
Teoria i praktyka programowania gier

komputerowych
Viewing transformations

Piotr Fulma«ski

Wydziaª Matematyki i Informatyki,
Uniwersytet �ódzki, Polska

2 grudnia 2015

Spis tre±ci

1 Aim of this lecture

2 Mview � viewport transformation

3 Morth � ortographic projection transformation

4 Mcam � camera transformation

5 P � projection transformation

6 Finall step

Aim of this lecture

Viewing transformations
The idea

Viewing transformations We assume that we are drawing a model
consisting only of 3D line segments that are speci�ed by the (x , y , z)
coordinates of their two end points. The viewing transformation we are
going to show now has mapp 3D locations (3D lines), represented as
(x , y , z) coordinates in some arbitrary coordinate system , to coordinates
in the image, expressed in units of pixels. This process depends on

the camera position and orientation,

the type of projection,

the �eld of view,

and the resolution of the image.

Viewing transformations
The idea

We can break up this complicated process in to a product of several
simpler steps (transformations). Most graphics systems do this by using a
sequence of three transformations

A camera transformation (or eye transformation), which is a rigid
body transformation that places the camera at the origin in a
convenient orientation. It depends only on the position and

orientation of the camera.

A projection transformation, which projects points from camera
space so that all visible points fall in the range from -1 to 1 for both
x and y . It depends only on the type of projection desired.

A viewport transformation (or windowing transformation), which
maps this unit image rectangle to the desired rectangle in pixel
coordinates. It depends only on the size and position of the

output image.

Viewing transformations
The idea

So we are looking for transformation matrix M

M = MviewMorthPMcam

where

Mview is a viewport transformation,

Morth is an ortographic projection transformation which projects
points from any cube (view volume) to uni�ed view volume where all
visible points fall in the range from -1 to 1,

P is a projection transformation, which projects points from camera
space to some cube,

Mcam is a camera transformation, which places the camera at the
cpeci�ed point of the world and look at speci�ed direction with
speci�ed orientation.

Mview � viewport transformation

Viewing transformations
Viewport transformation: uni�ed view volume

Let's introduce a concept of the uni�ed (sometimes we say: canonical)
view volume: this could be any (but �xed) arbitrarily chosen volume. In
our case the uni�ed view volume is the cube containing all 3D points
whose Cartesian coordinates x , y and z are between −1 and +1.
Now we assume that the geometry we want to view is described in this
uni�ed volume, and we wish to view it with an orthographic camera
looking in the −z direction. Se we project

x = −1 to the left side of the screen,

x = +1 to the right side of the screen,

y = −1 to the bottom of the screen,

y = +1 to the top of the screen.

Viewing transformations
Viewport transformation: convention

We use integer numbers as pixel coordinates. Physical pixel has some
dimensions and it's shape is square (or rectangular), so we can ask which
pixel's point has these integer coordinates?

Let's assume, that pixel's center point corresponds to integer coordinates.
Other words, for every pixel there is a corresponding unit square centered
at integer coordinates.

In consequence

the image boundaries have a half-unit overshoot from the pixel
centers;

the smallest pixel center coordinates are (0, 0);

we are drawing into an image (or window on the screen) that has nx
by ny pixels, we need to map the square [−1, 1]× [−1, 1] to the
rectangle [−0.5, nx − 0.5]× [−0.5, ny − 0.5].

Viewing transformations
Viewport transformation: windowing transformations � general case

Imagine that we need to create a transform matrix that takes points in
the rectangle [xsmin, xsmax]× [ysmin, ysmax] to the rectangle
[xtmin, xtmax]× [ytmin, ytmax]. It's not di�cult to note that this can be
accomplished with two transformation in sequence: a single scale and
translate. However, to �nd correct transformation it would be more
convenient to think about it as a sequence of three operations.

