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Introduction to lecture

An agent is learning if it improves its performance on future tasks after
making observations about the world.

Learning can range from the trivial, as . . .
to the profound, as . . .

In this lecture we will concentrate on one class of learning problem, which
seems restricted but actually has vast applicability: from a collection of
input-output pairs, learn a function that predicts the output for new
inputs.
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Introduction to lecture

Why would we want an agent to learn? If the design of the agent can be
improved, why wouldn't the designers just program in that improvement
to begin with? There are three main reasons.

First, the designers cannot anticipate all possible situations that
the agent might �nd itself in. For example, a robot designed to
navigate mazes must learn the layout of each new maze it
encounters.

Second, the designers cannot anticipate all changes over time; a
program designed to predict tomorrow's stock market prices must
learn to adapt when conditions change from boom to bust.

Third, sometimes human programmers have no idea how to

program a solution themselves. For example, most people are good
at recognizing the faces of family members, but even the best
programrners are unable to program a computer to accomplish that
task, except by using learning algorithms.
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Forms of learning

Any component of an agent can be improved by learning from data. The
improvements, and the techniques used to make them, depend on four
major factors:

Which component is to be improved.

What prior knowledge the agent already has.

What representation is used for the data and the component.

What feedback is available to learn from.
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Forms of learning

Components to be learned

The components of agents include:

1 A direct mapping from conditions on the current state to actions.

2 A means to infer relevant properties of the world from the percept
sequence.

3 Information about the way the world evolves and about the results
of possible actions the agent can take.

4 Utility information indicating the desirability of world states.

5 Action-value information indicating the desirability of actions.

6 Goals that describe classes of states whose achievement maximizes
the agent's utility.



Forms of learning

Components to be learned � example

Each of these components can be learned. Consider, for example, an
agent training to become a taxi driver.

Every time the instructor shouts "Brake!" the agent might learn a
condition - action rule for when to brake (component l); the agent
also learns every time the instructor does not shout.

By seeing many camera images that it is told contain buses, it can
learn to recognize them (2).

By trying actions and observing the results � for example, breaking
hard on a wet road � it can learn the e�ects of its actions (3).

Then, when it receives no tip from passengers who have been
thoroughly shaken up during the trip, it can learn a useful
component of its overall utility function (4).



Feedback to learn from

There are three types of feedback that determine the three main types of
learning:

Unsupervised learning

In unsupervised learning the agent learns patterns in the input even
though no feedback is supplied. The most common unsupervised learning
task is clustering: potentially useful clusters of input examples. For
example, a taxi agent might gradually develop a concept of �good tra�c
days� and �bad tra�c days� without ever being given labeled examples of
each by a teacher.



Feedback to learn from

Reinforcement learning

In reinforcement learning the agent learns from a series of
reinforcements-rewards or punishments. For example, the lack of a tip at
the end of the journey gives the taxi agent an indication that it did
something wrong. The two points for a win at the end of a chess game
tells the agent it did something right. It is up to the agent to decide

which of the actions prior to the reinforcement were most

responsible for it.



Feedback to learn from

Supervised learning

In supervised learning the agent observes some example input-output

pairs and learns a function that maps from input to output. In
component l (previous slide), the inputs are percepts and the output are
provided by a teacher who says �Brake!� or �Turn left�. In component 2,
the inputs are camera images and the outputs again come from a teacher
who says �that's a bus�. In 3, the theory of braking is a function from
states and braking actions to stopping distance in metres. In this case
the output value is available directly from the agent' s percepts (after the
fact); the environment is the teacher.



Supervised learning

The task of supervised learning is this:

The task of supervised learning

Given a training set of n example input-output pairs

(x1, y1), (x2, y2), ...(xn, xn),

where each yj was generated by an unknown function y = f (x), discover
a function h that approximates the true function f .

Notice, that x and y can be any value; they need not be numbers. The
function h is a hypothesis.

Learning

Learning is a search through the space of possible hypotheses for one
that will perform well, even on new examples beyond the training set.



Supervised learning

To measure the accuracy of a hypothesis we give it a test set of examples
that are distinct from the training set. We say a hypothesis generalizes
well if it correctly predicts the value of y for novel examples. Sometimes
function f is stochastic � it is not strictly a function of x , and what we
have to learn is a conditional probability distribution, P(Y |x).
When the output y is

one of a �nite set of values (such as sunny, cloudy or rainy) the
learning problem is called classi�cation, and is called Boolean or
binary classi�cation if there are only two values.

a number (such as tomorrow's temperature) learning problem is
called regression.



