
Teoria i praktyka programowania gier

komputerowych
Podstawy gra�ki 3D

Piotr Fulma«ski

Wydziaª Matematyki i Informatyki,
Uniwersytet �ódzki, Polska

1 grudnia 2014

Spis tre±ci

1 Change of basis

2 Atomic transformation matrices

3 Quaternions

Change of basis

Any child-space position vector pC can be transformed into a
parent-space position vector pP as follows

pP = pCMC→P

where

MC→P =

iC 0
jC 0
kC 0
tC 1

and

iC is the unit basis vector along the child space X -axis, expressed in

parent space coordinates;

jC is the unit basis vector along the child space Y -axis, in parent

space;

kC is the unit basis vector along the child space Z -axis, in parent

space;

tC is the translation of the child coordinates system relative to
parent space.

A�ne transformations

Geometrically, a�ne transformations (a�nities) preserve collinearity. So
they transform parallel lines into parallel lines and preserve ratios of
distances along parallel lines.

A�ne transformations

Any a�ne transformation matrix can be created by simply concatenating
a sequence of 4× 4 matrices representing pure translations, pure scale
operations and pure rotations.
All a�ne 4× 4 transformation matrices can be partitioned into four
components [

M3×3 03×1
t1×3 11×1

]
where

the upper 3× 3 matrix M represents rotation and/or scale,

the lower 1× 3 vector t represents translation.

Atomic transformation matrices
Translation

The following matrix T translates a point p = [px py pz] by the vector
t = [tx ty tz] (p

′ is the translated point)

T =

1 0 0 0
0 1 0 0
0 0 1 0
tx ty tz 1

In consequence we have

p + t = [px py pz 1]

1 0 0 0
0 1 0 0
0 0 1 0
tx ty tz 1

= [(px + tx) (py + ty) (pz + tz)]

Atomic transformation matrices
Scaling

The following matrix S scales the point p = [px py pz] by a factor sx
along the X -axis, sy along the Y -axis, and sz along the Z -axis

S =

sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

In consequence we have

p + t = [px py pz 1]

sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

= [(sxpx) (sypy) (szpz)1]

Atomic transformation matrices
Rotations � 2D case

[image of rotating point p by φ degrees to point p′]

If we want to rotate point p by φ degrees to point p′, we have simply
that

p′x = |p′| cos(θ + φ)
p′y = |p′| sin(θ + φ)

and
px = |p| cos(θ)
py = |p| sin(θ)

Because we are dealing with rotations about the origin, thus we have

|p′| = |p|.

Atomic transformation matrices
Rotations � 2D case

Using the trigonometric identities for the sum of angles we have that

p′x = |p| cos(φ) cos(θ)− |p| sin(φ) sin(θ)
p′y = |p| cos(φ) sin(θ) + |p| sin(φ) cos(θ)

and �nally
p′x = px cos(φ)− py sin(φ)
p′y = px sin(φ) + py cos(φ)

Pushing this into matrix form

[p′x p′y] = [px py]

[
cos(φ) sin(φ)
− sin(φ) cos(φ)

]
Here, we have the rotation matrix for rotating a point in the X − Y

plane. Expanding this into 3D we have. . .

Atomic transformation matrices
Rotations � 3D case (rotation about X -axis)

The following matrix represents rotation about the X -axis by an angle φ

Rx =

1 0 0 0
0 cos(φ) sin(φ) 0
0 − sin(φ) cos(φ) 0
0 0 0 1

Atomic transformation matrices
Rotations � 3D case (rotation about Y -axis)

The following matrix represents rotation about the Y -axis by an angle θ

Ry =

cos(θ) 0 − sin(θ) 0

0 1 0 0
sin(θ) 0 cos(θ) 0
0 0 0 1

Atomic transformation matrices
Rotations � 3D case (rotation about Z -axis)

The following matrix represents rotation about the Z -axis by an angle γ

Rz =

cos(γ) sin(γ) 0 0
− sin(γ) cos(γ) 0 0

0 0 1 0
0 0 0 1

Atomic transformation matrices
Rotations � remarks

The order of rotations matters.