1 Move source rectangle so the point (xsmin, ysmin) is located in the
origin.

2 Scale the rectangle to be the same size as the target rectangle.

3 Move the origin to the point (xtmin, ytmin).

Viewing transformations
Viewport transformation: windowing transformations � general case: step 1

Step 1: move source rectangle

Move source rectangle so the point (xsmin, ysmin) is located in the origin.
We do this with move by a vector [−xsmin,−ysmin]. In matrix form, this
transformation (which is translation) takes form

Tsource→origin = Tso =

 1 0 −xsmin

0 1 −ysmin

0 0 1

To verify this, let's take a point p = (x , y), correct Tso matrix for it and
check if the result of calculation (xr , yr) returns a point (0, 0) xr

yr
1

 =

 1 0 −x
0 1 −y
0 0 1

 x

y

1

Viewing transformations
Viewport transformation: windowing transformations � general case: step 2

Step 2: scale the rectangle

Scale the rectangle to be the same size as the target rectangle.
Verify, that we do this with transformation (which is scaling) taking a
form

Tscale = Ts =

 xtmax−xtmin

xsmax−xsmin
0 0

0 ytmax−ytmin

ysmax−ysmin
0

0 0 1

Viewing transformations
Viewport transformation: windowing transformations � general case: step 3

Step 3: move the origin

Move the origin to the point (xtmin, ytmin).
We do this with move by a vector [xtmin, ytmin]. In matrix form, this
transformation (which is translation) takes form

Torigin→target = Tot =

 1 0 xtmin

0 1 ytmin

0 0 1

Viewing transformations
Viewport transformation: windowing transformations � general case: �nall widnow

transformation for 2D case

Tw = TotTsTso =

 xtmax−xtmin

xsmax−xsmin
0 xtminxsmax−xtmaxxsmin

xsmax−xsmin

0 ytmax−ytmin

ysmax−ysmin

ytminysmax−ytmaxysmin

ysmax−ysmin

0 0 1

Viewing transformations
Viewport transformation: windowing transformations � general case: �nall widnow

transformation for 3D case

An exactly analogous construction can be used to de�ne a 3D windowing
transformation

Tw =

xtmax−xtmin

xsmax−xsmin
0 0 xtminxsmax−xtmaxxsmin

xsmax−xsmin

0 ytmax−ytmin

ysmax−ysmin
0 ytminysmax−ytmaxysmin

ysmax−ysmin

0 0 ztmax−ztmin

zsmax−zsmin

ztminzsmax−ztmaxzsmin

zsmax−zsmin

0 0 0 1

Viewing transformations
Viewport transformation: solution

Going back to our problem: we need to map the uni�ed square
[−1, 1]× [−1, 1] to the screen rectangle [−0.5, nx − 0.5]× [−0.5, ny − 0.5]
what can be accomplished with windowing transformation xscreen

yscreen
1

 =

 nx
2

0 nx−1
2

0
ny
2

ny−1
2

0 0 1

 xuni�ed
yuni�ed

1

Viewing transformations
Viewport transformation: solution

Note that Mview matrix ignores the z-coordinate of the points in the
uni�ed view volume, because a point's distance along the projection
direction doesn't a�ect where that point projects in the image.
In spite of this, it's a good idea to keep information about z-coordinate
without changing it. We can use the z values to make closer surfaces
hide more distant surfaces.

Mview =

nx
2

0 0 nx−1
2

0
ny
2

0
ny−1
2

0 0 1 0
0 0 0 1

Morth � ortographic projection transformation to map points from any
cube (view volume) to uni�ed view volume where all visible points fall in
the range from -1 to 1

Viewing transformations
The orthographic projection transformation

Of course, we usually want to render geometry in some region of space
other than the uni�ed (canonical) view volume. In other words, we have
to map points from some arbitrary cube (volume)

to uni�ed volume [−1, 1]3.

