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Introduction to lecture

Goal of this lecture

Previous lecture addressed only one category of problems. Problems
which are

observable, so the agent always knows the current state;

deterministic, so each action has exactly one outcome;

with known environments, so the agent knows which states are
reached by each action;

discrete, so at any given state there are only �nitely many actions
to choose from;

where the solution is a sequence of actions.

Now we look at what happens when these assumptions are relaxed.



Introduction to lecture

Goal of this lecture: part I

We begin with fairly simple case: �rst part cover algorithms that
perform purely local search in the state space, evaluating and
modifying one or more current states contrary to systematically
exploring paths from an initial state algorithms presented in
previous part of this lecture. These algorithms are suitable for
problems in which all that matters is the solution state, not the
path cost to reach it. The family of local search algorithms includes
also some methods inspired by statistical physics (simulated annealing)
and evolutionary biology (genetic algorithms).



Introduction to lecture

Goal of this lecture: part II

Then in the next part, we examine what happens when we relax the
assumptions of determinism and observability. The key idea is that if an
agent cannot predict exactly what percept it will receive, than it will need
to consider what to do under each contingency that its percepts may
reveal.

Goal of this lecture: part III

With partial observability, the agent will also need to keep track of the
states it might be in.
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Introduction to lecture

Goal of this lecture: part IV

Last part investigates online search, in which the agent is faced with a
state space that is initially unknown and must be explored.



Part I: Local search algorithms and optimization problems



Irrelevant path

Irrelevant path

The search algorithm that we have seen so far are designed to explore
search spaces systematically. This systematicity is achieved by keeping
one or more paths in memory and by recording which alternatives have
been explored at each point along the path. When a goal is found, the
path to that goal also constitutes a solution to the problem.



Irrelevant path

Irrelevant path

In many problems, however, the path to the goal is irrelevant.



Irrelevant path

Irrelevant path

For example, in the 8-queens problem, what matters is the �nal
con�guration of queens, not the order in which they are added. The
same general assumption holds for many important applications such as

integrated-circuit design,

factory-�oor layout,

job-shop sheduling,

automatic programming etc.



Di�erent class of algorithms

Di�erent class of algorithms

If the path to the goal does not matter, we might conside a di�erent
class of algorithms, ones that do not worry about path at all.



Local search

Local search � advantages

Local search algorithms operate using a single current node (rather
than miltiple paths) and generally move only to neighbors of that node.
Typically, the paths followed by the search are not retained. Although
local search algorithms are not systematic, thay have two key advantages

they use very little memory � usualy a constant amount,

they can often �nd resonable solution in large or in�nite (continuous)
state spaces for which systematic algorithms are unsuitable.



Local search

State-space landscape

To understand local search, we �nd it useful to consider state-space
landscape. Landscape has both

�location� (de�ned by the state) and

�elevation� (de�ned by the value of the heuristic cost function or
objective function).

Typically, if elevation corresponds to cost, than the aim is to �nd lowest
valley � a global minimum; if elevation corresponds to an objective
function, then the aim is to �nd the highest peak � a global maximum.
Of course you can convert from one to the other just by inserting a minus
sign. Local search algoithms explore this landscape. A complete local
search algorithm always �nds a goal if one exists. An optimal algorithm
always �nd a global minimum/maximum.



Local search

Various topographic features

Topographic features are

global maximum,

local maximum,

�at local maximum,

shoulder.



Objective function

Objective function

The concept of objective function is used in optimization. It denotes
the function you want to minimize or maximize. Generaly speaking
objective give us an answer for the following question What is the goal?

while function for the question How to measure performance?

Objective function is an equation to be optimized given certain
constraints and with variables that need to be minimized or maximized.



