  
 
 "character0002": {  
 "info": {  
 "livingPlace" : {  
 t1: "unknown"  
 },  
 "name": {  

HBase
Ways of data access

Using a set of two keys (row key, column family name), we specify all cells in a given column family.

Key: ["character0001", "info"]

Result:

HBase
Ways of data access

Using a set of two keys (row key, column family name), we specify all cells in a given column family.

Key: ["character0001", "info"]

Result:

{  
 "character0001": { ⟵ row key  
 "info": { ⟵ column family  
 "livingPlace": { ⟵ column name  
 t2: "Star Destroyer" ⟵ version  
 t1: "Tatooine"  
 },  
 "name": {  
 t2: "Darth Vader"  
 t1: "Anakin Skywalker"  
 }  
 },  
 
 "history": {  
 ...  
 }  
 },  
 
 "character0002": {  
 "info": {  
 "livingPlace" : {  
 t1: "unknown"  
 },  
 "name": {  

HBase
Ways of data access

Using a set of two keys (row key, column family name), we specify all cells in a given column family.

Key: ["character0001", "info"]

Result:

{  
 "livingPlace": {  
 t2: "Star Destroyer"  
 t1: "Tatooine"  
 },  
 
 "name": {  
 t2: "Darth Vader"  
 t1: "Anakin Skywalker"  
 }  
}  
 
 
 
 
 

{  
 "character0001": { ⟵ row key  
 "info": { ⟵ column family  
 "livingPlace": { ⟵ column name  
 t2: "Star Destroyer" ⟵ version  
 t1: "Tatooine"  
 },  
 "name": {  
 t2: "Darth Vader"  
 t1: "Anakin Skywalker"  
 }  
 },  
 
 "history": {  
 ...  
 }  
 },  
 
 "character0002": {  
 "info": {  
 "livingPlace" : {  
 t1: "unknown"  
 },  
 "name": {  

HBase
Ways of data access

Using a row key we specify all columns from all column families.

Key: ["character0001"]

Result:

HBase
Ways of data access

Using a row key we specify all columns from all column families.

Key: ["character0001"]

Result:

{  
 "character0001": { ⟵ row key  
 "info": { ⟵ column family  
 "livingPlace": { ⟵ column name  
 t2: "Star Destroyer" ⟵ version  
 t1: "Tatooine"  
 },  
 "name": {  
 t2: "Darth Vader"  
 t1: "Anakin Skywalker"  
 }  
 },  
 
 "history": {  
 ...  
 }  
 },  
 
 "character0002": {  
 "info": {  
 "livingPlace" : {  
 t1: "unknown"  
 },  
 "name": {  

HBase
Ways of data access

Using a row key we specify all columns from all column families.

Key: ["character0001"]

Result:

{  
 "info": {  
 "livingPlace": {  
 t2: "Star Destroyer"  
 t1: "Tatooine"  
 },  
 
 "name": {  
 t2: "Darth Vader"  
 t1: "Anakin Skywalker"  
 }  
 },  
 
 history: {  
 ...  
 }  
}

{  
 "character0001": { ⟵ row key  
 "info": { ⟵ column family  
 "livingPlace": { ⟵ column name  
 t2: "Star Destroyer" ⟵ version  
 t1: "Tatooine"  
 },  
 "name": {  
 t2: "Darth Vader"  
 t1: "Anakin Skywalker"  
 }  
 },  
 
 "history": {  
 ...  
 }  
 },  
 
 "character0002": {  
 "info": {  
 "livingPlace" : {  
 t1: "unknown"  
 },  
 "name": {  

Summary

• Column families stores were created to support specific processing modle which
was a modified divide and conquer approach known now as MapReduce
paradigm.

• Data processing based on MapReduce takes advantage of data locality, where
nodes manipulate the data they have access to. Limiting needs for remote data
access through slow channels results in faster processing. Therefore the crucial
requirement is to keep local data together. Local in this case means all data
needed to perform computation.

• All the modules in Hadoop are designed with a fundamental assumption that
hardware failures are common situation and should be automatically handled by
the framework.

Bibliography

• [Ful] Piotr Fulmański, NoSQL. Theory and examples, Piotr
Fulmański, 2021

