
Object Oriented Programming

Object Oriented
Programming
Main concepts

Piotr Fulmański

Object Oriented Programming
Why?
Put together properties of things and their behavior to avoid
design, logic and coding problems.

Better control over the "concurrent" modification of data.

Hello world in Java

Hello world in Java
public class HelloWorld {  
 public static void main(String[] args){  
 System.out.println("Hello world");  
 }  
}

Classes and their objects

Class

A class (may) defines:

• the types of all internal object properties that hold the
object state;

• object behavior expressed by the code of the methods.

A class determines how an object will behave and what the
object will contain. In other words, it is a blueprint or a set
of instruction to build a specific type of object. It provides
initial values for member variables and member functions or
methods.

Class
Design
Data members: List down the differences between real life
things you want to model. Some of the differences you
might have listed out are also some common characteristics
shared by them.

Methods: Next, list out their common behaviors. So these
will be the actions of your software objects.

Class
Example
No code, only ideas...

For example: class to represent car.

But what kind of a car? For what you will use it? In what kind
of application are you going to us it?

Car parking application?

Service car application?

Insurance application?

All these applications require an existence of a car object, but
all of them need different type of information.

If you don't know the type of application, you can't design
correct class with correct abstraction of real object.

Object

class

blueprint, template (but not template in OOP sense) spirit

object

representation on one real existing object, body

Object
Dependence: The object is an instance of a class. Because a class
is a template for creating objects, all objects of the same class are
identical (in some sense).

Entity: A class is a logical entity while object is a physical entity.

Space: A class does not allocate memory space on the other hand
object allocates memory space.

How many: You can declare class only once but you can create
more than one object using a class.

Usability: Classes can’t be manipulated while objects can be
manipulated.

Data: Classes doesn’t have any values, whereas objects have its
own values.

Keyword: You can create class using class keyword and you can
create object using new keyword (in Java).

Object

Possible object definitions:

• The object is an instance of a class.

• The object is an entity which has state and behavior.

• An object is a real-world entity.

• An object is a runtime entity.

Class and object
Dummy working example
// main within the class  
class Main {  
 public static void main(String[] args) {  
 Main m = new Main();  
 }  
}  
 
 
// main outside the class  
class Test {  
 
}  
 
class Main {  
 public static void main(String[] args) {  
 Test t = new Test();  
 }  
}  
 

Object
Initialization
There are three ways to initialize object in Java:

• by reference variable,

• by method,

• by constructor.

Object
Initialization by reference
class Point2D {  
 int x;  
 int y;  
}  
 
class Main {  
 public static void main(String[] args) {  
 Point2D p = new Point2D();  
 
 System.out.println(p.x);  
 p.x = 12;  
 System.out.println(p.x);  
 }  
}

Output:

0  
12

Object
Initialization by method
class Point2D {  
 int x;  
 int y;  
 
 void setToBeTheSame(int v) {  
 x = v;  
 y = v;  
 }  
}  
 
class Main {  
 public static void main(String[] args) {  
 Point2D p = new Point2D();  
 System.out.println(p.x);  
 p.setToBeTheSame(12);  
 System.out.println(p.x);  
 }  
}

Output:

0  
12

Object
Again initialization by constructor (this time with explicite constructor)

Rules for the constructor (initializers):

• Constructor name

• must be the same as its class name (in Java);

• reserved name, for example init (in Swift).

• A Constructor must have no explicit return type.

Object
Initialization by constructor (default constructor)
class Point2D {  
 int x;  
 int y;

 Point2D() {  
 x = 7;  
 y = 7;  
 }  
}  
 
class Main {  
 public static void main(String[] args) {  
 Point2D p = new Point2D();  
 System.out.println(p.x);  
 }  
}

Output:

7

Object
Initialization by constructor (default constructor)
If there is no constructor in a class, compiler automatically
creates a default constructor.

class Point2D {  
 int x;  
 int y;  
}  
 
class Main {  
 public static void main(String[] args) {  
 Point2D p = new Point2D();  
 System.out.println(p.x);  
 }  
}

Output:

0

Object
Again initialization by constructor (this time with parametrized constructor)
class Point2D {  
 int x;  
 int y;  
 
 Point2D(int v1, int v2){  
 x = v1;  
 y = v2;

