
Team project
Short introduction: methodologies

Piotr Fulmański



Goals



Goals
What we will talk about and why

1. Do we need any control on software development? 

2. First attempts – waterfall model. 

3. Is it good or bad? 

4. How you can think about this task in different way. 

5. Less stiffness, more flexibility. 

6. SCRUM – holy grail of software development? 

7. SCRUM is not the only one.



My private thoughts you 
don't have to agree with 



My private thoughts you don't have to agree with
Is it good or bad?

Is it [methodology] good or bad? The mos honest and probably 
correct answer is: it depends.


In general, I treat all methodologies as a necessary evil, or more 
precisely as a design  savoir-vivre. Some rules are simply better 
than none at all. Thanks to this, everyone knows what, where, 
when and how. However, I am a staunch opponent of 
subordinating everything without exception to a chosen 
methodology. The argument: "Because this is how it is (not) 
done in XYZ and that's it." is unacceptable to me. Methodology 
is there to facilitate management, not to rule us. I always ask 
myself "So what?", "Why do I need this?", "What does it give to 
me?" and further actions depend on the answers to them.




My private thoughts you don't have to agree with
Is it good or bad?

"Scrum? Agile? I co z tego?"


https://www.youtube.com/watch?v=mi3QAKuOIu4

https://www.youtube.com/watch?v=mi3QAKuOIu4


Long, long time ago...



Long, long time ago...
Waterfall model

Waterfall model – one of several types of software 
development processes defined in software engineering.


The waterfall model is a breakdown of development 
activities into linear sequential phases, meaning they are 
passed down onto each other, where each phase depends 
on the deliverables of the previous one and corresponds to 
a specialization of tasks.


The approach is typical for certain areas of engineering 
design where the process is highly iterative – parts of the 
process often need to be repeated many times before 
another can be entered. [1]



Long, long time ago...
Waterfall model

Waterfall model is attributed to:


• The first known presentation describing use of such phases in 
software engineering was held by Herbert D. Benington at the 
Symposium on Advanced Programming Methods for Digital 
Computers on 29 June 1956.


• Although the term "waterfall" is not used in the paper, the first 
formal detailed diagram of the process later known as the 
"waterfall model" is often cited as a 1970 article by Winston W. 
Royce in the article „Managing the Development of Large 
Software Systems”.


• The earliest use of the term "waterfall" may have been in a 1976 
paper by Bell and Thayer [1].




Long, long time ago...
Waterfall model phases

1. System and software requirements: captured in a product 
requirements document


2. Analysis: resulting in models, schema, and business rules


3. Design: resulting in the software architecture


4. Coding: the development, proving, and integration of software


5. Testing: the systematic discovery and debugging of defects


6. Operations: the installation, migration, support, and maintenance of 
complete systems


The waterfall model maintains that one should move to a phase only 
when its preceding phase is reviewed and verified.




Long, long time ago...
Waterfall model

Mostly attributed to Winston W. Royce, however he:


• pointed out the major flaws stemming from the fact that 
testing only happened at the end of the process, which he 
described as being "risky and invites failure";


• he criticized rigid adherence to the phases.




Long, long time ago...
Waterfall model – supporting arguments

Cost reduction 

Time spent early in the software production cycle can 
reduce costs at later stages. For example, a problem found 
in the early stages (such as requirements specification) is 
cheaper to fix than the same bug found later on in the 
process (by a factor of 50 to 200).




Long, long time ago...
Waterfall model – supporting arguments

High maintainability 

It places emphasis on documentation (such as requirements 
documents and design documents) as well as source code. 
In less thoroughly designed and documented 
methodologies, knowledge is lost if team members leave 
before the project is completed, and it may be difficult 
for a project to recover from the loss. If a fully working 
design document is present, new team members or even 
entirely new teams should be able to familiarise themselves 
by reading the documents.



Long, long time ago...
Waterfall model – supporting arguments

Easy to understand and explain 

The waterfall model provides a structured approach; the 
model itself progresses linearly through discrete, easily 
understandable and explainable phases and thus is easy to 
understand; it also provides easily identifiable milestones in 
the development process.



Long, long time ago...
Waterfall model – supporting arguments

Foresightedness 

Simulation can play a valuable role within the waterfall 
model. By creating computerized or mathematical 
simulations of the system being developed, teams can gain 
insights into how the system will perform before proceeding 
to the next phase. Simulations allow for testing and refining 
the design, identifying potential issues or bottlenecks, and 
making informed decisions about the system's functionality 
and performance.