Hill-climbing search

Description

The hill-climbing search algorithm is simply a loop that continually moves
in the direction of increasing value � that is, uphill. It terminates when it
reaches a �peak� where no neighbour has a higher value. The algorithm
does not maintain a search tree as it was previously, so the data
structure for the current node need only record the state and the value of
the objective function. Hill climbing does not look ahead beyond the
immediate neighbours of the current state. This resembles trying to
�nd the top of Mount Everest in a thick fog while su�ering from
amnesia. Hill-climbing algorithms typically choose randomly among the
set of best successors if there is more than one.



Hill-climbing search

Description

Hill climbing is sometimes called greedy local search because it grabs a
good neighbour state without thinking ahead about where to go next.
Although greed is considered one of the seven deadly sins, it turns out
that greedy algorithms often perform quite well. Hill climbing often
makes rapid progress toward a solution because it is usually quite easy to
improve a bad state. Unfortunately, hill climbing often gets stuck for the
following reasons: local maxima (minima), plateaux.



Hill-climbing search

Variants

Many variants of hill climbing have been invented.

Stochastic hill climbing chooses randomly from among the uphill
moves; the probability of selection can vary with the steepness of the
uphill move. This usually converges more slowly than steepest
ascent, but in some state landscapes, it �nds better solutions.

First-choice hill climbing implements stochastic hill climbing by
generating successors randomly until one is generated that is better
than the current state. This is a good strategy when a state has
many of successors.



Hill-climbing search

Complete hill-climbing algoriyhm

The hill-climbing algorithms described so far are incomplete � they often
fail to �nd a goal when one exists because they can get stuck on local
maxima. Random-restart hill climbing conducts a series of hill-climbing
seach from randomly generated initial states (although generating a
random state from an implicitly speci�ed state space can be a hard
problem in itself), until a goal is found. It is trivially complete with
probability approaching 1, because it will eventually generate a goal state
as the initial state. It was proved that it is best, in some cases, to restart
a randomized seach algorithm after a particular, �xed amount of time
and that this can be much more e�cient than letting each search
continue inde�nitely.



Hill climbing (HC)
Pseudocode

function HC(problem) return a state that is a local minimum

{

current := createNode(problem.INITIAL_STATE)

loop

{

neighbour := a highest-valued successor of current

if (neighbour.value <= curren.value) then

return current.STATE

current := neighbour

}

}



Simulated annealing

Idea

A hill-climbing algorithm that never makes downhill moves toward states
with lower value (or higher cost) is guarenteed to be incomplete, because
it can get stuck on a local maximum. In contrast, a purely random walk
� that is, moving to a successor choosen uniformly at random from the
set of successors � is complete but extremely ine�cient. Therefore, it
seems reasonable to try to combine hill-climbing with a random walk
in some way that yields both e�ciency and completeness. Simulated
annealing is such an algorithm. In metallurgy annealing is the process
used to temper or harden metals and glass by heating them to a high
temperature and then gradually cooling them, thus allowing the material
to reach a low-energy crystalline state.



Simulated annealing

Idea

The innermost loop of he simulated annelaing algorithm is quite similar
to hill climbing. Instead of picking the best move, however, it picks a
random move. If the move improves the situation, it is always
accepted. Otherwise, the algorithm accepts the move with some
probability less than 1. The probability decreases exponentially with the
�badness� of the move. The probability also decreases as the
�temperature� goes down: bad moves are more likely to be allowed at the
start when �temperature� is high, and they become more unlikely as
�temperature� decreases. If the schedule lowers �temperature� slowly
enough, the algorithm will �nd a global optimum with probability
approaching 1.



