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Introduction to lecture

Basic de�nitions

Our discussion of problem solving begins with precise de�nitions of
problems and their solutions. We give several examples to illustrate
these de�nitions.



Introduction to lecture

We then describe several general-purpose search algorithms that can be
used to solve these problems.

Uninformed vs. informed search algorithms

We will see several uninformed search algorithms � algorithms that
are given no information about the problem other than its de�nition.
Although some of these algorithms can solve any solvable problem,
none of them can do so e�ciently.

Informed search algorithms, on the other hand, can do quite well
given some guidance on where to look for solutions.



Preliminaries

Goal formulation

Goal formulation, based on the current situation and the agent's
performance measure, is the �rst step in problem solving. We will
consider a goal to be a set of world states � exactly those states in which
the goal is satis�ed. The agent's task is to �nd out how to act, now
and in the future, so that it reaches a goal state. Before it can do
this, it needs to decide what sort of actions and states it should consider.



Preliminaries

Problem formulation

Problem formulation is the process of deciding what actions and
states to consider, given a goal.



Assumption

Problem formulation

For now, we assume that the environment is observable, so the
agent always knows the current state.

We also assume the environment is discrete, so at any given state
there are only �nitely many actions to choose from.

We will assume the environment is known, so the agent knows
which states are reached by each action.

Finally, we assume that the environment is deterministic, so each
action has exactly one outcome.

Under these assumptions, the solution to any problem is a �xed sequence
of actions.
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formulate�state�execute

formulate�state�execute

The process of looking for a sequence of actions that reaches the
goal is called search.

A search algorithm takes a problem as input and returns a solution
in the form of action sequence.

Once a solution is found, the actions it recommends can be carried
out. This is called the execution phase.

Thus, we have a simple formulate�state�execute design for the agent.
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Goal after goal

Goal after goal

After formulating a goal and a problem to solve, the agent calls a search
procedure to solve it. It then uses the solution to guide its actions, doing
whatever the solution recommends as the next thing to do � typically, the
�rst action of the sequence � and then removing that step from the
sequence. Once the solution has been executed, the agent will formulate
a new goal.



Simple problem solving agent (SPSA)

problem - a problem formulation, initially empty

state - some description of the current world state

function SPSA(state){

local var:

goal - a goal, initially empty

seq - an action sequence, initially empty

do{

action := SPSA_AUX(state)

if(action is not null)

state := EXECUTE_ACTION(action)

// returns percept instead of simply state

// in case of result which is nondeterministic

}while(action in not NULL)

}



Simple problem solving agent � an auxiliary function (SPSA_AUX)

function SPSA_AUX(state) return an action {

if (seq is empty) then {

goal := FORMULATE_GOAL(state)

problem := FORMULATE_PROBLEM(state,goal)

seq := SEARCH(problem)

if (seq = null) then

return a null action

}

action := FIRST(seq)

seq := REST(seq)

return action

}



open-loop

open-loop

Notice that while the agent is executing the solution sequence it ignores
its percepts when choosing an action because it knows in advance
what they will be. An agent that carries out its plans with its eyes closed,
so to speak, must be quite certain of what is going on. Control theorists
call this an open-loop system, because ignoring the percepts breaks the
loop between agent and environment.



Problem

Problem

A problem can be de�ned formally by �ve components

The initial state that the agent starts in.

A description of the possible actions available to the agent. Given a
particular state s function ACTION(s) returns the set of actions that
can be executed in s. We say that each of these actions is
applicable in s.

A description of what each action does; the formal name for this is
the transition model, speci�ed by a function RESULT(s,a) that
returns the state that results from doing action a in state s. We also
use the term successor to refer to any state reachable from a given
state by a single action.

Together, the initial state, actions, and transition model implicitly de�ne
the state space of the problem � the set of all states reachable from the
initial state by any sequence of actions. The state space forms the
directed network or graph in which the nodes are states and the links
between nodes are actions. A path in the state space is a sequence of
states connected by a sequence of actions.
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The goal test, which determines whether a given state is a goal
state. Sometimes there is an explicit set of possible goal states, and
the test simply checks whether the given state is one of them.
Sometimes the goal is speci�ed by an abstract property rather than
an explicitly enumerated set of states. For example, in chess, the
goal is to reach a state called �checkmate�, where the opponent's
king is under attack and can't escape.

A path cost function that assigns a numeric cost to each path. The
problem-solving agent chooses a cost function that re�ects its own
performance measure.