Viewing transformations
The orthographic projection transformation

It's not di�cult to check that the following matrix does this
transformation

Morth =

2

r−l 0 0 − r+l
r−l

0 2
t−b 0 − t+b

t−b
0 0 2

n−f − n+f
n−f

0 0 0 1

Viewing transformations
The orthographic projection transformation

Verify that the Morth matrix transforms point from [l , r]× [b, t]× [f , n]
to [−1, 1]3: for example point (r , t, f) shoud be transformed to (1, 1,−1)

Mcam � camera transformation

Viewing transformations
The camera transformation

We'd like to able to change the viewpoint in 3D and look in any
direction. There are a multitude of conventions for specifying viewer
position and orientation. We will use the following one

the eye position e,

the gaze direction g ,

the view-up vector t.

Viewing transformations
The camera transformation

Viewing transformations
The camera transformation

Our job would be done if all points we wished to transform were stored in
coordinates with origin e and some new basis vectors u, v , and w . As we
can see, the coordinates of the model are stored in terms of the canonical
(or world) origin o and the x-, y -, and z-axes. Therefore we need to
convert the coordinates of the line segment endpoints we wish to draw
from xyz-coordinates into uvw -coordinates.

Viewing transformations
The camera transformation: coordinate system transformation

From geometric point of view a coordinate system (or coordinate frame)
consists of an origin and a basis which is a set of vectors. A basis in most
cases is orthonormal (which means that vectors are orthonormal, that is,
they are all unit vectors and orthogonal to each other).
In 2D case with origin e and basis {u, v}, the coordinates (up, vp)
describe the point

p = e + upu + vpv .

Similarly, we can express point p in terms of another coordinate system

p = o + xpx + ypy

(see next slide).

Viewing transformations
The camera transformation: coordinate system transformation

Viewing transformations
The camera transformation: coordinate system transformation

We can express this relationship using matrix transformation xp
yp
1

 =

 xu xv xe
yu yv ye
0 0 1

 up
vp
1

Note that this assumes we have the point e and vectors u and v stored in
some canonical coordinates which are is in this case from the
(x , y)-coordinate system.

Viewing transformations
The camera transformation: coordinate system transformation

In most cases we write this matrix like this

pxy =

[
u v e

0 0 1

]
puv

It takes points expressed in the (u, v) coordinate system and converts
them to the same points expressed in the (x , y) coordinate system (but
(u, v) coordinate system has to be described in the (x , y) coordinate
system terms).

Viewing transformations
The camera transformation: coordinate system transformation

Consider a following example:

e = (2, 2)

u = (1, 0)

v = (0, -1)

p_uv = (-1, -1)

so

| 0 1 2 |

p_xy = |-1 0 2 |p_uv => p_xy = (1, 3, 1)

| 0 0 1 |

Viewing transformations
The camera transformation: coordinate system transformation

Viewing transformations
The camera transformation: coordinate system transformation

In 3D case we have

pxyz =

[
u v w e

0 0 0 1

]
puvw

Viewing transformations
The camera transformation: coordinate system transformation

Notice that if we need transformation from xyz-coordinate system to
uvw -coordinate system

pxyz =

[
u v w e

0 0 0 1

]
puvw

Viewing transformations
The camera transformation: general case for constructing coordinate system

The cross product a× b is de�ned as a vector c that is perpendicular to
both a and b, with a direction given by the right-hand rule and a
magnitude equal to the area of the parallelogram that the vectors span.
The cross product is de�ned by the formula

a× b = (||a||||b|| sinφ)n,

where φ is the angle between a and b in the plane containing them, ||a||
and ||b|| are the magnitudes of vectors a and b, and n is a unit vector
perpendicular to the plane containing a and b in the direction given by
the right-hand rule if we use right-handed coordinate system. If a
left-handed coordinate system is used, the direction of the vector n is
given by the left-hand rule and points in the opposite direction.
In a right-handed system, we take our right hand and create a 90 angle
between our thumb and index �nger. Next we likewise make a 90 angle
between our index �nger and middle �nger. We then line up our index
�nger with a and middle �nger with b. The direction our thumb points in
is the direction the cross product will face.

