
Introduction to NoSQL: Lecture 3

NoSQL

Piotr Fulmański

NoSQL 
Theory and
examples
by Piotr Fulmański
Piotr Fulmański, 2021

• The most crucial motivation and its consequences

• A radical change in mindse

• BASE, CAP and consistency

What is NoSQL?

• It’s much more than rows in tables. NoSQL systems store and retrieve data from many formats: key-
value, graph, column-family, document, and of course rows in tables.

• It’s free of joins. NoSQL systems allow us to extract our data using simple interfaces without joins.

• It’s schema-free. In most cases you don't have to create an entity-relational model.

• NoSQL systems are easily scalable.

• In consequence they works on multiple processors and can run well on low-cost separate computer
systems - no need for expensive nodes to get high-speed performance.

• Scalability supported by NoSQL systems is closed to linear. In consequence increasing the number
of processing units by factor of N you get increase in performance by factor close to N.

• NoSQL is a response to nowadays business data related factors:

• volume and velocity, referring to the ability to handle large datasets that arrive fast;

• variability, referring to how diverse data types don’t fit into structured tables;

• and agility, referring to how fast an organization responds to business changes.

What is not NoSQL?

• It’s not against the SQL language. SQL as well as other
query languages are used with NoSQL databases.

• NoSQL is not Big Data.

• It’s not about cloud computing.

• It’s not close group of companies, software or product.
Anybody can be a big player in this market if only offer
innovative solutions to business problems.

Motivations
Availability and speed

Today people don’t read. They scan.

Motivations
Scalability

If we agree that availability and speed is a key feature
we must have, this raises a short question: How?

The answer: use scaling.

Scalability is the property of a system to handle a growing
amount of work by adding resources to the system.

When availability is considered, easy scalability is one of
the most required feature.

Motivations
Scalability - how it is possible: no joins

If you agree that scalability is a key feature you must have, this raises again the same
short question: How?

What should characterize data to make their parallel processing possible?

Data should not be dependent each other. If you add, delete or update one part of it, it
should not affect any other part. There should be no connections between data
parts.

One of well known connection of that type, linking data and allowing traversal through
them are relational foreign keys. Keys are the fundamental mechanism used to
combine data distributed among tables.

Unfortunately what is necessary for the relational databases to function, at the same
time is its limitation. You can’t operate on data in parallel as you have to obey keys
constraint. To use any piece of data almost always you have to join them by keys.
Without keys and joins almost nothing can’t be done in relational systems.

Motivations
No joins, no schema... Schema-free trap

At the first sight you may feel happy as in NoSQL no schemas are
required. You don’t have to think ahead how you split your date into
tables and columns. You are finally free from having to think about
normal forms.

If you think that this way your life would be simpler and easier from
now, you are wrong. Completely wrong!

If you think that schema-free freedom allows you to do what you want
and when you want, you are on the straight way to total disaster.

In SQL you never ask who and how is going to use data. In
NoSQL both questions are the most fundamental and future
actions depend on the answers to these questions.

Motivations
No joins, no schema... Schema-free trap

A radical change in mindset

No schema doesn’t mean no rules. You have to change your point
of view from being universal of one size fits all type to being
precise and focused.

While in SQL databases whatever task you do, your database has the
same form, in NoSQL data is modeled around specific queries.

Query-driven data modeling means that the data access patterns
and application queries determine the structure and organization of
data.

Wow! Déjà vu? Pre-relational era is going back?

Motivations
Query-driven data modeling... Aggregations

Data modeling in Apache Cassandra column store

Data modeling is the process of identifying entities and their relationships. In relational
databases, data is placed in normalized tables with foreign keys used to reference
related data in other tables. Queries that the application will make are driven by the
structure of the tables and related data are queried as table joins.

In Cassandra, data modeling is query-driven. The data access patterns and
application queries determine the structure and organization of data which then
used to design the database tables.

Data is modeled around specific queries. Queries are best designed to access a
single table, which implies that all entities involved in a query must be in the same
table to make data access (reads) very fast. Data is modeled to best suit a query or
a set of queries. A table could have one or more entities as best suits a query. As
entities do typically have relationships among them and queries could involve entities
with relationships among them, a single entity may be included in multiple tables.

Motivations
Query-driven data modeling... Aggregations

Query-driven modeling in Apache Cassandra column
store

Unlike a relational database model in which queries make
use of table joins to get data from multiple tables, joins are
not supported in Cassandra so all required fields
(columns) must be grouped together in a single table.
Since each query is backed by a table, data is duplicated
across multiple tables in a process known as
denormalization. Data duplication and a high write
throughput are used to achieve a high read performance.

Motivations
Query-driven data modeling... Aggregations

Because in NoSQL there are no keys and joins we can’t combine data coming
from multiple sources (multiple tables) into one group provided to the user.

Instead you organize your data into one self-contained group. Whatever you
want to get with one query should be enclosed within it.