Simulated annealing (SA)
Pseudocode

schedule -- a mapping from time to ,,temperature''

function SA(problem, schedule) return a solution state
{

current := createNode(problem.INITIAL_STATE)
for time=1 to infty do
{

temperature := schedule(time)
if (temperature = 0) then

return current.STATE

next := a randomly selected successor of current
delta_E := next.value - current.value

if ( delta_E > 0 ) then
current := next

else
current := next only with probability P := exp(delta_E/temperature)

}
}



Genetic algorithm

Terms

population, individual, �tness function, selection, crossover, mutation



Genetic algorithm (GA)
Pseudocode

function GA(population,FITNESS_FUNCTION) return an indyvidual
{

do
{

newPopulation := EMPTY_SET
for i=1 to SIZE(population)
{

x := RANDOM_SELECTION(population,FITNESS_FUNCTION)
y := RANDOM_SELECTION(population,FITNESS_FUNCTION)
children := REPRODUCE(x,y)
for each child in children{

if (small random probability) then
child := MUTATE(child)

newPopulation.ADD(child)
}

}
population := newPopulation

}
while ( NOT(some individual is fit enough, or enough time has elapsed) )
return the best individual in population, according to FITNESS_FUNCTION

}



Continuous space

Continuous space

Yet none of the algorithms we have described (except for �rst-choice hill
climbing) can handle continuous state and action space, because they
have in�nite branching factors. This part provides a very brief
introduction to some local search techniques for �nding optimal solution
in continuous spaces.



Continuous space

Gradient

Many methods attempt to use gradient of the landscape to �nd a
maximum. The gradient of the objective function is a vector that gives
the magnitude and direction of the steepest slope.



Continuous space

Simple example



Continuous space

Source of information

Jan Kusiak, Anna Danielewska-Tuªecka, Piotr Oprocha, Optymalizacja.

Wybrane metody z przykªadami zastosowa«, Wydawnictwo Naukowe
PWN, Warszawa 2009.



Part II: Searching with nondeterministic actions



Nondeterministic action

Percepts

In previous lecture we assume that

the environment is fully observable and deterministic

and that the agent knows what the e�ects of each action are.

Therefore, the agent

can calculate exactly which state results from any sequence of
actions

and always knows which state it is in.

Its percepts provide no new information after each action, although of
course they tell the agent the initial state. When the environment is
either partially observable or nondeterministic (or both), percepts become
useful.
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Nondeterministic action

Percepts

In a partial observable environment, every percept helps narrow
down the set of possible states the agent might be in, thus making it
easier for the agent to achieve its goals.

When the environment is nondeterministic, percepts tell the agent
which of the possible outcomes of its actions has actually occurred.

In both cases, the future percepts cannot be determined in advance and
the agent's future actions will depend on those future percepts. So the
solution to a problem is not a sequence but contingencya plan
(strategy) that speci�es what to do depending on what percepts are
received.
Now we examine the case of nondeterminism.

acontingency � (noun) a future event or circumstance that is possible but cannot
be predicted with certainty.



Nondeterministic action

Percepts

In a partial observable environment, every percept helps narrow
down the set of possible states the agent might be in, thus making it
easier for the agent to achieve its goals.

When the environment is nondeterministic, percepts tell the agent
which of the possible outcomes of its actions has actually occurred.

In both cases, the future percepts cannot be determined in advance and
the agent's future actions will depend on those future percepts. So the
solution to a problem is not a sequence but contingencya plan
(strategy) that speci�es what to do depending on what percepts are
received.
Now we examine the case of nondeterminism.

acontingency � (noun) a future event or circumstance that is possible but cannot
be predicted with certainty.



Nondeterministic action

Percepts

In a partial observable environment, every percept helps narrow
down the set of possible states the agent might be in, thus making it
easier for the agent to achieve its goals.

When the environment is nondeterministic, percepts tell the agent
which of the possible outcomes of its actions has actually occurred.

In both cases, the future percepts cannot be determined in advance and
the agent's future actions will depend on those future percepts. So the
solution to a problem is not a sequence but contingencya plan
(strategy) that speci�es what to do depending on what percepts are
received.
Now we examine the case of nondeterminism.

acontingency � (noun) a future event or circumstance that is possible but cannot
be predicted with certainty.



Nondeterministic action

Percepts

In a partial observable environment, every percept helps narrow
down the set of possible states the agent might be in, thus making it
easier for the agent to achieve its goals.