Viewing transformations
The camera transformation: general case for constructing coordinate system

We can calculate vector c as

c = [aybz − azby , azbx − axbz , axby − aybx].

Viewing transformations
The camera transformation: general case for constructing coordinate system

We can calculate orthonormal basis that is aligned with a given vector.
That is, given a vector a, we want an orthonormal u, v , and w such that
w points in the same direction as a.
This can be done using cross products as follows.
First make w a unit vector in the direction of a:

w =
a

||a||

Then choose any vector t not collinear with w , and use the cross product
to build a unit vector u perpendicular to w :

u =
t × w

||t × w ||
.

Once w and u are in hand, completing the basis is simple:

v = w × u.

Viewing transformations
The camera transformation: construct coordinate system from vectors g and t

Using the construction we have just described we have

w =− g

||g ||

u =
t × w

||t × w ||
v =w × u

Viewing transformations
The camera transformation

If we combine

general case for coordinate system transformation

with new coordinate system from vectors g and t construction

we obtain

Mcam =

[
u v w e

0 0 0 1

]−1
=

xu yu zu 0
xv yv zv 0
xw yw zw 0
0 0 0 1

1 0 0 −xe
0 1 0 −ye
0 0 1 −ze
0 0 0 1

P � projection transformation

Perspective projection
Projective transformations: homogeneous coordinates

Homogeneous coordinates (pl. wspóªrz¦dne jednorodne) (or projective
coordinates are a system of coordinates used in projective geometry (pl.
geometrii rzutowej, as Cartesian coordinates are used in Euclidean
geometry. They have the advantage that the coordinates of points,

including points at in�nity, can be represented using �nite

coordinates. Formulas involving homogeneous coordinates are often
simpler and more symmetric than their Cartesian counterparts.
Homogeneous coordinates have a range of applications, including
computer graphics and 3D computer vision, where they allow a�ne
transformations and, in general, projective transformations to be easily
represented by a matrix.

Perspective projection
Projective transformations: homogeneous coordinates

De�nition

Given a point p = (x , y) on the Euclidean plane, for any non-zero real
number w , the triple (xw , yw ,w) is called a set of homogeneous
coordinates for the point p. By this de�nition, multiplying the three

homogeneous coordinates by a common, non-zero factor gives a

new set of homogeneous coordinates for the same point. In
particular, (x , y , 1) is such a system of homogeneous coordinates for the
point (x , y).

For example, the Cartesian point (1, 2) can be represented in
homogeneous coordinates as (1, 2, 1) or (2, 4, 2). The original Cartesian
coordinates are recovered by dividing the �rst two positions by the third.
Thus unlike Cartesian coordinates, a single point can be represented

by in�nitely many homogeneous coordinates.

Perspective projection
Projective transformations: homogeneous coordinates

Another de�nition of the real projective plane can be given in terms of
equivalence classes.

De�nition

For non-zero element of R3, de�ne (x1, y1, z1) ∼ (x2, y2, z2) to mean
there is a non-zero λ so that (x1, y1, z1) = (λx2, λy2, λz2). Then ∼ is an
equivalence relation and the projective plane can be de�ned as the
equivalence classes of R3 \ {0}. If (x , y , z) is one of the elements of the
equivalence class p then these are taken to be homogeneous coordinates
of p.

Perspective projection
Projective transformations: homogeneous coordinates

Of course both previous de�nition are equivalent, but focus on di�erent
aspects of homogeneous coordinates. Let's consider a following example.

The point x = 2 is represented by any point on the line x = 2w .
However, before we interpret x as a conventional Cartesian coordinate,
we �rst divide by w to get (x ,w) = (2, 1).

Viewing transformations
Perspective projection

Let's see now why the homogeneous coordinates could be a right tool to
solve our perspective projection problem. Summarize the environment
assumption and what the perspective projection transformation needs to
do with points in camera space.