Long, long time ago...
Waterfall model – supporting arguments

In common practice, waterfall methodologies result in a 
project schedule with 20–40% of the time invested for the 
first two phases, 30–40% of the time to coding, and the rest 
dedicated to testing and implementation.



Long, long time ago...
Waterfall model – criticism

Inability to self-define 

Clients may not know exactly what their requirements are 
before they see working software and so change their 
requirements, leading to redesign, redevelopment, and 
retesting, and increased costs.



Long, long time ago...
Waterfall model – criticism



Long, long time ago...
Waterfall model – criticism

Prediction is very difficult, especially if it’s about the future 
[2,3]


Niels Bohr [nels boa]


Designers may not be aware of future difficulties when 
designing a new software product or feature, in which case 
it is better to revise the design than persist in a design that 
does not account for any newly discovered constraints, 
requirements, or problems. Implementing any non-trivial 
system will almost inevitably expose issues and edge cases 
that the systems analyst did not consider.



Long, long time ago...
Waterfall model – criticism

Prediction is very difficult, especially if it’s about the future 
[2,3]


Niels Bohr [nels boa]


Designers may not be aware of future difficulties when 
designing a NEW software product or feature, in which case 
it is better to revise the design than persist in a design that 
does not account for any newly discovered constraints, 
requirements, or problems. Implementing any non-trivial 
system will almost inevitably expose issues and edge cases 
that the systems analyst did not consider.



Long, long time ago...
Waterfall model – criticism

Prediction is very difficult, especially if it’s about the future 
[2,3]


Niels Bohr [nels boa]


The model can only be used if the requirements are clear 
and transparent, because each iteration is time-consuming 
and requires a large investment in improvement. At the 
same time, it is used in normal engineering practice.



Long, long time ago...
Waterfall model – criticism

Non-flexibility (non-agile) 

Inflexible division into successive disjoint iterative phases. 
Moving to the next phase possible after completing the 
previous one.



Iterative and incremental 
development



Iterative and incremental development
A sparrow in the hand is better than the pigeon on the roof

It's better to have something quickly (right now) than to have 
everything without knowing when.


Two stories:


• home renovation [5, p. 155];


• the Trident missile – a submarine-launched ballistic 
missile.



Iterative and incremental development
A sparrow in the hand is better than the pigeon on the roof

The basic idea behind this method is to develop a system 
through repeated cycles (iterative) and in smaller portions at 
a time (incremental), allowing software developers to take 
advantage of what was learned during development of 
earlier parts or versions of the system. Learning comes from 
both the development and use of the system, where 
possible key steps in the process start with a simple 
implementation of a subset of the software requirements 
and iteratively enhance the evolving versions until the full 
system is implemented.



Iterative and incremental development
A sparrow in the hand is better than the pigeon on the roof

At each iteration, design modifications are made and 
new functional capabilities are added.

Image: [4]



Iterative and incremental development
Supporting arguments

• No need to define all requirements in advance (at the 
beginning we define what we will achieve, hoping that we 
will be able to specify all requirements at the stage of 
testing the implemented fragments).


• Frequent contacts with the client (shortened breaks 
compared to the waterfall model).


• Early use of parts of the system (functionalities) by the 
client.


• Possibility of flexible response to delays in the 
implementation of a fragment (acceleration of work on 
other parts without delaying the entire project undertaking).



Iterative and incremental development
Criticism

• Potential difficulties with cutting out a subset of fully 
independent functions.


• Additional cost related to independent implementation of 
system fragments.


• Consequence of above problems: necessity to implement 
skeletons (interface compatible with the target system) – 
additional workload (cost), risk of failure to detect errors in 
the testing phase.



Agile software 
development



Agile software development
Less stiffness, more flexibility

We are uncovering better ways of developing software by doing it 
and helping others do it. Through this work we have come to 
value [7]:


• individuals and interactions over processes and tools;


• working software over comprehensive documentation;


• customer collaboration over contract negotiation;


• responding to change over following a plan.


That is, while there is value in the items on the right, we value the 
items on the left more.




Agile software development
Less stiffness, more flexibility
Twelve principles of the Agile Manifesto [8]:


1. Customer satisfaction by early and continuous delivery of valuable software.


2. Welcome changing requirements, even in late development.


3. Deliver working software frequently (weeks rather than months).


4. Close, daily cooperation between business people and developers.


5. Projects are built around motivated individuals, who should be trusted.


6. Face-to-face conversation is the best form of communication (co-location).


7. Working software is the primary measure of progress.


8. Sustainable development, able to maintain a constant pace.


9. Continuous attention to technical excellence and good design.


10.Simplicity—the art of maximizing the amount of work not done – is essential.