When the environment is nondeterministic, percepts tell the agent
which of the possible outcomes of its actions has actually occurred.

In both cases, the future percepts cannot be determined in advance and
the agent's future actions will depend on those future percepts. So the
solution to a problem is not a sequence but contingencya plan
(strategy) that speci�es what to do depending on what percepts are
received.
Now we examine the case of nondeterminism.

acontingency � (noun) a future event or circumstance that is possible but cannot
be predicted with certainty.



Nondeterministic action

Assumptions

As an example, we use the vacuum world. As we know, the state space
has eight states, there are three action (left, right, suck) and the goal is
to clean up all the dirts. If the environment is observable, deterministic
and completely known, then the problem is solvable by any of the
algorithms from last lecture and the solution is an action sequence. Now
suppose that we introduce nondeterminism and the suck action works as
follows

When applied to a dirty square the action cleans the square and
sometimes cleans up dirt in an adjacent square, too.

When applied to a clean square the action sometimes deposits dirt
on the �oor.



Nondeterministic action

Assumptions

To provide a precise formulation of this type problems, we need to
generalize the notion of a transition model. Instead of de�ning
the transition model by a result function that returns a single state,
we use a results function that returns a set of possible outcome
states.

We also need to generalize the notion of a solution to the
problem. There is no single sequence of actions that solves the
problem. Instead we need a contingency plan such as the following:
do action and if the result is A then do something

else if the result is B then do something else

else if the result is ... etc
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And-or search tree

Why AND and OR? � OR nodes

To �nd contingent solution to nondeterministic problem, we begin by
constructing search trees, but now trees have a di�erent character. In a
deterministic environment, the only branching is introduced by the
agent's own choices in each state. We call this nodes OR nodes. In this
type of nodes we (the agent) have to make a decision what do to: do
this or that. Whatever we decide, the decision depends on us.

In the vacuum world, for example, at an OR node the agents chooses
left, right or suck.
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And-or search tree

Why AND and OR? � AND nodes

In a nondeterministic environment, branching is also introduced by the
environment's choice of outcome for each action. We call these nodes
AND nodes. For example, if te action A in state S1 leads to a state in
the set {S2, S3}, so the agent would need to �nd a plan for state S2 and
for state S3. These two kinds of nodes alternate, leading to an AND-OR
tree.



And-or search tree

Solution

A solution for an AND-OR search problem is a subtree that

has a goal node at every leaf,

sppeci�es one action at each of its OR nodes,

includes every outcome branch at each of its AND nodes.



And-or search tree

What is important, an AND-OR tree speci�es only the search space for
solving a problem. Di�erent search strategies for searching the space are
possible.



AND-OR graph search (AO)

function AndOrSearch(problem) return a conditional plan, or failure

{

OrSearch(problem.INITIAL_STATE, problem, [])

}

function OrSearch(state, problem, path) return a conditional plan,

or failure

{

if (problem.IsGoal(state)) then

return the empty plan

if (state is on path) then // prevent from infinite loop

return failure

for each action in problem.GetActions(state)

{

plan := AndSearch(GetResults(state, action), problem, [state|path])

if (plan != failure) then

return [action|plan]

}

}



AND-OR graph search (AO)

function AndSearch(states, problem, path) return a conditional plan,

or failure

{

for each state_i in states

{

plan_i := OrSearch(state_i, problem, path)

if (plan_i = failure) then

return failure

}

return [if state_1 then plan_1

else if state_2 then plan_2

else ...

else if state_(n-1) then plan_(n-1)

else plan_n]

}



Part III: Searching with no/partial observations



Searching with partial observations

Key concept: belief

We now turn to the problem of partial observability, where the agent's
percepts do not su�ce to pin down the exact state. The key concept
required for solving partially observable problems is the belief state,
representing the agent's current belief about the possible physical states it
might be in, given the sequence of actions and percepts up to that point.