 }  
}  
 
class Main {  
 public static void main(String[] args) {  
 Point2D p = new Point2D(12, 17);  
 
 System.out.println(p.x);  
 }  
}

Output:

12

Object
Initialization by constructor (constructor overloading)
class Point2D {  
 int x;  
 int y;  
 
 Point2D() {  
 x = 7;  
 y = 7;  
 }  
 
 Point2D(int v) {  
 x = v;  
 y = v;  
 }  
 
 Point2D(int v1, int v1) {  
 x = v1;  
 y = v2;  
 }  
}  
 
class Main {  
 public static void main(String[] args) {  
 Point2D p = new Point2D();  
 System.out.println(p.x);  
 
 p = new Point2D(17);  
 System.out.println(p.x);  
 
 p = new Point2D(3,5);  
 System.out.println(p.x);  
 }  
}

Output:

7  
17  
3

Object
Difference between constructor and method in Java

Constructor Method

Used to initialize the state of an object Used to expose the behavior of an object

Must not have a return type Must have a return type

Is invoked implicitly Is invoked explicitly

The Java compiler provides a default
constructor if you don't have any

constructor in a class.

The method is not provided by the compiler
in any case

The constructor name must be same as the
class name

The method name may or may not be same
as the class name

Object
Method signature
The method name and the list of parameter types together
are called the method
signature. The number of input parameters is called an
arity.

Two methods have the same signature if they have:

• the same name,

• the same arity,

• and the same sequence of types in the list of input

parameters.

Signature does not include the return type - this is explained
in subsequent section: Polymorphism, part: Overloading.

Object
Method signature
The following two methods have the same signature:

double doSomething(String s, int i){  
 // Do something  
}  
 
int doSomething(String i, int s){  
 // Do something  
}

Object
Method signature
The following two methods have different signature but because of type promotion you will get an error:

class OverloadingAmbiguity {  
 void test(int a,long b) {  
 System.out.println("1");  
 }  
 
 void test(long a,int b) {  
 System.out.println("2");  
 }  
 
 public static void main(String args[]){  
 OverloadingAmbiguity obj=new OverloadingAmbiguity();  
 obj.test(20,20); // Ambiguity  
 }  
}

Output:

Main.java:12: error: reference to test is ambiguous  
 obj.test(20,20); // Ambiguity  
 ^  
 both method test(int,long) in OverloadingAmbiguity and method test(long,int)
in OverloadingAmbiguity match  
1 error

Type promotion: byte can be promoted to short, int, long, float or double. The short datatype can be
promoted to int, long, float or double. The char datatype can be promoted to int, long, float or double and
so on.

Object
Method signature
It is possible to have method with the name which is the same as the class name.

class Test {  
 int a = 5;  
 Test() {  
 a = 7;  
 }  
 
 void Test() {  
 a = 9;  
 }  
 void doSomething() {  
 System.out.println(a);  
 }  
}  
 
class Main {  
 public static void main(String[] args) {  
 Test t = new Test();  
 t.doSomething();  
 t.Test();  
 t.doSomething();  
 }  
}

Output:

7  
9

Inheritance

Inheritance

Inheritance in Java is a mechanism in which one object
acquires all the properties and behaviors of a parent object.

 The idea behind inheritance in Java is that you can create
new classes that are built upon existing classes. When
you inherit from an existing class, you can reuse methods
and fields of the parent class. Of course, you can also add
new methods and fields in your current class also.

This way, sharing properties and behavior, objects establish
a parent-child relationship.

It is possible to make a child behave differently than the
inherited behavior would do.

A parent-child relationship is also known as the IS-A
relationship.

Inheritance

Subclass is a class which inherits the other class. It is also
called a derived class, extended class, or child class.

Superclass is the class from where a subclass inherits the
features. It is also called a base class or a parent class.

Inheritance
The syntax of Java Inheritance
class SubclassName extends SuperclassName  
{  
 //methods and fields  
}

Inheritance
Types of inheritance in Java
There can be three types of inheritance in java:

• single,

• multilevel

• and hierarchical.