Supervised learning

Example � hypothesis space

Fitting a function of a single variable to some points.



Supervised learning

Example

In some cases, an analyst looking at a problem is willing to make more
�ne-grained distinctions about the hypothesis space, to say � even before
seeing any data � not just that a hypothesis is possible or impossible, but
rather how probable it is. Supervised learning can be done by choosing
the hypothesis h∗ that is most probable given the data:

h∗ = argmaxP(h|data)
h∈H

,

which, by Bayes' rule, is equivalent to

h∗ = argmaxP(data|h)P(h)
h∈H

.



Supervised learning

Tradeo�

Why not let H be the class of all Java programs, or Turing machines?
After all, every computable function can be represented by some Turing
machine, and that is the best we can do. Problem with this idea is that it
does not take into account the computational complexity of learning.
There is a tradeo� between the expressiveness of a hypothesis space and
the complexity of �nding a good hypothesis within that space. For
example, �tting a straight line to data is an easy computation; �tting
high-degree polynomials is somewhat harder; and �tting Turing machines
is in general undecidable.



Learning decision trees

Decision tree induction is one of the simplest and yet most successful
forms of machine learning. We �rst describe the representation � the
hypothesis space � and then show how to learn a good hypothesis.



A decision tree representation

A decision tree

A decision tree represents a function that takes as input a vector of
attribute values returns a �decision� � a single output value. The input
and output values can be discrete or continuous. For now we will
concentrate on problems where the inputs have discrete values and the
output has exactly two possible values; this is Boolean classi�cation,
where each example input will be classi�ed as true (a positive example)
or false (a negative example).



A decision tree representation

How it works

A decision tree reaches its decision by performing a sequence of tests.
Each internal node in the tree corresponds to a test of the value of one of
the input attributes, Ai , and the branches from the node are labeled with
the possible values of the attribute, Ai = vik . Each leaf node in the tree
speci�es a value to be returned by the function. The decision tree
representation is natural for humans; indeed, many �How To� manuals
are written entirely as a single decision tree stretching over hundreds of
pages.



Inducing decision trees from examples

The attributes

As an example, we will build a decision tree to decide whether to wait for a table at a
restaurant. The aim here is to learn a de�nition for the goal predicate WillWait. First
we list the attributes that we will consider as part of the input:

Alternate: whether there is a suitable alternative restaurant nearby.

Bar: whether the restaurant has a comfortable bar area to wait in.

Fri or Sat: true on Fridays and Saturdays.

Hungry: whether we are hungry.

Patrons: how many people are in the restaurant (values are None, Same, and
Full).

Price: the restaurant's price range ($, $$, $$$).

Raining: whether it is raining outside.

Reservation: whether we made a reservation.

Type: the kind of restaurant (French, Italian, Thai, or burger).

Wait estimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, or
> 60.



Inducing decision trees from examples

Examples for the restaurant domain

Example Input Attributes Goal
Alt Bar Fri Hun Pat Price Rain Res Type Est WillWait

x_1 Yes No No Yes Same $$$ No Yes French 0-10 Yes
x_2 Yes No No Yes Full $ No No Thai 30-60 No
x_3 No Yes No No Same $ No No Burger 0-10 Yes
x_4 Yes No Yes Yes Full $ Yes No Thai 10-30 Yes
x_5 Yes No Yes No Full $$$ No Yes French >60 No
x_6 No Yes No Yes Same $$ Yes Yes Italian 0-10 Yes
x_7 No Yes No No None $ Yes No Burger 0-10 No
x_8 No No No Yes Same $$ Yes Yes Thai 0-10 Yes
x_9 No Yes Yes No Full $ Yes No Burger >60 No
x_10 Yes Yes Yes Yes Full $$$ No Yes Italian 10-30 No
x_11 No No No No None $ No No Thai 0-10 No
x_12 Yes Yes Yes Yes Full $ No No Burger 30-60 Yes



Inducing decision trees from examples

Decision tree learning algorithm

We want a tree that is consistent with the examples and is as small as
possible. The decisionTreeLearning algorithm adopts a greedy
divide-and-conquer strategy: always test the most important attribute
�rst.
This test divides the problem up into smaller subproblerns that can then
be solved recursively. By �most important attribule�, we mean the one
that makes the most di�erence to the classi�cation of an example. That
way, we hope to get to the correct classi�cation with a small number of
tests, meaning that all paths in the tree will be short and the tree as a
whole will be shallow.