R(−θ) = R1(θ) = RT (θ).

Quaternions
Problems with matrix representation of a rotation

Problems with matrix representation of a rotation

We need to much �oating-point values (nine while we just have
three degrees of freedom).

As a consequence of previous: expensive calculation.

It's hard to �nd intermediate rotations between two known rotations.

Quaternions
Scalar and vector parts

We can think about quaternions like an extension to complex numbers. A
number of the form

a+ 0i + 0j + 0k,

where a is a real number, is called real, and a number of the form

0+ bi + cj + dk,

where b, c, and d are real numbers, is called pure imaginary. If

a+ bi + cj + dk

is any quaternion, then a is called its scalar part and bi + cj + dk is
called its vector part. The scalar part of a quaternion is always real, and
the vector part is always pure imaginary. Even though every quaternion is
a vector in a four-dimensional vector space, it is common to de�ne a
vector to mean a pure imaginary quaternion. With this convention, a
vector is the same as an element of the vector space R3.
Hamilton called pure imaginary quaternions right quaternions and real
numbers (considered as quaternions with zero vector part) scalar
quaternions.

Quaternions
Tworzenie kwaterniona

1 s t r u c t QUATERNION
{

3 f l o a t x , y , z , w ;

5 QUATERNION() { }
QUATERNION(f l o a t x , f l o a t y , f l o a t z , f l o a t w) :

7 x (x) , y (y) , z (z) , w(w) { }
} ;

Quaternions
Tworzenie kwaterniona

Jednostkowy kwaternion mo»na uto»samia¢ z obrotem w przestrzeni 3D.
Kwaternion tworzy si¦ podaj¡c jednostkowy wektor, którego kierunek
wskazuje o± obrotu oraz k¡t, o jaki chcemy obraca¢ wokóª tego wektora
(zwykle w radianach).
Informacji tych nie wpisujemy jednak do skªadowych kwaterniona
bezpo±rednio. Trzeba je zakodowa¢ wedªug algorytmu jak na poni»szym
listingu, obliczaj¡c najpierw sinus i cosinus poªowy podanego k¡ta.

vo i d Ax i sToQuate rn ion (QUATERNION ∗Out ,
2 con s t VEC3 &Axis ,

f l o a t Angle)
4 {

Angle ∗= 0.5 f ;
6 f l o a t S in = s i n f (Angle) ;

Out−>x = Sin ∗ Ax i s . x ;
8 Out−>y = Sin ∗ Ax i s . y ;

Out−>z = Sin ∗ Ax i s . z ;
10 Out−>w = co s f (Angle) ;

}

Quaternions
Tworzenie kwaterniona � szczególne przypadki

Przypadkiem szczególnym jest obracanie wokóª osi X , Y lub Z . Algorytm
znacznie si¦ wówczas upraszcza i dla optymalizacji warto przygotowa¢
osobne funkcje. Poni»ej funkcja dla obrotu wokóª osi X ; dla pozostaªych
przypadków nale»y post¡pi¢ analogicznie.

1 vo i d Quate rn ionRota t i onX (QUATERNION ∗Out , f l o a t a)
{

3 a ∗= 0.5 f ;
Out−>x = s i n f (a) ;

5 Out−>y = 0.0 f ;
Out−>z = 0.0 f ;

7 Out−>w = co s f (a) ;
}

Quaternions

As a set, the quaternions H are equal to R4, a four-dimensional vector
space over the real numbers. The quaternions looks a lot like a
four-dimensional vector, but it behaves quite di�erently.
H has three operations: addition, scalar multiplication, and quaternion
multiplication.

Quaternions
Operations: addition

Quaternions support some of the familiar operations from vector algebra,
such as vector addition. We have see a formula for addition � to
remember it, if

q = (r , v), q ∈ H, r ∈ R, v ∈ R3

then
(r1, v1) + (r2, v2) = (r1 + r2, v1 + v2).

However, we must remember that the sum of two unit quaternions

does not represent a 3D rotation, because such a quaternion would

not be of unit length.

