Teoria i1 praktyka programowania gier

komputerowych
Podstawy grafiki 3D

Piotr Fulmanski

Wydziat Matematyki i Informatyki,
Uniwersytet tdzki, Polska

1 grudnia 2014

Spis tresci

© Change of basis

© Atomic transformation matrices

© Quaternions

Change of basis

Any child-space position vector p¢c can be transformed into a
parent-space position vector pp as follows

pp = pcMc_.p
where
ic O
_|Jc O
MC—)P - kC 0
te 1
and

@ jc is the unit basis vector along the child space X-axis, expressed in
parent space coordinates;

@ jc is the unit basis vector along the child space Y-axis, in parent
space;

@ k¢ is the unit basis vector along the child space Z-axis, in parent
space;

@ tc is the translation of the child coordinates system relative to
parent space.

Affine transformations

Geometrically, affine transformations (affinities) preserve collinearity. So
they transform parallel lines into parallel lines and preserve ratios of
distances along parallel lines.

Affine transformations

Any affine transformation matrix can be created by simply concatenating
a sequence of 4 x 4 matrices representing pure translations, pure scale
operations and pure rotations.

All affine 4 x 4 transformation matrices can be partitioned into four
components

Msys 03x1
tixs lixi

where
@ the upper 3 x 3 matrix M represents rotation and/or scale,

@ the lower 1 x 3 vector t represents translation.

Atomic transformation matrices

Translation

The following matrix T translates a point p = [px p, p,] by the vector
t = [tc t, t;] (p' is the translated point)

1 0 0 O

0 1 0 O

T= 0 0 1 0

te t, t, 1

In consequence we have

1 0 0 O
0O 1 0 O
te t, t, 1

[(px + t<) (py +ty) (P2 + t2

~—
—_

Atomic transformation matrices
Scaling

The following matrix S scales the point p = [p« p, p.] by a factor s,
along the X-axis, s, along the Y-axis, and s, along the Z-axis

sc 0 0 O

10 s, 0 O

S= 0 0 s, O

0 0 0 1

In consequence we have
ssc 0 0 O
. 0 s, 0 O
p+t = [PxPsz]-] 0 0 s, O
0 0 0 1
= [(sxpx) (sypy) (szp2)1]

Atomic transformation matrices

Rotations — 2D case

[image of rotating point p by ¢ degrees to point p’|

If we want to rotate point p by ¢ degrees to point p’, we have simply
that

P = |p'|cos(d +)
o, = Iplsin(0+0)
and
px = |p|cos(9)
p, = lplsin(6)

Because we are dealing with rotations about the origin, thus we have

Ip'| = Ipl-

Atomic transformation matrices

Rotations — 2D case

Using the trigonometric identities for the sum of angles we have that

pi. = |p|cos(¢)cos(0) — |p|sin(¢)sin(0)
P, |p| cos(¢)sin(0) + [p] sin(¢) cos(6)
and finally
P, = pxcos(¢) — pysin(¢)
py = pxsin(¢) + py cos(¢)

Pushing this into matrix form

o () sin(¢)
[P Pyl = [px Pyl —ccs)isn(cﬁ) ios<¢)

Here, we have the rotation matrix for rotating a point in the X — Y
plane. Expanding this into 3D we have. ..

Atomic transformation matrices

Rotations — 3D case (rotation about X-axis)

The following matrix represents rotation about the X-axis by an angle ¢

0 0

cos(¢p) sin(¢)
—sin(¢) cos(¢)
0 0

R, =

O O O
= O O O

Atomic transformation matrices

Rotations — 3D case (rotation about Y-axis)

The following matrix represents rotation about the Y-axis by an angle 6

cos(f) 0 —sin(6)
0 1 0

sin(0) 0 cos()
0 0 0

R, =

= O O O

Atomic transformation matrices

Rotations — 3D case (rotation about Z-axis)

The following matrix represents rotation about the Z-axis by an angle v

cos(y) sin(y) 0 O

R — —sin(y) cos(y) 0 O
2 0 0 10
0 0 01

Atomic transformation matrices

Rotations — remarks

@ The order of rotations matters.
e R(—0) = RY6) = RT(0).

Quaternions

Problems with matrix representation of a rotation

Problems with matrix representation of a rotation

o We need to much floating-point values (nine while we just have
three degrees of freedom).

@ As a consequence of previous: expensive calculation.

@ It's hard to find intermediate rotations between two known rotations.

Quaternions

Scalar and vector parts

We can think about quaternions like an extension to complex numbers. A
number of the form
a+ 0i + 0j + 0Ok,

where a is a real number, is called real, and a number of the form
0+ bi + ¢ + dk,

where b, ¢, and d are real numbers, is called pure imaginary. If
a+ bi+ ¢j + dk

is any quaternion, then a is called its scalar part and bi + ¢j + dk is
called its vector part. The scalar part of a quaternion is always real, and
the vector part is always pure imaginary. Even though every quaternion is
a vector in a four-dimensional vector space, it is common to define a
vector to mean a pure imaginary quaternion. With this convention, a
vector is the same as an element of the vector space R3.

Hamilton called pure imaginary quaternions right quaternions and real
numbers (considered as quaternions with zero vector part) scalar
quaternions.

Quaternions

Tworzenie kwaterniona

struct QUATERNION
{

float x, y, z, w;

QUATERNION() { }
QUATERNION(float x, float y, float z, float w):

x(x), y(y), z(z), w(w) { }

Quaternions

Tworzenie kwaterniona

Jednostkowy kwaternion mozna utozsamia¢ z obrotem w przestrzeni 3D.
Kwaternion tworzy sie podajac jednostkowy wektor, ktérego kierunek
wskazuje 0$ obrotu oraz kat, o jaki chcemy obraca¢ wokét tego wektora
(zwykle w radianach).

