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Introduction to lecture

Competitive environments � goals in con�ict

In this part we cover competitive environments, in which the agents'
goals are in con�ict, giving rise to adversarial search problems
often knows as games.

We begin with a de�nition of the optimal move and an algorithm
for �nding it.

We then look at techniques for choosing a good move when time is
limited.

We also discuss games that includes an element of chance.

We also discuss games that includes an elements of imperfect
information.
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Game in AI

AI games

In AI, the most common games are of a rather specialized kind, what
game theorist call deterministic, turn-taking, two-player, zero-sum.
In our terminology, this means

deterministic,

fully observable,

agents act alternately,

utility values at the end of the game are always opposite.
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Game in AI

Why games?

Games are interesting because they are to hard to solve.

Exmaple: chess

An average branching factor of about 35.

Games often go to 50 moves.

So the search tree has about 35100 or 10154 nodesa.

Fortunately the search graph has �only� about 1040 distinc nodes.

aThe number of atoms in the entire observable universe is estimated to be within
the range of 1078 to 1082 (see
http://www.universetoday.com/36302/atoms-in-the-universe/,
http://en.wikipedia.org/wiki/Observable_universe).

http://www.universetoday.com/36302/atoms-in-the-universe/
http://en.wikipedia.org/wiki/Observable_universe
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Game in AI

Why games?

Games, like the real world, therefore require the ability to
make some decision even when calculating
the optimal decision is infeasible. Games also
penalize ine�ciency severely.



Game in AI

De�nition

A game can be formally de�ned as a kind of search problem with the
following elements

The initial state, which speci�es how the game is set up at the
start.

Function player(s), which de�nes which player has the move in a
state s.

Function actions(s), which returns the set of legal moves in a
state.

The transition model, result(s,a), which de�nes the result of a
move.

A terminal test, terminalTest(s), which is true when the game
is over and false otherwise (equivalent of a goal test function).

Function payoff(s,p), also called an objective function or utility
function, which returns �nal numeric value for a game that ends in
terminal state s for a player p (equivalent of a cost function).
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Game in AI

De�nition

The initial state, actions and results de�ne the game tree for the
game � a game where

the nodes are game states and

the edges are moves.

Example

Game tree for the game of tic-tac-toe.
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Optimal decisions in games

What is an optimal solution in games?

In a normal search problem, the optimal solution would be a
sequence of actions leading to a goal state.

In adversarial search, opponent has something to say about it.

Therefore we must �nd a contingent strategy, which speci�es our
move in the initial state and then moves in the states resulting from
every possible response by our opponent.
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Optimal decisions in games

How to �nd optimal strategy

One ply tree.

Expansion of the previous tree: two ply (one move deep).

Example with two moves deep tree.
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Minimax algorithm

function miniMax(state) return an action

{

v := max(state)

return the action in actions(state) with value v

}

function max(state) return a payoff value

{

if(terminalTest(state)) then

return payoff(state)

v := -infty

for each a in actions(state) do

v := max(v, min(result(state,a)))

return v

}

function min(state) return a payoff value

{

if(terminalTest(state)) then

return payoff(state)

v := +infty

for each a in actions(state) do

v := min(v, max(result(state,a)))

return v

}



Optimal decisions in games

Optimal decision in multiplayer games

Let us examine how to extend the minimax idea to multiplayer games.

First, we need to replace the single value for each node with a vector of
values. For terminal states, this vector gives the utility of the state from
each player's viewpoint.
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Optimal decisions in games
Optimal decision in multiplayer games: two players

Tree

* me (max level: I want to maximize my payoff)

/ \

2 * * 3 opponent (min level: opponent wants to minimize MY payoff,

/ \ / \ so he/she doesn't care about his/her payoff. This is

4 2 1 3 correct with the assumptions we made at the beginning:

every time I get a point, my opponent lose it and vice

versa)

has to be replaced by

* me (max level)

/ \

[2,?] * * [3,?] opponent (min level)

/ \ / \ |

/ | | \ +-- Payoff for opponent, but I don't care about this.

/ | | \

[4,?][2,?][1,?][3,?]



Optimal decisions in games
Optimal decision in multiplayer games

Optimal decision in multiplayer games

Example with one move deep tree for three players.
We can create game tree for three players follow the idea from previos
slide: in every node we have a payo� vector, but we care only about our
payo� values and try to maximize it while our opponens want to minimize
it. In consequence every level corresponding to opponents choice is a
MIN level, while every level correspondig to our choice is a MAX level.