Searching with partial observations

We begin with the simplest scenario for studying belief states, which is
when the agent has no sensors at all; than we add in partial sensing as
well as nondeterministic actions.
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Part III: Searching with no/partial observations
Subpart I: Searching with no observation



Searching with no observation

Sensorless � is this a problem?

When the agent's percepts provide no information at all, we have what is
called a sensorless problem. At �rst, one might think the sensorless
agent hase no hope of solving a problem if has no idea what state it's in;
in fact, sensorless problems are quite often solvable. Moreover, sensorless
agent can be surprisingly useful, primarily because they don't rely on
sensors working properly.



Example

Sensorless version of vacuum world

We can make a sensorless version of vacuum world. Assume that the
agent knows the geography of its world, but doesn't know its location or
the distribution of the dirt. In that case, its initial state could be any
element of the set of all states {1, 2, 3, 4, 5, 6, 7, 8}.

1 [V, d] [d] ([] � room, V � vacum cleaner, d � dirts)

2 [d] [V, d]

3 [V] [d]

4 [] [V, d]

5 [V, d] []

6 [d] [V]

7 [V] []

8 [] [V]

The sequence [right, suck, left, suck] is guaranteed to reach the
goal state (7).



Belief states

Belief states

To solve sensorless problems, we search in the space of belief states
rather than physical states. Notice that in belief-state space, the problem
is fully observable because the agent always knows its own belief state.
Furthermore, the solution (if any) is always a sequence of actions. This is
because, as in the ordinary problems of previous part (Solving problems

by searching), the percepts received after each action are completely
predictable � they're always empty! So there are no contingencies to plan
for. This is true even if the environment is nondeterministic.



Sensorless problem de�nition

Sensorless problem de�nition (part I)

It is instructive to see how the belief state search problem is constructed.
Suppose the underlying physical problem P is de�ned by actions(P),
result(P), goalTest(P) and stepCost(P). Than we can de�ne the
corresponding sensorless problem as follows:

Belief states. The entire belief-state space contains every possible
set of physical states.

For vacuum world we have states:

{empty, {1}, {2}, {1, 2}, {3}, {1, 3}, {2, 3}

{1, 2, 3}, ... etc}

If P has N states, then the sensorless problem has up to 2N states,
although many may be unreachable from the initial state.

Initial state. Typically the set of all states in P, although in some
cases the agent will have more knowledge than this.



Sensorless problem de�nition

Sensorless problem de�nition (part II)

Actions. Suppose the agent is in belief state b = {s1, s2}, but
actions(P,s1) 6=actions(P,s2); than the agent is unsure of what
actions are legal. If we assume that illegal actions have no e�ect on
the environment, than it is safe to take the union of all the actions
in any of the physical states in the current belief state b

actions(b) = ∪
s∈b

actions(P, s)

On the other hand, if an illegal action might be the end of the
world, it is safer to allow only the interseaction, that is, the set of
actions legal in all the states.

Example: for the vacuum world, every state has the same legal actions,
so both methods give the same result.



Sensorless problem de�nition

Sensorless problem de�nition (part III)

Transition model. The agent doesn't know which state in the
belief state is the right one; so as far as it knows, it might get to any
of the states resulting from applying the action to one of the
physical states in the belief state. For deterministic actions, the set
of states that might be reached is

b′ = result(b, a) = {s ′ : s ′ = result(P, s, a) and s ∈ b}

With deterministic actions, b′ is never larger than b. With
nondeterminism, we have

b′ = ∪
s∈b

result(P, s, a),

which may be larger than b because in this case result(P, s, a) could
return more than one state. The process of generating the new
belief state after the action is called the prediction step; the
notation b′ = predict(P, b, a) will come in handy.



Sensorless problem de�nition

Sensorless problem de�nition (part IV)

Goal test. The agent wants a plan that is sure to work, which
means that a belief state satis�es the goal only if all the physical
states in it satisfy goalTest(P). The agent may accidentally
achieve the goal earlier, but it won't know that it has done so.