A solution to a problem is an action sequence that leads from the initial
state to a goal state. Solution quality is measured by the path cost
function, and an optimal solution has the lowest path cost among all
solutions.
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Abstraction

Every time we propose a formulation of the problem, even it seems
reasonable, it is still a model � an abstract mathematical description �
and not the real thing. Among others we have to leave out of our state
description all these considerations which are irrelevent to the problem.
The process of removing detail from a representation is called
abstraction. In addition to abstracting the state description, we must
abstract the actions themselves.



Validity and usefulness

Validity and usefulness

The abstraction is valid if we can expand any abstract solution into
a solution in the more detailed world.

The abstraction is useful if carrying out each of the action in the
solution is easier than the oryginal problem.

The choice of a good abstraction thus involves removing as much detail
as possible while retaining validity and ensuring that the abstract actions
are easy to carry out. Were it not for the ability to construct useful
abstractions, intelligent agents would be completely swamped by the real
world.
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Toy problems

vacuum cleaner

8-puzzle

8-queens problem

state, initial state, actions, transition model, goal test, path cost
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Search tree

Search tree

Having formulated some problems, we now need to solve them. A
solution is an action sequence, so search algorithms work by considering
various possible action sequences. The possible action sequences starting
at the initial state from a search tree with the initial state at the root;
the branches are actions and the nodes correspond to states in the state
space of the problem.



Search tree

Search tree

The root node of he tree corresponds to the initial state. Then we need
to consider taking various actions. We do this by expanding the current
state; that is applaying each legal action to the current state, thereby
generating a new set of states. We add new branches from the parent
node leading to new child nodes. Node with no children in the tree is a
leaf node. The set of all leaf nodes available for expansion at any given
point is called the frontier.
After that we must choose which of these new possibilities to consider
further.



The essence of search

The essence of search

This is the essence of search � following up one option now and putting
the others aside for leater, in case the �rst choice does not lead to a
solution.



General tree-search algorithm

General tree-search algorithm

Now we present the general tree-search algorithm. Search algorithms all
share this basic structure; they vary primarily according to how they
choose which state to expand next � the so-called search strategy.



Remark

Remark

Tree search is not exactly about searching already existing tree but about
searching method which forms tree.



TREE-SEARCH

function TREE-SEARCH(problem) return a solution, or failure

{

initialize the frontier using the initial state of problem

loop

{

if (the frontier is empty) than return failure

choose a leaf node and remove it from the frontier

if (the node contains a gola state) then

return the corresponding solution

expand the chosen node, adding the resulting nodes

to the frontier

}

}



Redundant paths

Redundant paths

Redundant paths exists whenever there is more than one way to get from
one state to another. Sometimes redundant paths leads to in�nite loop.
The way to avoid exploring redundant paths is to remember where one
has been. To do this we augment the TREE-SEARCH algorithm with a
data structure called the explored set, which remembers every expanded
node. Newly generated nodes that match previously generated nodes �
ones in the explored set or the frontier � can be discarded instead of
being added to the frontier. The new algorithm is called GRAPH-SEARCH.



GRAPH-SEARCH

function GRAPH-SEARCH(problem) return a solution, or failure

{

initialize the frontier using the initial state of problem

initialize the explored set to be empty

loop

{

if (the frontier is empty) than return failure

choose a leaf node and remove it from the frontier

if (the node contains a gola state) then

return the corresponding solution

add the node to the explored set

expand the chosen node, adding the resulting nodes

to the frontier only if not in the frontier

or explored set

}

}



Infrastructure for searching algorithms

Infrastructure for searching algorithms

Search algorithms required a data structure to keep track of the search
tree that is being constructed. For each node n of the tree, we have a
structure that contains four components:

n.STATE: the state in the state space to which the node corresponds;

n.PARENT: the node in the search tree that generated this node;

n.ACTION: the action that was applied to the parent to generate the
node;

n.PATH-COST: the cost, traditionally denoted by g(n), of the path
from the initial state to the node, as indicated by the parent
pointers.

We also use CHILD-NODE function which takes as arguments a parent
node and an action and returns the resulting child node.



Measuring problem solving performance

Measuring problem solving performance

We can evaluate an algorithm's performance in four ways

completeness: is the algorithm guaranteed to �nd a solution when
there is one?

optimality: does the strategy �nd the optimal solution (optimal
solution is such a solution which has the lowest path cost among all
solutions)?

time complexity: how long does it take to �nd a soltion?

space complexity: how much memory is needed to perform the
search?
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Uninformed and informed search strategies

Now we cover several strategies that comes under the heading of
uninformed search (also called blind search). The term means that the
strategies have no additional information about states beyond that
provided in the problem de�nition. All they can do is generate successors
and distinguish a goal state from a non-gola state. All search strategies
are distinguished by the order in which nodes are expanded. In contrary,
strategies that know whether one non-goal state is �more promising� than
other are called informed search or heuristic search strategies.