Optimal decisions in games

Optimal decision in multiplayer games

The minimax algorithm performs a complete depth-�rst exploration of
the game tree. This is a real problem, because the number of game
states it has to examine is exponential in the depth of the tree.
Unfortuantely, we can't eliminate the exponent, but it turns out we can
e�ectively cut it in half. The trick is that it is possible to compute

the correct minimax decision without looking at every node in the

game tree. The technique we examine is called alpha-beta cuto� (or
alpha-beta pruning). When applied to a standard minimax tree, it returns
the same move as minimax would, but cuto� away branches that

cannot possibly in�uence the �nal decision.



Optimal decisions in games

alpha-beta cuto� � intuition

Intuition (see separate �le)



Optimal decisions in games

De�nition of alpha and beta parameter

α the value of the best choice we have found so far at any choice
point along the path for MAX (so, α is the highest value so far).

β the value of the best choice we have found so far at any choice
point along the path for MIN (so, β is the lowest value so far).



Optimal decisions in games
alpha-beta cuto� with alpha and beta parameter

The most important to remember when working with alpha-beta is:

init α as −∞
init β as +∞
every time in MAX node we update α with the formula
alpha := maximum(alpha, v)1

every time in MIN node we update β with the formula
beta := minimum(beta, v)

we cut whenever alpha >= beta

Example with alpha and beta (see separate �le).

1v is the payo� for current node and some action.



Optimal decisions in games

alpha-beta cuto� and move ordering

The efectiveness of alpha-beta pruning is highly dependent on the order
in which the states are examined (see separate �le).
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Minimax with alpha-beta cuto� algorithm

function minMaxAlphaBetaCutoff(state) return an action{

v := max(state,-infty,+infty)

return the action in actions(state) with value v

}

function max(state,alpha,beta) return a utility value{

if(terminalTest(state)) then

return utility(state)

v := -infty

for each a in actions(state) do

v := maximum(v, min(result(state,a),alpha,beta))

alpha := maximum(alpha,v)

if (alpha >= beta) then //cutoff

return v

return v

}

function min(state,alpha,beta) return a utility value{

if(terminalTest(state)) then

return utility(state)

v := +infty

for each a in actions(state) do

v := minimum(v, max(result(state,a),alpha,beta))

beta := minimum(beta,v)

if (alpha >= beta) then //cutoff

return v

return v

}



Imperfect real-time decisions

Imperfect real-time decisions

Evaluation function. This function returns an estimate of the
expected utility of the game from a given position, just as the
heuristic functions in previous part of this lecture.

Cutting o� search (depth limit). Replace
if(terminalTest(state)) then return utility(state)

with
if(cutoffTest(state,depth)) then return eval(state)

Forward pruning � some moves at a given node are pruned
immediately without further consideration.

Search versus lookup.
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Stochastic games

Backgammon and chance nodes

Although one player (say white) knows his own legal moves are, he does
not know what opponent is going to roll and thus does not know what
opponent's legal moves will be. That means white cannot construct a
standard game tree of the sort we saw in chess or tic-tac-toe. A game
tree in backgammon must include chance nodes in addition to MAX
and MIN nodesa. Terminal nodes and MAX and MIN nodes work exactly
the same way as befor (because the dice roll is known). For chance
nodes, we compute the expected value, which is the sum of the

value over all outcomes, weighted by the probability of each

chance action. This leads to generalize minimax for deterministic games
to an expectiminimax for game with chance node.

aSo we have nodes as follow: MAX � CHANCE � MIN � CHANCE � MAX �
. . .



Partially observable games

Partially observable games � battleships

In deterministic partially observable games, uncertainty about the state of
the board arises entirely from the lack of the access to the choices made
by the opponent. This class includes games such as Battleships.



Partially observable games

Partially observable games � card games

Card games provide many examples of stochastic partial observability,
where the missing information is generated randomly. For example, in
many games, cards are dealt randomly at the beginning of the game,
with each player receiving a hand that is not visible to the other players.
At �rst sight, it might seem that these card games are just like dice
games: the cards are dealt randomly and determine the moves available
to each player, but all the �dice� are rolled at the beginning.
Even though this analogy turns out to be incorrect, it suggests an
e�ective algorithm: consider all possible deals of the invisible cards; solve
each one as if it wear a fully observable game; and then choose the move
that has the best outcome averaged over all the deals.
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