Path cost. If the same action can have di�erent costs in di�erent
states, then the cost of taking an action in a given belief state could
be one of several values. For now we assume that the cost of an
action is the same in all states and so can be transferred directly
from the underlying physical problem.



Sensorless problem solving

Sensorless problem solving

The preceding de�nitions enable the automatic construction of the belief
state problem formulation from the de�nition of the underlying physical
problem. Once this is done, we can apply any of the search algorithm
from previous part (Solving problems by searching). In �ordinary� graph
search, newly generated states are tested to see if they are identical to
existing states. This works for belief states, too. If belief state X has
already been generated and found to be solvable, than any subset of X is
guaranteed to be solvable. This extra level of pruning may dramatically
improve the e�ciency of sensorless problem solving.



Part III: Searching with no/partial observations
Subpart II: Searching with partially observable problem



Searching with partially observable problem

percept function

For a general partially observable problem, we have to specify how the
environment generates percepts for the agent. For example, we might
de�ne the local-sensing vacuum world to be one in which the agent has a
position sensor and a local dirt sensor but has no sensor capable of
detecting dirt in other squares. The formal problem speci�cation includes
a percept(s) function that returns the percept received in a given state.

If sensing is nondeterministic, then we use a percept function that
returns a set of possible percepts.

Fully observable problems are a special case in which percept(s)=s

for every state s.

Sensorless problems are a special case in which percept(s)=null.



Partially observable problem de�nition

Partially observable problem de�nition

When observations are partial, it will usually be the case that several
states could have produced any given percept. The actions, stepCost,
and goalTest are constructed from the underlying physical problem just
as for sensorless problems, but the transition model is a bit more
complicated.



Partially observable problem de�nition

Partially observable problem de�nition � transitions

We can think of transitions from one belief state to the next for a
particular actions as occuring in three stages:

The prediction stage is the same as for sensorless problems: given
the action a in belief state b, the predict belief state is

b̂ = predict(b, a).

The observation prediction stage determines the set of percepts o
that could be observed in the predicted belief state

possiblePercepts(b̂) = {o : o = percept(s) and s ∈ b̂}.



Partially observable problem de�nition

Partially observable problem de�nition � transitions

The update stage determines, for each possible percept, the belief
state that would result from the percept. The new belief state b0 is
just the set of states in b̂ that could have produced the percept

b0 = update(b̂, o) = {s : o = percept(s) and s ∈ b̂}.

Notice that each updated belief state b0 can be no larger than the
predicted belief state b̂; observations can only help reduce
uncertainty compared to the sensorless case. Moreover, for
deterministic sensing, the belief states for the di�erent possible
percepts will be disjoint, forming a partition of the original predicted
belief state.



Partially observable problem de�nition

Possible belief states resulting from a given action

Putting these three stages together, we obtain the possible belief states
resulting from a given action and the subsequent possible percepts:

result(b, a) = {b0 : b0 = update(predict(b, a), o) and
o ∈ possiblePercepts(predict(b, a))}.

Again, the nondeterminism in the partially observable problem
comes from the inability to predict exactly which percept will be
received after acting; underlying nondeterminism in the physical
environment may contribute to this inability by enlarging the belief state
at the prediction stage, leading to more precepts at the observation stage.



Solving partially observable problems

Solving partially observable problems

We showed how to derive the result function for a partially observable
problem from an underlying physical problem and the percept function.
Given such a formulation, the AND-OR search algorithm can be applied
directly to derive a solution.



Part IV: Online search agents and unknown environments



Online search

Online search

So far we have concentrated on agents that use o�ine search
algorithms. They compute a complete solution before setting foot
in the real world and then execute the solution.

In contrast, an online search agents interleaves computation and
action:

�rst it takes an action,

then it observes the environment and computes the next action.
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Online search

Online search

Online search is a good idea in dynamic or semidynamic domains �
domains where there is a penalty for sitting around and computing too
long. Online search is also helpful in nondeterministic domains because it
allows the agent to focus its computational e�orts on the contingencies
that actually arise rather than those that might happen but probably
won't. Of course, there is a tradeo�: the more an agent plans ahead, the
less often it will �nd itself up the creek without a paddle.