Inducing decision trees from examples

Example � importance of the attributes � an intuition

Let's test Type attribute. This type takes four values: French, Italian,
Thai, or burger.

If value of Type is French (2 cases) we have an answer true in 1 and
false 1 in cases.

If value of Type is Italian (2 cases) we have an answer true in 1 and
false 1 in cases.

If value of Type is Thai (4 cases) we have an answer true in 2 and
false 2 in cases.

If value of Type is burger (4 cases) we have an answer true in 2 and
false 2 in cases.

As we can see, Type is a poor attribute.
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Inducing decision trees from examples

Example � importance of the attributes � an intuition

Let's test Patrons attribute. This type takes three values: None, Same,
or Full.

If value of Patrons is None (2 cases) we have an answer true in 0
and false 2 in cases.

If value of Patrons is Same (4 cases) we have an answer true in 4
and false 0 in cases.

If value of Patrons is Full (6 cases) we have an answer true in 4 and
false 2 in cases.

As we can see, Type is a fairly important attribute.
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Inducing decision trees from examples

Example � importance of the attributes � an intuition

Type is a poor attribute.

Patrons is a fairly important attribute.



Inducing decision trees from examples

In general, after the �rst attribute test splits up the examples, each
outcome is a new decision tree learning problem in itself, with fewer
examples and one less attribute. There are four cases to consider for
these recursive problems:

1 If the remaining examples are all positive (or all negative), then we
are done: we can answer Yes or No.

2 If there are some positive and some negative examples, then choose
the best attribute to split them.

3 If there are no examples left, it means that no example has been
observed for this combination of attribute values, and we return a
default value calculated from the plurality classi�cation of all the
examples that were used in constructing the node's parent.

4 If there are no attributes left, but both positive and negative
examples, it means that these examples have exactly the same
description, but di�erent classi�cations. This can happen because
there is an error or noise in the data; because the domain is
nondeterministic; or because we can't observe an attribute that
would distinguish the examples. The best we can do is return the
plurality classi�cation of the remaining examples.



Inducing decision trees from examples

Decision tree learning algorithm

function decisionTreeLearning(examples, attributes, parent_examples) returns a tree
{

if examples is empty then return pluralityValue(parent_examples)
else if all examples have the same classification then return the classification
else if attributes is empty then return pluralityValue(examples)
else

A := argmax(a in attributes: importance(a, examples))
tree := a new decision tree with root test A
for each value v_{k} of A do

exs := {e : e in examples and e.A = v_{k}}
subtree := decisionTreeLearning(exs, attributes - A, examples)
add a branch to tree with label (A = v_{k}) and subtree subtree

return tree
}



Choosing attribute tests

Etropy

We will use the notion of information gain, which is de�ned in terms of
entropy, the fundamental quantity in information theory.
Entropy is a measure of the uncertainty of a random variable; acquisition
of information corresponds to a reduction in entropy.
A random variable with only one value � a coin that always comes up
heads � has no uncertainty and thus its entropy is de�ned as zero; thus,
we gain no information by observing its value. A �ip of a fair coin is
equally likely to come up heads or tails, 0 or 1, and this counts as "1 bit"
of entropy. Consider an unfair coin that comes up heads 99% of the
time. Intuitively, this coin has less uncertainty than the fair coin � if we
guess heads we'll be wrong only 1% of the time � so we would like it to
have an entropy measure that is close to zero, but positive.
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Choosing attribute tests

Etropy

In general, the entropy of a random variable V with values vk , each with
probability P(vk), is de�ned as

Entropy : H(V ) =
∑
k

P(vk) log2
1

P(vk)
= −

∑
k

P(vk) log2 P(vk).

We can check that the entropy of a fair coin �ip is indeed 1 bit:

H(Fair) = −(0.5 log2 0.5+ 0.5 log2 0.5) = 1.

If the coin is loaded to give 99% heads, we get

H(Loaded) = −(0.99 log2 0.99+ 0.01 log2 0.01) ≈ 0.08bits.



Choosing attribute tests

Etropy of Boolean random variable

Based on above-mentioned, let's de�ne B(q) as the entropy of a Boolean
random variable that is true with probability q

B(q) = −(qlog2q + (1− q)log2(1− q))

For simplicity, in the following part of this lecture we will be talking
about the case when a training set contains only positive and negative
examples (learning pattersns).