Inheritance
Types of inheritance in Java (single)
class A {

 void doSomething_A() {

 System.out.println("A...");

 }

}

class B extends A {

 void doSomething_B(){

 System.out.println("B...");

 }

}

class Main{

 public static void main(String args[]){

 B b=new B();

 b.doSomething_A();

 b.doSomething_B();

 }

}

Class A

Class B

Inheritance
Types of inheritance in Java (multilevel)
class A {  
 void doSomething_A() {  
 System.out.println("A...");  
 }  
}  
 
class B extends A {  
 void doSomething_B(){  
 System.out.println("B...");  
 }  
}  
 
class C extends B {  
 void doSomething_C(){  
 System.out.println("C...");  
 }  
}  
 
class Main{  
 public static void main(String args[]){  
 C c=new C();  
 c.doSomething_A();  
 c.doSomething_B();  
 c.doSomething_C();  
 }  
}

Class A

Class B

Class C

Inheritance
Types of inheritance in Java (hierarchical)
class A {  
 void doSomething_A() {  
 System.out.println("A...");  
 }  
}  
 
class B extends A {  
 void doSomething_B(){  
 System.out.println("B...");  
 }  
}  
 
class C extends A {  
 void doSomething_C(){  
 System.out.println("C...");  
 }  
}  
 
class Main{  
 public static void main(String args[]){  
 C c=new C();  
 c.doSomething_A();  
 // c.doSomething_B(); // Cause a compilation time error  
 c.doSomething_C();  
 }  
}

Class A

Class B Class C

Inheritance
Why multiple inheritance is a source of problem?
class A{  
 void msg(){System.out.println("Hello");}  
}  
 
class B{  
 void msg(){System.out.println("Welcome");}  
}  
 
class C extends A,B{//suppose it is possible  
 public static void main(String args[]){  
 C obj=new C();  
 obj.msg();// Which msg() method should be invoked?  
 }  
}

Inheritance
Aggregation (HAS-A)
Constructor is never inherited. It wouldn't make sense
because subclass is different type than superclass – much
"larger", with more properties.

Inheritance
Aggregation (HAS-A)
If a class have an entity reference, it is known as
aggregation. Aggregation represents HAS-A relationship.

Inheritance
Aggregation (HAS-A)
class A {  
 void doSomething_A() {  
 System.out.println("A...");  
 }  
}  
 
class B {  
 A a = new A();  
 
 B() {  
 a = new A();  
 }  
 
 void doSomething_B(){  
 System.out.println("B...");  
 }  
}  
 
class Main{  
 public static void main(String args[]){  
 B b=new B();  
 // b.doSomething_A(); // Error  
 b.a.doSomething_A();  
 b.doSomething_B();  
 }  
}

Note: This code will have more sense if you use this - see next part for details.

this and static

this

Keyword
this

In Java, this is a reference variable that refers to the current
object.

Six usage of java this keyword:

• to refer current class instance variable;

• to invoke current class method (implicitly);

• to invoke current class constructor;

• passed as an argument in the method call;

• passed as argument in the constructor call;

• to return the current class instance from the method.

See for super keyword in subsequent part to refer to superclass
variable, methods constructors etc.

Keyword
this - refer current class instance variable
class Point2D {  
 int x;  
 int y;  
 
 Point2D() {  
 x = 7;  
 y = 7;  
 }  
 
 Point2D(int v) {  
 x = v;  
 y = v;  
 }  
 
 Point2D(int x, int y) {  
 this.x = x;  
 this.y = y;  
 }  
}  
 
class Main {  
 public static void main(String[] args) {  
 Point2D p = new Point2D();  
 System.out.println(p.x);  
 
 p = new Point2D(17);  
 System.out.println(p.x);  
 
 p = new Point2D(3,5);  
 System.out.println(p.x);  
 }  
}

Keyword
this - invoke current class method
class A {  
 void callMe() {  
 System.out.println("***");  
 }  
 
 void doSomething_A() {  
 this.callMe();  
 System.out.println("A...");  
 callMe(); // Also possible; same as this.callMe()  
 }  
}  
 
class Main{  
 public static void main(String args[]){  
 A a=new A();  
 a.doSomething_A();  
 }  
}

Keyword
this - invoke current class constructor
Calling default constructor from parameterized constructor:

class A {  
 A() {  
 System.out.println("!!!");  
 }  
 
 A(String msg) {  
 this();  
 
