
Introduction to NoSQL: Lecture 5

Key-value stores

Piotr Fulmański

NoSQL 
Theory and
examples
by Piotr Fulmański
Piotr Fulmański, 2021

General overview of key-value stores

• Basic ideas and features

• Working with Riak

Basic ideas

Basic ideas

• From array to dictionary.

Basic ideas

• From array to dictionary.

• A key-value store is a simple database that when
presented with a simple string (the key) returns an
arbitrary large BLOB (value).

Key-value store vs. relational databases

• Simplicity is a key word associated with key-value databases where everything is
simple:

• there are no tables,

• so there are no features associated with tables, such as columns and constraints
on columns;

• if there are no tables, there is no need for joins;

• in consequence foreign keys do not exists and so key-value databases do not
support a rich query language such as SQL.

• Contrary to relational database where meaningless keys are used, the keys in key-
value databases are meaningful.

• While in relational database we avoid duplicating data, in key-value (in NoSQL in
general) databases it is a common practice.

Key-value store vs. relational databases

• The only way to look up values is by key.

• Range queries are not supported out of the box.

• Queries from one key-value database may not be portable
to the other.

Essential features of key-value databases

• Simplicity In key-value databases, we work with a very simple data
model which resembles dictionary. The syntax for manipulating data
is simple. There are three operations performed on a key-value store:
put, get, and delete.

• Speed There is no need for complicated query resolving logic. Every
query directly specify the key and always it is only one key.

• Scalability Working with key-value databases we have no relational
dependencies and all write and read requests are independent and
this seems to be a perfect state for scaling.

Key is the key

• In key-value databases, generally speaking, there is no method to scan or search values
so the right key naming strategy is crucial.

• While working with relational databases, counters or sequences are very often used to
generate keys. Working with numbers is the easiest way to ensure that every new call for
a new key returns a value (number in this case) which is unique and unused so far.

• Because of the way relational databases work, it makes sense (sometimes it is
considered as a good practice) to have such a meaningless keys in this case.

• In key-value databases the rules are different. If there are no tables, there are no rows
and columns so the question arise: how to "join", combine or somehow collect all
information related to a given object? Use right aggregation and key names – is the
answer.

Key is the key
First attempt

 
 
 
 
 
 
 
 
 
 
CustomerDetails[10] = 'Dart Vader'  

Key is the key
Add one more namespace

 
 
 
 
 
 
 
 
 
 
CustomerDetails[10] = 'Dart Vader'  
CustomerLocation[10] = 'Star Destroyer'

Key is the key
What about aggregates? 
All under a one key

InvoiceDetails[1] =  
{  
 "Invoice details" : [ 
 {"Item name" : "lightsaber",  
 "Item quantity" : 1,  
 "Item price" : 100},  
 
 {"Item name" : "black cloak",  
 "Item quantity" : 2,  
 "Item price" : 50},  
 
 {"Item name" : "air filter",  
 "Item quantity" : 10,  
 "Item price" : 2}  
]  
}

Key is the key
What about aggregates? 
All under a one key

InvoiceDetails[1] =  
{  
 "Invoice number" : 1,  
 "Invoice details" : [ 
 {"Item name" : "lightsaber",  
 "Item quantity" : 1,  
 "Item price" : 100},  
 
 {"Item name" : "black cloak",  
 "Item quantity" : 2,  
 "Item price" : 50},  
 
 {"Item name" : "air filter",  
 "Item quantity" : 10,  
 "Item price" : 2}  
],  
  
 "Customer details" : {  
 "Customer name" : "Dart Vader",  
 "Customer location" : "Star Destroyer"  
 }  
}

So, maybe use bigger aggregates?

Key is the key
What about aggregates? 
All under a one key

InvoiceDetails[1] =  
{  
 "Invoice number" : 1,  
 "Invoice details" : [ 
 {"Item name" : "lightsaber",  
 "Item quantity" : 1,  
 "Item price" : 100},  
 
 {"Item name" : "black cloak",  
 "Item quantity" : 2,  
 "Item price" : 50},  
 
 {"Item name" : "air filter",  
 "Item quantity" : 10,  
 "Item price" : 2}  
],  
  
 "Customer details" : {  
 "Customer name" : "Dart Vader",  
 "Customer location" : "Star Destroyer"  
 }  
}

So, maybe use bigger aggregates?
Be careful!

Key is the key
Rules

Avoid to use many namespaces. 
Remember: key is the key

 
Shop[Customer:10:name] = 'Dart Vader'  
Shop[Customer:10:location] = 'Star Destroyer'  

Key is the key
Rules

Avoid to use many namespaces. 
Remember: key is the key

 
Shop[Customer:10:name] = 'Dart Vader'  
Shop[Customer:10:location] = 'Star Destroyer'  

Shop - only one namespace

Key is the key
Rules

Do not follow relational pattern. 
Never ever copy relational data model. 
 