Quaternions
Operations: multiplication

One of the most important operations we will perform on quaternions is
that of multiplication. Given two quaternions p and q representing two
rotations P and Q, respectively, the product pq represents the composite
rotation (i.e., rotation Q followed by rotation P1). We will restrict to the
multiplication which is used in conjunction with 3D rotations, namely the
Grassman product. If

q = (r , v), q ∈ H, r ∈ R, v ∈ R3

then
(r1, v1)(r2, v2) = (r1r2 − v1 · v2, r1v2 + r2v1 + v1 × v2).

1Mind the order!

Quaternions
Operations: norm and normalization

If
q = (r , v), q ∈ H, r ∈ R, v ∈ R3

then norm |q| is de�ned as follows

|q| =
√
qq =

√
qq =

√
r2 + v2x + v2y + v2z ,

where q denotes conjugation (to be explain). To normalize vector the
following formula have to be used

normalize(q) =
q

|q|
=

[
vx

|q|
vy

|q|
vz

|q|
r

|q|

]
.

Quaternions
Operations: conjugate

Conjugate of a quaternion q is de�ned as follows

q = (r ,−v)

where
q = (r , v), q ∈ H, r ∈ R, v ∈ R3.

Quaternions
Operations: inverse

The inverse of a quaternion q is denoted q−1 and is de�ned as a
quaternion which, when multiplied by the original, yields the scalar 1
(i.e., qq−1 = 0i + 0j + 0k + 1)

q−1 =
q

|q|2

where
q = (r , v), q ∈ H, r ∈ R, v ∈ R3.

Quaternions
Operations: conjugate and inverse

What is nice, because in computer games quaternions represent 3D
rotations, they are always of unit length. So, for our purposes, the inverse
and the conjugate are identical:

q−1 = q

where
q = (r , v), q ∈ H, r ∈ R, v ∈ R3.

Other properties
(pq) = qp,

(pq)−1 = q−1p−1.

Quaternions
Rotating vectors with quaternions

Rewrite vector v in quaternion form vq

vq = (0, v) = [vx vy vz 0].

The rotated vector v ′ by a quaternion q can be found as follows

v ′ = rotate(v ,q) = qvqq
−1.

Quaternions
Concatenation

Consider three distinct rotations, represented by the quaternions q1, q2
and q3. We want to apply rotation 1 �rst, followed by rotation 2 and
�nally rotation3. The composite rotation quaternion qcomp can be found
and applied to vector v (in its quaternion form, vq) to get rotated vector
v ′ as follows

v ′ = q3q2q1vqq
−1
1 q−12 q−13 = qcompvqq

−1
comp.

Quaternions
Matrix equivalence

If we let
q = (r , v) = [vx vy vz r] = [x y z w]

then matrix representation of 3D rotation M we can �nd as follow

M =

 1− 2y2 − 2z2 2xy + 2zw 2xz − 2yw
2xy − 2zw 1− 2x2 − 2z2 2yz + 2xw
2xz + 2yw 2yz − 2xw 1− 2x2 − 2y2

Quaternions
LERP � rotational linear interpolation

Given two quaternions qA and qB representing rotations A and B, we can
�nd an intermediate rotation qLERP that is t percent of the way from A

to B as follows

qLERP = LERP(qA,qB ,t) =
(1−t)qA+tqB
|(1−t)qA+tqB |

= normalize

(1− t)vAx + tvBx
(1− t)vAy + tvBy
(1− t)vAz + tvBz
(1− t)rA + trB

T
 .

Quaternions
SLERP � spherical linear interpolation

The problem with the LERP is that it e�ectively interpolates along a
chord of the hypersphere, rather than along the surface of the
hypersphere itself. This leads to rotational animations that do not have a
constant angular speed when the parameter t is changing at a constant
rate. The rotation will appear slower at the end points and faster in the
middle of the animation.
To solve this problem, we can use a variant of the LERP operation known
as spherical linear interpolation, or SLERP for short

SLERP(p, q, t) = tpp + tqq,

where
tp = sin((1−t)θ)

sin(θ) ,

tq = sin(tθ)
sin(θ) ,

and
θ = arc cos(p · q).

	Change of basis
	Atomic transformation matrices
	Quaternions