11.Best architectures, requirements, and designs emerge from self-organizing teams.


12.Regularly, the team reflects on how to become more effective, and adjusts accordingly.




Agile software development
Less stiffness, more flexibility

When performing tasks in the software production process based on the 
agile programming methodology, the following stages are distinguished:


• planning,


• designing,


• programming,


• testing,


• release (implementation and deployment of the system),


• feedback.


The above stages create a cycle repeated until the completion of a given 
task.




Agile software development
Less stiffness, more flexibility

Very, very important:


It is very important to note that subsequent cycles are to serve the 
purpose of:


• possible correction of the prepared task based on the customer's 
information


• or flexible introduction of possible changes in the customer's 
requirements, if such have appeared in the form of feedback.


Subsequent cycles are not intended to endlessly correct errors in a 
given task resulting from the omission or imprecise execution of the 
planning stage, including the collection and analysis of requirements 
from the customer.




Agile software development
Criticism

• An excessive focus on rapid delivery at the expense of 
quality.


• Lack of sufficient documentation.


• Difficulty in forecasting project time and cost.



SCRUM – the holy grail of 
software development?



SCRUM
SCRUM – the holy grail of software development?

No, not at all. SCRUM is just one of many agile 
methodologies you can choose from. Probably the most 
popular at this moment.



SCRUM

Scrum is an agile team collaboration framework commonly 
used in product development.


Is it the best?


No, not at all. SCRUM is just one of many agile 
methodologies you can choose from. Probably the most 
popular in software development at this moment.



SCRUM
In short

• User requirements are usually collected in the form of (verifiable) user stories.


• Scrum prescribes for teams to break work into goals to be completed within time-boxed 
iterations, called sprints.


• Each sprint is no longer than one month and commonly lasts two weeks.


• A team is a self-organizing body by definition, there is no way to assign tasks to individual 
team members. They choose the tasks to perform, according to common agreements, skills, 
or other preferences.


• The scrum team assesses progress in time-boxed, stand-up meetings of up to 15 minutes 
(hence their name: stand-ups, nowadays very often called daily scrums).


• At the end of the sprint, the team holds two further meetings:


- one sprint review to demonstrate the work for stakeholders and solicit feedback,


- and one internal sprint retrospective.


• A person in charge of a scrum team is typically called a scrum master.




SCRUM
Team and responsibilities

Typically, a Scrum team consists of less than 10 people. It is 
good if it is interdisciplinary and consists of people with 
different skills. The main roles in the project are played by:


• Scrum Master,


• Product Owner


• and Developers.



SCRUM
Team and responsibilities

Scrum Master 

Some scrum master responsibilities include coaching, 
objective setting, problem solving, oversight, planning, 
backlog management, and communication facilitation. 
Scrum master's responsibility is not to manage the project 
(Scrum master is not a project manager). Scrum master's 
role is also to educate and coach teams about scrum theory 
and practice.



SCRUM
Team and responsibilities

Product Owner 

Each scrum team has one product owner. The product 
owner focuses on the business side of product development 
and spends the majority of time liaising with stakeholders 
and the team. The role is intended to primarily represent the 
product's stakeholders, the voice of the customer.


Product owners manage the product backlog and are 
responsible for maximizing the value that a team delivers.


They do not dictate the technical solutions of a team.



SCRUM
Team and responsibilities

Developers 

The term developer or team member refers to anyone who 
plays a role in the development and support of the product 
and can include researchers, architects, designers, 
programmers, etc.



SCRUM
User stories

User stories are short and concise descriptions of the 
functionality to be implemented in the project. They are 
written from the perspective of the user of the system and 
describe what task the user would like to perform to achieve 
a specific goal:


As a ... I want to ...



SCRUM
User stories

1. Identify user role


2. Describe user goal


3. Describe user action


4. Add details


5. Add acceptance criteria (measurable and unambiguous criteria to 
determine if the task has been completed)


6. Estimate priority (assign priority)


7. Add an estimate (value the task)


8. Plan the task (assign to sprint)




SCRUM
More about Scrum

• Scrum, https://boringowl.io/tag/scrum


• Scrum — co to za metodyka?, https://
interviewme.pl/blog/scrum


• Czym jest Scrum i jak zacząć, https://
www.atlassian.com/pl/agile/scrum


• Przewodnik po Scrumie (Scrum Guide), https://
scrumguides.org/docs/scrumguide/v2020/2020-
Scrum-Guide-Polish.pdf

https://boringowl.io/tag/scrum
https://interviewme.pl/blog/scrum
https://interviewme.pl/blog/scrum
https://interviewme.pl/blog/scrum
https://www.atlassian.com/pl/agile/scrum
https://www.atlassian.com/pl/agile/scrum
https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-Polish.pdf
https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-Polish.pdf
https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-Polish.pdf