 System.out.println(msg);  
 // error: call to this must be first  
 // statement in constructor  
 //this();  
 }  
}  
 
class Main{  
 public static void main(String args[]){  
 A a=new A("message");  
 }  
}

Keyword
this - invoke current class constructor
Calling parameterized constructor from default constructor:

class A {  
 A() {  
 this("message");  
 System.out.println("!!!");  
 }  
 
 A(String msg) {  
 System.out.println(msg);  
 }  
}  
 
class Main{  
 public static void main(String args[]){  
 A a=new A();  
 }  
}

Keyword
this - passed as an argument in the method call
class A {  
 int x;  
 
 void method(A obj) {  
 obj.x = 5;  
 }  
 
 void doSomething() {  
 method(this);  
 System.out.println(x);  
 }  
}  
 
class Main{  
 public static void main(String args[]){  
 A a=new A();  
 a.doSomething();  
 }  
}

Keyword
this - passed as argument in the constructor call
Useful if we have to use one object in multiple classes:

Pass Counter to A and maybe many other classes and operate on (one common) Counter.

class A {  
 int x;  
 
 A(Counter c) {  
 c.inc();  
 }  
}  
 
class Counter {  
 int x;  
 
 void inc() {  
 x += 1;  
 }  
}  
 
class Main{  
 public static void main(String args[]){  
 Counter c = new Counter();  
 A a1=new A(c);  
 System.out.println(c.x);  
 A a2=new A(c);  
 System.out.println(c.x);  
 }  
}

Keyword
this - passed as argument in the constructor call: aggregation (HAS-A)
Pass B to A to allow A to operate on B

class A {  
 int a;  
 B b;  
 
 A(B b) {  
 this.b = b;  
 }  
 
 void doSomething_A() {  
 System.out.println("from A");  
 b.doSomething_B();  
 }  
}  
 
class B {  
 int b;  
 A a = new A(this);  
 
 void doSomething_B() {  
 System.out.println("from B");  
 }  
}  
 
public class Main {  
 public static void main(String[] args) {  
 B b = new B();  
 b.a.doSomething_A();  
 }  
}

Keyword
this - return the current class instance from the method
Example - have no idea ;)

static

Instance and static properties and methods
static

Instance methods are methods that can be invoked only
on an object (instance) of a class.

If method you implement does not use the object state, it
can be made static and invoked without creating an
object.

Similarly, a property can be declared static and thus
accessible without creating an object.

Instance and static properties and methods
static
class A {  
 static int x;  
 
 A() {  
 x += 1;  
 }  
}  
 
class Main{  
 public static void main(String args[]){  
 A a1=new A();  
 System.out.println(a1.x);  
 A a2=new A();  
 System.out.println(a1.x);  
 }  
}

Instance and static properties and methods
static
class Calculate{  
 static int cube(int x){  
 return x*x*x;  
 }  
 
 public static void main(String args[]){  
 int result=Calculate.cube(5);  
 System.out.println(result);  
 }  
}

Instance and static properties and methods
static - limitations
• The static method can not use non static data member or

call non-static method directly.

• this and super cannot be used in static context.

Abstraction

Abstrac class

Abstraction
Idea – communicate only through well defined interfaces
As you know, the name of a method along with the sequence of its
parameter types is called a method signature. Together with a return
type it informs you how to call this method and what you will get. If
the name is reasonable, you may infer the purpose of this method, but
in general you know nothing about the code that does calculations.

All the implementation details are hidden (encapsulated) within the
class.

This is how you create abstraction, providing only an interface to
communicate with class and keep closed all the internal details which
are not relevant.

A process of hiding the implementation details and showing only
functionality to the user is called an abstraction.

As we have mentioned already, a class can implement many different
interfaces. But two different classes (and their objects) can behave
differently even when they implement the same interface.

Abstraction
Idea – communicate only through well defined interfaces
There are two ways to achieve abstraction in Java

• abstract class,

• interface.

Abstraction
Abstract class
• An abstract class must be declared with an abstract

keyword.

• It can have abstract as well non-abstract methods.

• It cannot be instantiated.

• It can have constructors and static methods.

• It can have final methods which will force the subclass not
to change the body of the method.

A method which is declared as abstract and does not have
implementation is known as an abstract method.