Breadth-�rst search

Breadth-�rst search

Breadth-�rst search is a simple strategy in which the root node is
expanded �rst, than all the successors of the root node are expanded
next, than their successors, and so on. In general, all the nodes are
expanded at a given depth in the search tree before any nodes at the next
level are expanded.
Breadth-�rst search is an instance of the general graph-search
algorithm in which the shallowest unexpanded node is chosen for
expansion. This is achieved very simply by using FIFO queue for
the frontier. Thus, new nodes (which are always deeper than their
parents) go to the back of the queue, and old nodes, which are shallower
than the new nodes, get expanded �rst. There is one slight tweak on the
general graph-search algorithm, which is that the goal test is applied to
each node when it is generated rather than it is selected for expansion.



BREADTH-FIRST-SEARCH (on a graph)

function BREADTH-FIRST-SEARCH(problem) return a solution, or failure
{

node.STATE := problem.INITIAL_STATE
node.PATH_COST := 0
if (problem.GOAL_TEST(node.STATE)=TRUE) than

return SOLUTION(node)
frontier := a FIFO queue with node as the only element
explored := an empty set
loop{

if (the frontier is empty) than return failure
choose a leaf node and remove it from the frontier
// chooses the shallowest node in frontier
explored.ADD(node.STATE)

for each action in problem.ACTIONS(node.STATE){
child := CHILD_NODE(problem,node,action)
if (child.STATE is not in explored or frontier) then
{

if (problem.GOAL_TEST(child.STATE)) then
return SOLUTION(child)

frontier.ADD(child)
}

}
}

}



Uniform-cost search

Uniform-cost search

When all step cost are equal, breadth-�rst search is optimal because it
always expands the shallowest unexpanded node. By a simple extension,
we can �nd an algorithm that is optimal with any step-cost function.
Instead of expanding the shallowest node, uniform-cost search expands
the node n with the lowest path cost g(n). This is done by storing the
frontier as a priority queue ordered by g .



UNIFORM-COST-SEARCH (on a graph)

function UNIFORM-COST-SEARCH(problem) return a solution, or failure
{

node.STATE := problem.INITIAL_STATE
node.PATH_COST := 0
if (problem.GOAL_TEST(node.STATE)=TRUE) than

return SOLUTION(node)
frontier := a priority queue ordered by PATH-COST,

with node as the only element
explored := an empty set
loop{

if (the frontier is empty) than return failure
node := POP(frontier)
/* chooses the lowest-cost node in frontier

and remove it from the frontier */
if (problem.GOAL_TEST(node.STATE)) then

return SOLUTION(node)
explored.ADD(node.STATE)

for each action in problem.ACTIONS(node.STATE){
child := CHILD_NODE(problem,node,action)
if (child.STATE is not in explored or frontier) then
{

frontier.ADD(child)
}
else if child.STATE is in frontier with higher PATH-COST then
{

replace the frontier node with child
}

}
}

}



Uniform-cost search

Uniform-cost search � di�erences

In addition on the ordering of the queue by path cost there are two other
signi�cant di�erences from breadth-�rst search. The �rst is that the goal
test is applied to a node when it is selected for expansion (as in the
generic graph-search algorithm) rather than when it is �rst generated.
The second di�erence is that a test is added in case a better path is
found to a node currently on the frontier.



Depth-�rst search

Depth-�rst search

Depth-�rst search always expands the deepest node in the current frontier
of the search tree. The search proceeds immediately to the deepest level
of the search tree, where the nodes have no successors. As those nodes
are expanded, they are dropped from the frontier, so then the search
�backs up� to the next deepest node that still has unexplored successor.
The depth-�rst search algorithm is an instance of the graph-search
algorithm which uses LIFO queue. A LIFO queue means that the
most recently generated node is chosen for expansion. This must be
the deepest unexpanded node because it is one deeper than its parent �
which, in turn, was the deepest unexpanded node when it was selected.



Depth-limited search

Depth-limited search

The embarrassing failure of depth-�rst search in in�nite state spaces can
be alleviated by supplying depth-�rst search with a predetermined dept
limit l . That is, nodes at depth l are treated as if they have no
successors. This approach is called depth-limited search.