Choosing attribute tests

If a training set contains p positive examples and n negative examples,
then the entropy of the Goal attribute on the whole set is

H(Goal) = B

(
p

p + n

)
The restaurant training set has p = n = 6, so the corresponding entropy
is B(0.5) or exactly 1 bit. A test on a single attribute A might give us
only part of this 1 bit. We can measure exactly how much by looking at
the entropy remaining after the attribute test.



Choosing attribute tests � entropy remaining after

the attribute test

An attribute A with d distinct values divides the training set E into
subsets E1, · · · ,Ed . Each subset Ek has pk positive examples and nk
negative examples, so if we go along that branch, we will need an
additional B(pk/(pk + nk)) bits of information to answer the question. A
randomly chosen example from the training set has the k-th value for the
attribute with probability (pk + nk)/(p + n), so the expected entropy
remaining after testing A is

Remainder(A) =
d∑

k=1

pk + nk

p + n
B

(
pk

pk + nk

)



Choosing attribute tests � information gain

The information gain from the attribute test on A is the expected
reduction in entropy

Gain(A) = B

(
p

p + n

)
− Remainder(A)

In fact Gain(A) is just what we need to implement the importance

function. For our example, we have1

Gain(Patrons) = 1−
[
2

12
B

(
0

2

)
+

4

12
B

(
4

4

)
+

6

12
B

(
2

6

)]
≈ 0.541 bits,

Gain(Type) = 1−
[
2

12
B

(
1

2

)
+

2

12
B

(
1

2

)
+

4

12
B

(
2

4

)
+

4

12
B

(
2

4

)]
= 0 bits,

con�rming our intuition that Patrons is a better attribute to split on2.

1Following part of this lecture explains how the calculations for Patrons attribute
are performed.

2In fact, Patrons has the maximum gain of any of the attributes and would be
chosen by the decision tree learning algorithm as the root.



Choosing attribute tests

exmple for calculation for Patrons atribute

Gain(Patrons) = B

(
p

p + n

)
− Remainder(Patrons)

B

(
p

p + n

)
= B

(
6

12

)
= B(0.5) = 1

Because atribute Patrons takes three values: None, Same and Full it
divides the training set E into subsets ENone , ESame , EFull .

Remainder(Patrons) =
∑

k=None,Same,Full

pk + nk

p + n
B

(
pk

pk + nk

)



Choosing attribute tests

calculation for Patrons atribute

For each subset we have following number of positive and negative
examples

positive negative

ENone 0 2
ESame 4 0
EFull 2 4

so we have

Remainder(Patrons) =
∑

k=None,Same,Full

pk + nk

p + n
B

(
pk

pk + nk

)
=



Choosing attribute tests

calculation for Patrons atribute

positive negative

ENone 0 2
ESame 4 0
EFull 2 4

=
pNone + nNone

p + n
B

(
pNone

pNone + nNone

)
+
pSame + nSame

p + n
B

(
pSame

pSame + nSame

)
+

+
pFull + nFull

p + n
B

(
pFull

pFull + nFull

)
=

=
0+ 2

6+ 6
B

(
0

0+ 2

)
+

4+ 0

6+ 6
B

(
4

4+ 0

)
+

2+ 4

6+ 6
B

(
2

2+ 4

)
=

=
2

12
B

(
0

2

)
+

4

12
B

(
4

4

)
+

6

12
B

(
2

6

)
what is the same as before.



Choosing attribute tests � what next?

After all calculation, we have that Patrons is the best attribute so we set
it as a root node in out decision tree. From this (root) node we have
three branches: None, Same and Full (because atribute Patrons takes
those three values).
For branch None all examples returns No so we know what to do.
Similarly for Same � an answer is Yes. Now there is a question: how we
can �nd attribute for Full branch?



Choosing attribute tests � what next?

An answer is that algorithm is similar to previous but the set with
examples should be modi�ed. We should consider only patterns for which
attribute Patrons takes value Full , i.e.

Example Input Attributes Goal

Alt Bar Fri Hun Price Rain Res Type Est WillWait

x_2 Yes No No Yes $ No No Thai 30-60 No

x_4 Yes No Yes Yes $ Yes No Thai 10-30 Yes

x_5 Yes No Yes No $$$ No Yes French >60 No

x_9 No Yes Yes No $ Yes No Burger >60 No

x_10 Yes Yes Yes Yes $$$ No Yes Italian 1O-30 No

x_12 Yes Yes Yes Yes $ No No Burger 30-60 Yes
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