Abstraction
Abstract class – example 1
The following code will cause errors:

class Test {  
 int a = 5;  
 
 Test() {  
 a = 7;  
 }  
 
 abstract void Test() {  
 a = 9;  
 }  
 
 void doSomething() {  
 System.out.println(a);  
 }  
}  
 
class Main {  
 public static void main(String[] args) {  
 Test t = new Test();  
 System.out.println(t.a);  
 t.doSomething();  
 }  
}

Output:

Compilation failed due to following error(s). Main.java:4: error: Test is not abstract and does not
override abstract method Test() in Test  
class Test {  
^  
Main.java:11: error: abstract methods cannot have a body  
 abstract void Test() {  
 ^  
2 errors

Abstraction
Abstract class – example 2
The following code will cause errors:

abstract class Test {  
 int a = 5;  
 
 Test() {  
 a = 7;  
 }  
 
 abstract void Test() {  
 a = 9;  
 }  
 
 void doSomething() {  
 System.out.println(a);  
 }  
}  
 
class Main {  
 public static void main(String[] args) {  
 Test t = new Test(12, 17);  
 System.out.println(t.a);  
 t.doSomething();  
 }  
}

Output:

Main.java:8: error: abstract methods cannot have a body  
 abstract void Test() {  
 ^  
Main.java:19: error: Test is abstract; cannot be instantiated  
 Test t = new Test(12, 17);

Abstraction
Abstract class – example 3
The following code will cause errors:

abstract class Test {  
 int a = 5;  
 
 Test() {  
 a = 7;  
 }  
 
 abstract void Test();  
 
 void doSomething() {  
 System.out.println(a);  
 }  
}  
 
class Main {  
 public static void main(String[] args) {  
 Test t = new Test(12, 17);  
 System.out.println(t.a);  
 t.doSomething();  
 }  
}

Output:

Main.java:17: error: Test is abstract; cannot be instantiated  
 Test t = new Test(12, 17);  
 ^  
1 error

Abstraction
Abstract class – example 4
The following code is correct:

abstract class Test {  
 int a = 5;

 Test() {  
 a = 7;  
 }  
 
 abstract void Test();  
 
 void doSomething() {  
 System.out.println(a);  
 }  
}  
 
class TestAbstraction extends Test {  
 void Test() {  
 a = 9;  
 }  
}  
 
class Main {  
 public static void main(String[] args) {  
 TestAbstraction t = new TestAbstraction();  
 System.out.println(t.a);  
 t.doSomething();  
 t.Test();  
 System.out.println(t.a);  
 }  
}

Output:

7  
7  
9

Interface

Abstraction
Interface
However strange that might sound, even though classes are
"templates", they can also be created with "templates"
themselves. Such a "template" or blueprint of class is an
interface.

In the Java interfaces can have:

• abstract methods

• and variables.

It cannot have a method body.

Interface fields are public, static and final by default, and the
methods are public and abstract.

Abstraction
Interface – why you need them?
There are mainly three reasons to use interface:

• to achieve abstraction;

• to "get impression" of multiple inheritance;

• to achieve loose coupling or to get horizontal relationships
(in contrast to vertical relationships achieve with classes).

A class extends another class.

An interface extends another interface.

A class implements an interface.

Abstraction
Interface – example 1
interface Printable {  
 void print();  
}  
 
class Test implements Printable{  
 int a = 5;  
 
 Test() {  
 a = 7;  
 }  
 
 public void print() {  
 System.out.println(a);  
 }  
}  
 
class Main {  
 public static void main(String[] args) {  
 Test t = new Test();  
 t.print();  
 }  
}

Output:

7

In Test class a public is necessary in front of print() to avoid this error:

Main.java:12: error: print() in Test cannot implement print() in Printable  
 void print() {  
 ^  
 attempting to assign weaker access privileges; was public  
1 error

Explanation: The default scope for method
in class is package-private. All classes in
the same package can access the method/
field/class. Package-private is stricter than
protected and public scopes, but more
permissive than private scope. Members of
an interface are always publicly accessible.