Recursive DEPTH-LIMITED-SEARCH

function DEPTH-LIMITED-SEARCH(problem) return a solution, or failure/cutoff
return Recursuve-DLS(MAKE_NODE(problem.INITIAL-STATE),problem,limit)

function Recursive-DLS(node,problem,limit) return a solution, or failure/cutoff
{

if (problem.GOAL_TEST(node.STATE)=TRUE) than
return SOLUTION(node)

else if limit=0 then
return cutoff

else
cutoff_occurred := FALSE
for each action in problem.ACTIONS(node.STATE)
{

child := CHILD_NODE(problem,node,action)
result := Recursive-DLS(child,problem,limit-1)
if (result = cutoff)

then cutoff_occurred := TRUE
else if (result != failure) then

return result
}
if (cutoff_occurred = TRUE) then

return cutoff
else

return failure
}



Iterative deepening depth-�rst search

Iterative deepening depth-�rst search

Iterative deepening depth-�rst search (or iterative deepening search) is a
general strategy, often use in combination with depth-�rst tree search,
that �nds the best depth limit. It does this by gradually increasing the
limit � �rst 0, then 1, then 2, and so on � until a goal is found.
The iterative deepening combines the bene�ts of depth-�rst and
breadth-�rst search.



ITERATIVE-DEEPENING-SEARCH

function ITERATIVE-DEEPENING-SEARCH(problem) return a solution, or failure
{

for depth := 0 to infinity do
{

result := DEPTH-LIMITED-SEARCH(problem,depth)
if (result != cutoff) then return result

}
}



Bidirectional search

Bidirectional search

The idea behind bidirectional search is to run two simultaneous searches
� one forward from the initial state and the other backward from the goal
� hoping that the two searches meet in the middle.
Thers is one very important problem. Consider the question of what we
mean by �the goal� in searching �backward from the goal�. For the
8-puzzle there is just one goal so the backward search is very much like
the forward search. If there are several explicitly listed goal states than
we can construct a new dummy goal state whose immediate predecessors
are all the actual goal states. But if the goal is an abstract description,
such as the goal that �no queen attacks another queen� in the n-queens
problem, than bidirectional search is di�cult to use.



Comparing uninformed search strategies

Comparing uninformed search strategies

Breadth-
First

Uniform-
Cost

Depth-
First

Depth-
Limited

Iterative-
Deepening

Bidirectional

Complete Yes Yes No No Yes Yes

Time O(bd ) O(b1+[C∗/ε]) O(bm) O(bl ) O(bd ) O(bd/2)

Space O(bd ) O(b1+[C∗/ε]) O(bm) O(bl) O(bd) O(bd/2)
Optimal Yes Yes No No Yes Yes



Informed (heuristic) search strategies

Informed (heuristic) search strategies

Now we show how an informed search strategy � one that uses
problem-speci�c knowledge beyond the de�nition of the problem itself �
can �nd solution more e�ciently than can an uninformed strategy.
A general approach we consider is called best-�rst search. Best-�rst
search is an instance of the general TREE-SEARCH or GRAPH-SEARCH
algorithm in which a node is selected for expansion based on an
evaluation function, f (n). The evaluation function is construed as a
cost estimate, so the node with the lowest evaluation is expanded �rst.
The implementation of the best-�rst graph search is identical to that for
uniform-cost search, except for the use of f instead of g to order the
priority queue.



Heuristic function

Heuristic function

The choice of f determines the search strategy. Most best-�rst
algorithms include as a component of f a heuristic function, denoted
h(n); h(n) = estimated cost of the cheapest path from the state at node
n to a goal state.
Heuristic (from the Greek: ��nd� or �discover�) is an adjective for
experience-based techniques that help in problem solving, learning and
discovery. A heuristic method is used to rapidly come to a solution that
is hoped to be close to the best possible answer, or �optimal solution�.



Greedy best-�rst search

Greedy best-�rst search

Greedy best-�rst search tries to expand the node that is closest to the
goal, on the grounds that this is likely to lead to a solution quickly. At
each step algorithm tries to get as close to the goal as it can. Thus, it
evaluates nodes by using just the heuristic function; that is, f (n) = h(n).



A* search: minimizing the total estimated
solution cost

A*

The most widely known form of best-�rst search is called A* search. It
evaluates nodes y combining g(n), the cost to rach the node, and h(n),
he cost to get from the node to the goal:

f (n) = g(n) + h(n).

Since g(n) gives the path cost from the start node to node n, and h(n) is
the estimated cost of the cheapest path from n to the goal, we have
f (n) = estimated cost of cheapest solution through n.
Thus if we are trying to �nd the cheapest solution, a reasonable thing to
try �rst is the node with the lowest value of g(n) + h(n). It turns out
that this strategy is more than just reasonable: provided that the
heuristic function h(n) satis�es certain conditions, A* search is both
complete and optimal. The algorith ise identical to uniform-cost-search
except that A* uses g + h instead of g .
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