You shouldn’t think in terms of data organized into tables according to normal
forms rules but rather in terms of atomic group holding all data accessed
together with just one call.

Such a base unit of data organization, an atomic and self-contained group of
data, is named aggregate. Under the name aggregation you should understand
the whole process of transforming your data into such a units.

Aggregate should contain all data needed to complete single request. And
that should be only that data which are really needed.

Motivations
Query-driven data modeling... Aggregations

Consider a group of people taking part in different projects:

person A: project 1  
person B: project 1  
person B: project 2  
person C: project 2  
person A: project 3  
person C: project 3

Motivations
Query-driven data modeling... Aggregations

If you expect or know that information about persons involved in the project will be needed, you should operate with the following aggregates:

{  
 {project: project1,  
 person: [personA: {...},  
 personB: {...}]},  
 
 {project: project2,  
 person: [personB: {...},  
 personC: {...}]},  
 
 {project: project3,  
 person: [personA: {...},  
 personC: {...}]}  
}

If additionally you need an information about the total working time of each person in all their projects, you should use another aggregates:

{  
 {person: personA,  
 totalWorkingTime: 123},

 {person: personB,  
 totalWorkingTime: 27},  
 
 {person: personC,  
 totalWorkingTime: 62}  
}

BASE
Query-driven data modeling... Aggregations

Basic availability means that the database appears to work most of the time. It allows
systems to be temporarily inconsistent so that transactions are manageable. In BASE
systems, the information and service capability are basically available. This means that there
can be a partial failure in some parts of the distributed system but the rest of the system
continues to function.

Soft-state means that stores don’t have to be write-consistent, nor do different replicas have
to be mutually consistent all the time. Some inaccuracy is temporarily allowed and data
may change while being used. State of the system may change over time, even without
input. This is because of eventual consistency.

Eventual consistency means that there may be times when the database is in an inconsistent
state. Eventually, when all service logic is executed, the system is left in a consistent state.

Contrary to ACID systems, which are pessimistic and because of this are ready to survive
any disaster you can ever imagine, BASE are optimistic as they assume that eventually, in
not so distance future, all systems will catch up and become consistent.

CAP theorem

The CAP theorem is about how distributed database systems behave in the face of network
instability.

According to the CAP theorem introduced by Eric Brewer in 2000, any distributed database system can
have at most two of the following three desirable properties.

Consistency. Consistency is about having a single, up-to-date, readable version of our data available to all
clients. Your data should be consistent – no matter how many clients read the same items from replicated
and distributed partitions, you should get consistent results. All writes are atomic and all subsequent
requests retrieve the new value.

High availability. This property states that the database will always allow clients to make operations like
select or update on items without delay. Internal communication failures between replicated data shouldn’t
prevent operations on it. The database will always return a value as long as a single server is running.

Partition tolerance. This is the ability of the system to keep responding to client requests even if there’s a
communication failure between database partitions. The system will still function even if network
communication between partitions is temporarily lost.

The CAP theorem helps us understand that once you partition your data, you must determine which of
two exclusive options best match your business requirements: consistency or availability.

(in)consistency

https://docs.riak.com/riak/kv/latest/developing/app-guide/strong-consistency/index.html

https://docs.riak.com/riak/kv/latest/developing/app-guide/strong-consistency/index.html

(in)consistency

https://docs.riak.com/riak/kv/latest/developing/app-guide/strong-consistency/index.html

https://docs.riak.com/riak/kv/latest/developing/app-guide/strong-consistency/index.html

(in)consistency
Choice is now yours

https://docs.riak.com/riak/kv/latest/developing/app-guide/strong-consistency/index.html

https://docs.riak.com/riak/kv/latest/developing/app-guide/strong-consistency/index.html

(in)consistency

https://docs.riak.com/riak/kv/2.2.3/learn/concepts/eventual-consistency.1.html

https://docs.riak.com/riak/kv/2.2.3/learn/concepts/eventual-consistency.1.html

Consistency

Working with NoSQL system you have to remember that your data is only guaranteed to be almost
accurate. This makes a big difference compared to relational system where data is always accurate.

• Casual consistency. Casual consistency means that the database reflects the order in which
operations were performed.

• Read-your-writes consistency. Read-your-writes consistency means that once you have updated
a record, all of our subsequent reads of that record will return the updated value.

• Session consistency. Session consistency means read-your-writes consistency but at session
level. Session can be identified with a conversation between a client and a server. As long as the
conversation continues, you will read everything you have wrote during this conversation. If the
session ends and you start another session with the same server, there is no this guarantee that you
can read values you have wrote during previous conversation.

• Monotonic read consistency. Monotonic read consistency means that whenever you make a query
and see a result, you will never see an earlier version of the value.

• Monotonic write consistency. Monotonic write consistency means that every time you make
several update commands, they would be executed in the order you issued them.

Bibliography

• [Ful] Piotr Fulmański, NoSQL. Theory and examples, Piotr
Fulmański, 2021