Abstraction
Interface – example 2
interface A {  
 void a();  
 void b();  
}  
 
abstract class B implements A{  
 public void b(){System.out.println("B:b");}  
}  
 
class C extends B{  
 public void a(){System.out.println("C:a");}  
}  
 
class Main {  
 public static void main(String[] args) {  
 C c=new C();  
 c.a();  
 c.b();  
 }  
}

Output:

C:a  
B:b

Abstraction
Interface – example 3: horizontal relationship

Abstraction
Interface – example 3: horizontal relationship
interface A {  
 void a();  
 void b();  
}  
 
abstract class B implements A{  
 public void b(){System.out.println("B:b");}  
}  
 
class C extends B{  
 public void a(){System.out.println("C:a");}  
}  
 
class Main {  
 public static void main(String[] args) {  
 C c=new C();  
 c.a();  
 c.b();  
 }  
}

Output:

C:a  
B:b

Abstract class vs. interface

Abstract class vs. interface

Abstract class Interface

Doesn't support multiple inheritance Supports multiple inheritance

Can have final, non-final, static and non-
static variables Has only static and final variables

Can provide the implementation of interface. Can't provide the implementation of abstract
class.

Can extend another Java class and
implement multiple Java interfaces. Can extend another Java interface only

Can have class members like private,
protected, etc

Members of a Java interface are public by
default

Encapsulation

Encapsulation

Encapsulation refers to the

• bundling of data with the methods that operate on that
data,

• or the restricting of direct access to some of an object's
components.

Encapsulation is used to hide the values or state of a
structured data object inside a class, preventing direct
access to them by clients in a way that could expose
hidden implementation details or violate state invariance
maintained by the methods.

Encapsulation addresses the main issue that motivated the
creation of object-oriented programming – better
management of concurrent access to shared data.

Package
Encapsulation via package
• Java package is used to categorize the classes and

interfaces so that they can be easily maintained.

• Java package provides access protection.

• Java package removes naming collision.

Access modifiers
Encapsulation via access modifiers
In Java there are four types of access modifiers:

• Private: The access level of a private modifier is only within
the class. It cannot be accessed from outside the class.

• Default: The access level of a default modifier is only within
the package. It cannot be accessed from outside the
package. If you do not specify any access level, it will be the
default.

• Protected: The access level of a protected modifier is within
the package and outside the package through child class. If
you do not make the child class, it cannot be accessed from
outside the package.

• Public: The access level of a public modifier is everywhere. It
can be accessed from within the class, outside the class,
within the package and outside the package.

Access modifiers
Encapsulation via access modifiers
In Swift there are four types of access modifiers:

• Open access (open keyword) and more restrictive public
access (public) enable entities to be used within any
source file from their defining module, as well as in a source
file from another module that imports the defining module.

• Internal access (internal) enables entities to be used
within any source file from their defining module, but not in
any source file outside of that module. This is default
access specifier in Swift.

• File-private access (fileprivate) restricts the use of an
entity to its own defining source file.

• Private access (private) restricts the use of an entity to
the enclosing declaration.

Polymorphism

Polymorphism
Polymorphism is derived from two Greek words: poly and morphs.
The word poly means many and morphs means forms. So
polymorphism means many forms.

Polymorphism is the ability of an object to behave as an object of a
different class or as an implementation of a different interface.

Polymorphism is a concept by which you can perform a single action
in different ways.

There are two types of polymorphism:

• compile-time polymorphism (for example, if you overload a static
method, it is the example of compile time polymorphism) 
[related things: static binding/compile-time binding/early binding/
method overloading (in same class)],

• and runtime polymorphism 
[related things: dynamic binding/run-time binding/late binding/
method overriding (in different classes)].

Overloading

Overloading

If a class has multiple methods having same name but
different in parameters, it is known as method overloading.

There are two ways to overload the method in Java:

• by changing number of arguments;

• by changing the data type.

In Java, method overloading is not possible by changing the
return type of the method only.

Overloading
Method overloading is not possible by changing the return type of method only.

class A {  
 String doSomething(int x, int y) {  
 String s = "";  
 for (int i=0; i<y; i++) {  
 s += Integer.toString(x);  
 }  
 return s;  
 }  
 
 int doSomething(int x, int y) {  
 return x * y;  
 }  
}  
 
class Main{  
 public static void main(String args[]){  
 A a=new A();  
 // How to determine which 'doSomething' method should be called? 
 System.out.println(a.doSomething(3,5));  
 }  
}

Output:

Main.java:10: error: method doSomething(int,int) is already defined in class A

 int doSomething(int x, int y) {

 ^

1 error

Overloading
Java always calls main method with String[] args argument:

class Main {  
 public static void main(String[] args) {  
 System.out.println("main 1");  
 }  
 
 public static void main(String args) {  
 System.out.println("main 2");  
 }  
 
 public static void main() {  
 System.out.println("main 3");  
 }  
}  

Output:

main 1

Note when name of the class is different than Main:

Error: Could not find or load main class Main  
Caused by: java.lang.ClassNotFoundException: Main

Note when there is no public static void main(String[] args) method:

Error: Main method not found in class Main, please define the main method as:  
 public static void main(String[] args)  
or a JavaFX application class must extend javafx.application.Application

Overriding

Overriding

If subclass (child class) has the same method as declared in
the parent class, it is known as method overriding.

Overriding

Method overloading Method overriding

Is used to increase the readability of the
program

Is used to provide the specific
implementation of the method that is already

provided by its super class.
Performed within class Occurs in two classes that have IS-A

(inheritance) relationship

Parameter must be different Parameter must be same

Example of compile time polymorphism Example of run time polymorphism

Can't be performed by changing return type
of the method only (return type can be same

or different, but you must have to change
the parameters)

Return type must be same

super

super

The super keyword in Java is a reference variable which is
used to refer immediate parent class object.

Whenever you create the instance of subclass, an instance
of parent class is created implicitly which is referred by
super reference variable.

It can be used to:

• refer immediate parent class instance variable;

• invoke immediate parent class method;

• invoke immediate parent class constructor.

See for this keyword in preceding part to refer to current
object variable, methods constructors etc.

super

class A {  
 int x = 5;  
 void doSomething() {  
 System.out.println("A");  
 }  
}  
 
class B extends A {  
 int x = 7;  
 void doSomething() {  
 System.out.println("B");  
 }  
 
 void execute() {  
 System.out.println(x);  
 System.out.println(super.x);  
 doSomething();  
 super.doSomething();  
 }  
}  
 
class Main {  
 public static void main(String[] args) {  
 B b = new B();  
 b.execute();  
 }  
}  

Output:

7  
5  
B  
A

super

The super keyword can also be used to invoke the parent class constructor. super() is added
in each class constructor automatically by compiler if there is no super() or this().

class A {  
 A() {  
 System.out.println("A");  
 }  
}  
 
class B extends A {  
 B() {  
 super(); // Explicite invoke of the parent class constructor  
 System.out.println("B");  
 }  
}  
 
class Main {  
 public static void main(String[] args) {  
 B b = new B();  
 }  
}  

Output:

A  
B

final

final

The final keyword in java is used to restrict the user. Final can be:

• variable,

• method,

• class.

If you make any variable as final, you cannot change the value.

If you make any method as final, you cannot override it.

If you make any class as final, you cannot extend it.

Final method is inherited but you cannot override it.

A final variable that is not initialized at the time of declaration is
known as blank final variable. final is useful to create a variable
that is initialized at the time of creating object and once initialized
may not be changed.

Runtime polymorphism

Runtime polymorphism

Runtime polymorphism or dynamic method dispatch is a
process in which a call to an overridden method is
resolved at runtime rather than compile-time.

In this process, an overridden method is called through
the reference variable of a superclass. The determination
of the method to be called is based on the object being
referred to by the reference variable.

Dynamic Polymorphism in OOPs is the mechanism by which
multiple methods can be defined with same name and
signature in the superclass and subclass. The call to an
overridden method are resolved at run time.

Note: 
A method is overridden, not the data members, so runtime
polymorphism can't be achieved by data members.

Runtime polymorphism
class A {  
 int x = 5;  
 
 void doSomething() {  
 System.out.println("A");  
 }  
}  
 
class B extends A {  
 int x = 7;  
 
 void doSomething() {  
 System.out.println("B");  
 }  
}  
 
class Main {  
 public static void main(String[] args) {  
 A a = new B();  
 System.out.println(a.x);  
 System.out.println(((B)a).x);  
 a.doSomething();  
 }  
}  

Output:

5  
7  
B

Runtime polymorphism with multilevel inheritance

class A {  
 int x = 5;  
 void doSomething() {  
 System.out.println("A");  
 }  
}  
 
class B extends A {  
 int x = 7;  
 void doSomething() {  
 System.out.println("B");  
 }  
}  
 
class C extends B {  
 int x = 9;  
 void doSomething() {  
 System.out.println("C");  
 }  
}  
 
class Main {  
 public static void main(String[] args) {  
 A a = new A();  
 A b = new B();  
 A c = new C();  
 System.out.println(a.x);  
 System.out.println(b.x);  
 System.out.println(c.x);  
 a.doSomething();  
 b.doSomething();  
 c.doSomething();  
 System.out.println(((B)b).x);  
 System.out.println(((C)c).x);  
 }  
}  

Output:

5  
5  
5  
A  
B  
C  
7  
9

Runtime polymorphism
class A {  
 int x = 5;  
 void doSomething() {  
 System.out.println("A");  
 }  
}  
 
class B extends A {  
 int x = 7;  
 void doSomething() {  
 System.out.println("B");  
 }  
}  
 
class C extends B {  
 int x = 9;  
 void doSomething() {  
 System.out.println("C");  
 }  
}  
 
class Main {  
 public static void main(String[] args) {  
 A[] a = {new A(), new B(), new C(), new B(), new A()};  
 for (A obj: a) {  
 obj.doSomething();  
 }  
 }  
}  

Output:

A  
B  
C  
B  
A

Static polymorphism

Static polymorphism

Static polymorphism is a type of polymorphism that collects
the information for calling a method at compilation time,
which is in contrast to dynamic polymorphism which
collects the information for calling a method at runtime.

Static polymorphism is realized through method
overloading.

Static polymorphism
class A {  
 void doSomethingWith(int i){  
 System.out.println("int: "+i);  
 }  
 
 void doSomethingWith(double d){  
 System.out.println("double: "+d);  
 }  
 
 void doSomethingWith(String s){  
 System.out.println("String: "+s);  
 }  
}  
 
public class Main {  
 public static void main(String[] args) {  
 A a = new A();  
 a.doSomethingWith(3);  
 a.doSomethingWith(3.0);  
 a.doSomethingWith("test");  
 }  
}

Output:

int: 3  
double: 3.0  
String: test

Binding

Binding

Polymorphism is realized by binding.

Connecting a method call to the method body is known as
binding.

There are two types of binding:

• static binding (also known as early binding),

• dynamic binding (also known as late binding).

When type of the object is determined at compiled time (by
the compiler), it is known as static binding.

When type of the object is determined at run-time, it is
known as dynamic binding.

Binding
class A {  
 int x = 5;  
 void doSomething() {  
 System.out.println("A");  
 }  
}  
 
class B extends A {  
 int x = 7;  
 void doSomething() {  
 System.out.println("B");  
 }  
}  
 
class Main {  
 public static void main(String[] args) {  
 B b = new B(); // static binding  
 A a = new B(); // dynamic binding  
 b.doSomething(); // prints B  
 a.doSomething(); // prints B  
 }  
}  

Dynamic binding: 
In the above example object type cannot be determined by the compiler, because the instance
of B is also an instance of A. So compiler doesn't know its type, only its base type.

Binding
This would be much more clear in the following example:

import java.util.Random;  
 
class A {  
 int x = 5;  
 void doSomething() {  
 System.out.println("A");  
 }  
}  
 
class B extends A {  
 int x = 7;  
 void doSomething() {  
 System.out.println("B");  
 }  
}  
 
class Main {  
 public static void main(String[] args) {  
 Random random = new Random(System.currentTimeMillis());  
 A[] a = {new A(), new B(), new A(), new B(), new A(), new B()};  
 int min = 0, max = 5;  
 int index = random.nextInt(max - min) + min;  
 A aa = a[index];  
 aa.doSomething();  
 }  
}  

Every run may return either A or B.

Static polymorphism through
templtes or generics

Templates/generics
class Test<T> {  
 T obj;  
 Test(T obj) {  
 this.obj = obj;  
 }  
 
 public T getObject() {  
 return this.obj;  
 }  
}  
 
class Main {  
 public static void main(String[] args) {  
 Test<Integer> iObj = new Test<Integer>(15);  
 System.out.println(iObj.getObject());  
 
 Test<String> sObj = new Test<String>("Test");  
 System.out.println(sObj.getObject());  
 }  
}

Output:

15  
Test