SCRUM is not the only 
one



SCRUM is not the only one
KANBAN, JIT, Lean management (Toyota Production System, TPS)

Kanban (jp., meaning signboard) is a scheduling system for lean manufacturing 
(also called just-in-time manufacturing, abbreviated JIT). Taiichi Ohno, an industrial 
engineer at Toyota, developed kanban after observing supermarkets after World 
War II and to apply the idea of shelf-stocking techniques to the factory floor to 
improve manufacturing efficiency. In a supermarket, customers generally retrieve 
what they need at the required time – no more, no less.


The system takes its name from the cards that track production within a factory.


One of the main benefits of kanban is to establish an upper limit to work in 
process inventory to avoid overcapacity. 


The basic Kanban principle in software development is visualization – presentation 
of subsequent stages of processes on a board (wall or electronic). Then writing 
down the tasks on cards and placing them in the appropriate columns.


Another one is to limit work in progress – setting the maximum allowable number 
of tasks that can be in a given column. Little's law is used for this purpose.




SCRUM is not the only one
KANBAN, JIT, Lean management (Toyota Production System, TPS)

Image: [9]



SCRUM is not the only one
KANBAN, JIT, Lean management (Toyota Production System, TPS)

Image: [10]



Bibliography



Bibliography

1. Engineering design process, https://en.wikipedia.org/wiki/Engineering_design_process, retrieved 2024-09-30 

2. Niels Bohr (cytaty), https://pl.wikiquote.org/wiki/Niels_Bohr, retrieved 2024-09-30 

3. Quote Origin: It’s Difficult to Make Predictions, Especially About the Future, https://quoteinvestigator.com/2013/10/20/
no-predict/, retrieved 2024-09-30

4. Image by Krupadeluxe - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/wiki/
File:Iterative_Process_Diagram.svg, retrieved 2024-09-30 

5. Stephen Denning, Radykalna rewolucja w zarządzaniu, Helion 2012. 

6. Mariusz Chrapko, SCRUM. O zwinnym zarządzaniu projektami, Helion, 2013. 

7. Kent Beck; James Grenning; Robert C. Martin; Mike Beedle; Jim Highsmith; Steve Mellor; Arie van Bennekum; Andrew Hunt; Ken 
Schwaber; Alistair Cockburn; Ron Jeffries; Jeff Sutherland; Ward Cunningham; Jon Kern; Dave Thomas; Martin Fowler; Brian 
Marick, Manifesto for Agile Software Development, Agile Alliance, 2001, http://agilemanifesto.org, retrieved 2024-10-01 

8. Kent Beck; James Grenning; Robert C. Martin; Mike Beedle; Jim Highsmith; Steve Mellor; Arie van Bennekum; Andrew Hunt; Ken 
Schwaber; Alistair Cockburn; Ron Jeffries; Jeff Sutherland; Ward Cunningham; Jon Kern; Dave Thomas; Martin Fowler; Brian 
Marick, Principles behind the Agile Manifesto, Agile Alliance, 2001. Archived from the original on 14 June 2010, https://
web.archive.org/web/20100614043008/http://www.agilemanifesto.org/principles.html, retrieved 2024-10-01 

9. Jeff.lasovski, https://commons.wikimedia.org/wiki/File:Simple-kanban-board-.jpg ( Creative Commons 
Attribution-Share Alike 3.0 Unported license), retrieved 2024-09-30 

10.Bossarro, https://commons.wikimedia.org/wiki/File:Basic-team-kanban-board.png (Creative Commons 
Attribution-Share Alike 4.0 International license), retrieved 2024-09-30

https://en.wikipedia.org/wiki/Engineering_design_process
https://pl.wikiquote.org/wiki/Niels_Bohr
https://quoteinvestigator.com/2013/10/20/no-predict/
https://quoteinvestigator.com/2013/10/20/no-predict/
https://commons.wikimedia.org/wiki/File:Iterative_Process_Diagram.svg
https://commons.wikimedia.org/wiki/File:Iterative_Process_Diagram.svg
http://agilemanifesto.org
https://web.archive.org/web/20100614043008/http://www.agilemanifesto.org/principles.html
https://web.archive.org/web/20100614043008/http://www.agilemanifesto.org/principles.html
https://commons.wikimedia.org/wiki/File:Simple-kanban-board-.jpg
https://commons.wikimedia.org/wiki/File:Basic-team-kanban-board.png