Following relational pattern for C3PO we may have

 
Shop[customer:30:invoice:2] = ...  
Shop[customer:30:invoice:4] = ...  

which

  

Key is the key
Rules

Do not follow relational pattern. 
Never ever copy relational data model. 
 
Following relational pattern for C3PO we may have

 
Shop[customer:30:invoice:2] = ...  
Shop[customer:30:invoice:4] = ...  

which is useless.

  

Key is the key
Rules

Do not follow relational pattern. 
Never ever copy relational data model. 
 
Following relational pattern for C3PO we may have

 
Shop[customer:30:invoice:2] = ...  
Shop[customer:30:invoice:4] = ...  

which is useless.

Better:

Shop[customer:30:invoice:1] = ...  
Shop[customer:30:invoice:2] = ...

Key is the key
Rules

Mind aggregation you expect to use 
 
If we suppose that we will use the data most often for processing orders

 
Shop[invoice:1:customerDetails] = ...  
Shop[invoice:1:details] = ...  
Shop[invoice:2:customerDetails] = ...  
Shop[invoice:2:details] = ...  
Shop[invoice:3:customerDetails] = ...  
Shop[invoice:3:details] = ...  
Shop[invoice:4:customerDetails] = ...  
Shop[invoice:4:details] = ...

Key is the key
Rules

Mind range queries you expect to use 
 
Is it good?

 
Shop[invoice:1:customerDetails] = ...  
Shop[invoice:1:details] = ...  
Shop[invoice:1:date] = "20171009"  
Shop[invoice:2:customerDetails] = ...  
Shop[invoice:2:details] = ...  
Shop[invoice:2:date] = "20171010"  
Shop[invoice:3:customerDetails] = ...  
Shop[invoice:3:details] = ...  
Shop[invoice:3:date] = "20171010"  
Shop[invoice:4:customerDetails] = ...  
Shop[invoice:4:details] = ...  
Shop[invoice:4:date] = "20171013"

Key is the key
Rules

Mind range queries you expect to use 
 
Is it good?

 
Shop[invoice:1:customerDetails] = ...  
Shop[invoice:1:details] = ...  
Shop[invoice:1:date] = "20171009"  
Shop[invoice:2:customerDetails] = ...  
Shop[invoice:2:details] = ...  
Shop[invoice:2:date] = "20171010"  
Shop[invoice:3:customerDetails] = ...  
Shop[invoice:3:details] = ...  
Shop[invoice:3:date] = "20171010"  
Shop[invoice:4:customerDetails] = ...  
Shop[invoice:4:details] = ...  
Shop[invoice:4:date] = "20171013"

Key is the key
Rules

Mind range queries you expect to use 
 
This is much better

 
Shop[invoice:20171009:1:customerDetails] = ...  
Shop[invoice:20171009:1:details] = ...  
Shop[invoice:20171010:2:customerDetails] = ...  
Shop[invoice:20171010:2:details] = ...  
Shop[invoice:20171010:3:customerDetails] = ...  
Shop[invoice:20171010:3:details] = ...  
Shop[invoice:20171013:4:customerDetails] = ...  
Shop[invoice:20171013:4:details] = ...

Key is the key
Rules

Mind range queries you expect to use 
 
This is the best

 
Shop[invoice:20171009:1:customerDetails] = ...  
Shop[invoice:20171009:1:details] = ...  
Shop[invoice:20171010:1:customerDetails] = ...  
Shop[invoice:20171010:1:details] = ...  
Shop[invoice:20171010:2:customerDetails] = ...  
Shop[invoice:20171010:2:details] = ...  
Shop[invoice:20171013:1:customerDetails] = ...  
Shop[invoice:20171013:1:details] = ...

Values
Rules

We have to balance aggregation boundaries for values to make
writes and reads more efficient as well as reduce latency.

Bellow there are some strategies. If they are good or bad depends
on you.

• Values which are big aggregates.

• Keep together values commonly used.

• Small values supports cache.

Summary

• No tables, so there are no features associated with tables, such as columns
types or constraints on columns.

• There is no tables so there is no need for joins. In consequence foreign keys
do not exists.

• Do not support a rich query language such as SQL. Saying the truth, query
language is very primitive and limited to simple select, insert and delete
equivalent commands.

• Contrary to relational databases where meaningless keys are used, the keys in
key-value databases are meaningful and play crucial role.

• Although key-value databases don’t have any structure we have to very
carefully balance aggregation boundaries for values to make writes and reads
more efficient as well as reduce latency.

Bibliography

• [Ful] Piotr Fulmański, NoSQL. Theory and examples, Piotr
Fulmański, 2021