Informacji tych nie wpisujemy jednak do sktadowych kwaterniona
bezposrednio. Trzeba je zakodowaé wedtug algorytmu jak na ponizszym
listingu, obliczajac najpierw sinus i cosinus potowy podanego kata.

void AxisToQuaternion (QUATERNION xOut,
2 const VEC3 &Axis ,

float Angle)
« {
Angle *= 0.5f;

6 float Sin = sinf(Angle);

Out—>x = Sin * Axis.x;
8 Out—>y = Sin x Axis.y;
Out—>z = Sin * Axis.z;

10 Out—>w cosf(Angle);

Quaternions

Tworzenie kwaterniona — szczegélne przypadki

Przypadkiem szczegdlnym jest obracanie wokét osi X, Y lub Z. Algorytm
znacznie sie wéwczas upraszcza i dla optymalizacji warto przygotowaé
osobne funkcje. Ponizej funkcja dla obrotu wokét osi X; dla pozostatych
przypadkéw nalezy postapi¢ analogicznie.

void QuaternionRotationX (QUATERNION %Out, float a)

{

a x= 0.5f;
Out—>x = sinf(a);
Out—>y = 0.0f;
Out—>z = 0.0f;
Out—>w = cosf(a);

Quaternions

As a set, the quaternions H are equal to R*, a four-dimensional vector
space over the real numbers. The quaternions looks a lot like a
four-dimensional vector, but it behaves quite differently.

H has three operations: addition, scalar multiplication, and quaternion
multiplication.

Quaternions

Operations: addition

Quaternions support some of the familiar operations from vector algebra,
such as vector addition. We have see a formula for addition - to
remember it, if

g=(r,v), geH, rcR, veR®
then
(rn, i) +(r2, o) = (412, vi +w).

However, we must remember that the sum of two unit quaternions
does not represent a 3D rotation, because such a quaternion would
not be of unit length.

Quaternions

Operations: multiplication

One of the most important operations we will perform on quaternions is
that of multiplication. Given two quaternions p and g representing two
rotations P and Q, respectively, the product pg represents the composite
rotation (i.e., rotation @ followed by rotation P'). We will restrict to the
multiplication which is used in conjunction with 3D rotations, namely the
Grassman product. If

q=(r,v), qeH, reR, veR®

then
(nyvi)(ra,ve) = (i —vi-va,nvo + nvy 4+ v1 X).

1Mind the order!

Quaternions

Operations: norm and normalization

g=(r,v), geH, reR, veR®
then norm |q| is defined as follows
lal = vqa=+/dq = \/r2 Tvitv+ v,

where G denotes conjugation (to be explain). To normalize vector the
following formula have to be used

normalize(q) q [VX y Yz r].

gl Llql lal lal gl

Quaternions

Operations: conjugate

Conjugate of a quaternion q is defined as follows

5:(%*”

where
q=(r,v), geH, reR, veR.

Quaternions

Operations: inverse

The inverse of a quaternion g is denoted g~ ! and is defined as a

quaternion which, when multiplied by the original, yields the scalar 1
(i.e., ¢~ =0i +0j + 0k + 1)
1 q
9 =75
lqf?
where
qg=(r,v), geH, rc R, veR3.

Quaternions

Operations: conjugate and inverse

What is nice, because in computer games quaternions represent 3D
rotations, they are always of unit length. So, for our purposes, the inverse
and the conjugate are identical:
—1 —
g =9
where
q=(r,v), geH, reR, veR.

Other properties

(Pq) = qp.

(pg) t=q'p "

Quaternions

Rotating vectors with quaternions

Rewrite vector v in quaternion form v,
vg = (0,v) =[vx v, v, 0].
The rotated vector v’ by a quaternion g can be found as follows

v/ = rotate(v,q) = qvaq .

Quaternions

Concatenation

Consider three distinct rotations, represented by the quaternions q;, ¢»
and g3. We want to apply rotation 1 first, followed by rotation 2 and
finally rotation3. The composite rotation quaternion geomp can be found
and applied to vector v (in its quaternion form, v,) to get rotated vector
v’ as follows

/ -1 _—-1_-1 _ —1
V' =439291Yqq1 9> 43 = GcompVq9comp-

Quaternions

Matrix equivalence

If we let
q=(rv)=[wv v.rl=[xyzw]
then matrix representation of 3D rotation M we can find as follow
1—2y? — 272 2xy + 2zw 2xz — 2yw

M = 2xy — 2zw 1—2x%2 —222 2yz + 2xw
2xz + 2yw 2yz — 2xw 1—2x2 —2y?

Quaternions

LERP — rotational linear interpolation

Given two quaternions ga and gg representing rotations A and B, we can

find an intermediate rotation g grp that is t percent of the way from A
to B as follows

giere = LERP(ga.gs.t) = {i=tlaattas

—t)qa+tqs|

)
(1
normalize (1
= (1
(1

Quaternions

SLERP — spherical linear interpolation

The problem with the LERP is that it effectively interpolates along a
chord of the hypersphere, rather than along the surface of the
hypersphere itself. This leads to rotational animations that do not have a
constant angular speed when the parameter t is changing at a constant
rate. The rotation will appear slower at the end points and faster in the
middle of the animation.

To solve this problem, we can use a variant of the LERP operation known
as spherical linear interpolation, or SLERP for short

SLERP(p, q, t) = tpp + tqq,

where
P sin((1—1)60)
P sin()
sin(t6)
ty = @)
and

6 = arccos(p - q).

	Change of basis
	Atomic transformation matrices
	Quaternions