The viewpoint (the viewer's eye) e is positioned at the origin.

The camera is looking along the z-axis. The gaze direction g direct
into negative part of z-axis.

The view plane is a distance d from viewpoint (the eye).

A point p is projected toward e and where it intersects the view
plane is where it is drawn. This is how we get p′ point.

Viewing transformations
Perspective projection

Recall homogeneous coordinates example image and compare it with the
following image

Viewing transformations
Perspective projection

Note that with the above assumptions, the size of an object on the view
plane (the screen) is proportional to 1/z for an eye at the origin looking
up the negative z-axis. This can be expressed more precisely in an
equation for the geometry

y ′ =
d

z
y

So, the division by z is required to implement perspective.

Viewing transformations
Perspective projection

Now it should be clear why the mechanism of projective transformations
and homogeneous coordinates makes it simple to implement the division
by z required to implement perspective. This type of transformation, in
which one of the coordinates of the input vector appears in the
denominator, can't be achieved using a�ne transformations like
translations, scaling or rotation.

Viewing transformations
Perspective projection

In the 2D example, we can implement the perspective projection with a
matrix transformation as follows[

dy
z

1

]
=

[
y ′

1

]
∼
[

dy

z

]
=

[
d 0 0
0 1 0

] y

z

1

Viewing transformations
Perspective projection

Following the above idea, the general perspective projection matrix in 3D
can be as follow (we use n which means near to denote d ; f means far)

P =

n 0 0 0
0 n 0 0
0 0 n + f −fn
0 0 1 0

P

x

y

z

1

 =

nx

ny

z(n + f)− fn

z

 ∼

nx
z
ny
z

n + f − fn
z

1

Viewing transformations
Perspective projection

The �rst, second, and fourth rows simply implement the perspective
equation. A little bit odd is the third row. This row is designed to save
somehow the z-coordinate so that we can use it later for hidden surface
removal. In the perspective projection, though, the addition of a
non-constant denominator (z) prevents us from actually preserving the
value of z � it's actually impossible to keep z from changing while
getting x and y to do what we need them to do. Instead we've opted to
keep z unchanged for points on the near or far planes.
There are many matrices that could function as perspective matrices, and
all of them non-linearly distort the z-coordinate. The matrix P has the
nice properties: it leaves points on the near plane entirely alone, and it
leaves points on the far plane while �squishing� them in x and y by the
appropriate amount (see next slide). The transformation also preserves
the relative order of z values between near and far plane, allowing us to
do depth ordering after this matrix is applied. This will be important
when we do hidden surface elimination.

Viewing transformations
Perspective projection: properties

The perspective projection leaves points on the near plane
unchanged and maps the large far rectangle at the back of the
perspective volume to the small far rectangle at the back of the
orthographic volume.

Viewing transformations
Perspective projection: properties

The perspective projection maps any line through the origin (eye) to
a line parallel to the z-axis and without moving the point on the line
at near plane.

Viewing transformations
Finall step

Now we know all the components of the �nall prespective viewing matrix
from the beginning of this lecture

M = MvMorthPMcam

The values l , r , b and t are determined by the window throught which
we look. Notice that sometimes matrices Morth and P are combined into
one matrix Mper,

Mper =

2n
r−l 0 l+r

l−r 0

0 2n
t−b

b+t
b−t 0

0 0 f+n
n−f

2fn
f−n

0 0 1 0

so the �nal matrix M takes the form

M = MvMperMcam

Viewing transformations
Finall step

In consequence we can express the �nall algorithm as follow

compute matrix M

for each line segment (a_i, b_i) do

p = Ma_i

q = Mb_i

draw line from (x_p/w_p, y_p/w_p) to (x_q/w_q, y_q/w_q)

	Aim of this lecture
	Mview — viewport transformation
	Morth — ortographic projection transformation
	Mcam — camera transformation
	P — projection transformation
	Finall step