Unknown environments

Unknown environments

Online search is a necessary idea for unknown environments, where the
agent does not know what states exist or what its actions do. In this
state of ignorance, the agent faces an exploration problem and must use
its actions as experiments in order to learn enough to make deliberation
worthwhile.



Online search problems

Online search problems

An online search problem must be solved by an agent executing
actions, rather than by pure computation. We assume a deterministic
and fully observable environment, but we stipulate that the agent knows
only the following

actions(s), which returns a list of actions allowed in state s;

The step-cost function c(s, a, s ′) � note that this cannot be used
until the agent knows that s ′ is the outcome;

goalTest(s).

Note in particular that the agent cannot determine result(s,a) except
by actually being in s and doing a. Finally, the agent might have access
to an admissible heuristic function h(s) that estimates the distance from
the current state to a goal state.
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Online search problems

Typically, the agent's objective is to reach a goal state while minimizing
cost. Another possible objective is simply to explore the entire
environment. For the cost (which is the total path cost) it is common to
compare it with the cost of the path the agent would follow if it knew the
search space in advance � that is, the actual shortest path. This is called
the competitive ratio; we would like it to be as small as possible.



Online search agents

Online search agents � augmenting map of the environment

After each action, an online agent receives a percept telling it what state
it has reached; from this information, it can augment its map of the
environment. The current map is used to decide where to go next. This
interleaving of planning and action means that online search algorithms
are quite di�erent from the o�ine search algorithm we have seen
previously.



Online search agents

Online search agents � local order of expanding nodes

For example, o�ine algorithms such as A* can expand a node in one
part of the space and then immediately expand a node in another
part of the space, because node expansion involves simulated
rather than real action. An online algorithm, on the other hand, can
discover successors only for a node that is physically occupies. To avoid
traveling all the way across the tree too expand the next node, it seems
better to expand nodes in a local order. Depth �rst search has exactly
this property because the next node expanded is a child of the previous
node expanded.



An online depth-�rst search agent
An online depth-�rst search agent
s' - a percept that identifies the current state
persistent:
result - a table indexed by state and action, initially empty
untried - a table that lists, for each state, the actions not yet tried
unbacktracked - a table that lists, for each state, the backtracks not yet tried
s, a - the previous state and action, initially null

function onlineDFSAgent(s') return an action
{

if(goalTest(s')) then return stop
if(s' is a new state (not in untried)) then untried[s'] := actions(s')
if(s is not null) then
{

result[s,a] := s'
add s to the front of unbacktracked[s']

}
if(untried[s'] is empty)then
{

if(unbacktracked[s'] is empty) then
return stop

else
a := an action b such that result[s',b] = pop(unbacktracked[s'])

}
else

a := pop(untried[s'])

s := s'
return a;

}
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An online depth-�rst search agent � description

This agent stores its map in a table, result[s,a], that records the state
resulting from executing action a in state s. Whenever an action from
the current state has not been explored, the agent tries that action. The
di�culty comes when the agent has tried all the actions in a state. In
o�ine depth-�rst search, the state is simply dropped from the queue; in
an online search, the agent has to backtrack physiacally. In depth �rst
search, this means going back to the state from which the agent most
recently entered the current state. To achieve that, the algorithm keeps a
table that lists, for each state, the predecessor states to which the agent
has not yet backtracked. If the agent has run out of states to which it
can backtrack, than its search is complete.



An online depth-�rst search agent

Note: reversible actions

Notice that because of its method of backtracking, online-dfs-agent
works only in state space where the actions are reversible. There are
slightly more complex algorithms that work in general state space, but no
such algorithm has a bounded competitive ratio.



Solving online problem

Online local search

hill-climbing

random-walk

learning real-time A*
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