
Game loop and time

Piotr Fulma«ski

Wydziaª Matematyki i Informatyki,
Uniwersytet �ódzki, Polska

8 pa¹dziernika 2015



Table of contents



Game loop

A traditional game loop is broken up into three distinct phases

processing inputs,

updating the game world,

and generating outputs.



Game loop

At a high level, a basic game loop might look like this:

while game is running

process inputs

update game world

generate outputs

loop



Time and Games
Real Time and Game Time Logic as a Function of Delta Time

Take into account very common part of the game code

// Update x position by 5 pixels

enemy.position.x += 5

X MHz → 150px
XX MHz → ??? 300px ???
Wow! It's to fast to play!
To solve this issue, we need to introduce the concept of delta time: the
amount of elapsed game time since the last frame.



Time and Games
Real Time and Game Time Logic as a Function of Delta Time

Take into account very common part of the game code

// Update x position by 5 pixels

enemy.position.x += 5

X MHz → 150px
XX MHz → ??? 300px ???
Wow! It's to fast to play!
To solve this issue, we need to introduce the concept of delta time: the
amount of elapsed game time since the last frame.



Time and Games
Real Time and Game Time Logic as a Function of Delta Time

Take into account very common part of the game code

// Update x position by 5 pixels

enemy.position.x += 5

X MHz → 150px
XX MHz → ??? 300px ???
Wow! It's to fast to play!
To solve this issue, we need to introduce the concept of delta time: the
amount of elapsed game time since the last frame.



Time and Games
Real Time and Game Time Logic as a Function of Delta Time

Take into account very common part of the game code

// Update x position by 5 pixels

enemy.position.x += 5

X MHz → 150px
XX MHz → ??? 300px ???
Wow! It's to fast to play!
To solve this issue, we need to introduce the concept of delta time: the
amount of elapsed game time since the last frame.



Time and Games
Real Time and Game Time Logic as a Function of Delta Time

Take into account very common part of the game code

// Update x position by 5 pixels

enemy.position.x += 5

X MHz → 150px
XX MHz → ??? 300px ???
Wow! It's to fast to play!
To solve this issue, we need to introduce the concept of delta time: the
amount of elapsed game time since the last frame.



Use delta time

In order to convert the preceding pseudocode to use delta time, we need
to think of the movement not in terms of pixels per frame, but in

terms of pixels per second.



Use delta time

So if the ideal movement speed is 150 pixels per second, this pseudocode
would be preferable

// Update x position by 150 pixels/second

enemy.position.x += 150 * deltaTime



Use delta time

Now the code will work perfectly �ne regardless of the frame rate.

At 30 FPS, the enemy will move 5 pixels per frame, for a total of
150 pixels per second.

At 60 FPS, the enemy will only move 2.5 pixels per frame, but that
will still result in a total of 150 pixels per second.

The movement certainly will be smoother in the 60 FPS case, but the
overall per-second speed will be identical.



Use delta time

Now the code will work perfectly �ne regardless of the frame rate.

At 30 FPS, the enemy will move 5 pixels per frame, for a total of
150 pixels per second.

At 60 FPS, the enemy will only move 2.5 pixels per frame, but that
will still result in a total of 150 pixels per second.

The movement certainly will be smoother in the 60 FPS case, but the
overall per-second speed will be identical.



Use delta time

But how do you calculate what the delta time should be every frame?

First, the amount of real time that has elapsed since the previous
frame must be queried.

Once the elapsed real time is determined, it can then be converted
to game time. Depending on the state of game, this may be
identical in duration or it may have some factor applied to it.



Use delta time

But how do you calculate what the delta time should be every frame?

First, the amount of real time that has elapsed since the previous
frame must be queried.

Once the elapsed real time is determined, it can then be converted
to game time. Depending on the state of game, this may be
identical in duration or it may have some factor applied to it.



Use delta time

realDeltaTime = 0.0f;

lastUpdateTime = GetCurrentTime();

gameTimeFactor = 1.0;

while game is running

realDeltaTime = GetCurrentTime() - lastUpdateTime

lastUpdateTime += realDeltaTime

gameDeltaTime = realDeltaTime * gameTimeFactor

GrabInput();

UpdateGame(gameDeltaTime);

RenderGame();

loop



Problems with game delta time

Although it may seem like a great idea to allow the simulation to run at
whatever frame rate the system allows, in practice there can be several
issues with this. Most notably, any game that has even basic physics
(such as a platformer with jumping) will have wildly di�erent behavior
based on the frame rate. This is because of the way numeric integration
works, and can lead to oddities such as characters jumping higher at lower
frame rates. Furthermore, any game that supports online multiplayer
likely will also not function properly with variable simulation frame rates.



Issues with variable time steps

Once you are using numeric integration, you more or less cannot use
variable time steps. That's because the accuracy of numeric integration is
wholly dependent on the size of the time step. The smaller the time step,
the more accurate the approximation.
This means that if the time step changes from frame to frame, the

accuracy of the approximation would also change from frame to

frame. If the accuracy changes, the behavior will also change in very
noticeable ways.



Solution (incorrect)

The simplest solution is to implement frame limiting, which forces the
game loop to wait until a target delta time has elapsed.
For example, if the target frame rate is 30 FPS (a new frame is generated
every 33ms) and only 20ms has elapsed when all the logic for a frame has
completed, the loop will wait an additional 13.3ms before starting its
next iteration.



Solution (incorrect)

realDeltaTime = 0.0

lastUpdateTime = GetCurrentTime()

gameTimeFactor = 1.0

targetFrameTime = 33.3 // 33.3ms for 30 FPS

while game is running

realDeltaTime = GetCurrentTime() - lastUpdateTime

lastUpdateTime += realDeltaTime

gameDeltaTime = realDeltaTime * gameTimeFactor

GrabInput()

UpdateGame(gameDeltaTime)

RenderGame()

while (time spent this frame) < targetFrameTime

// Do something to take up a small amount of time

...

loop

loop



Problems with this solution

This solution does not guarantee that game world would be updated with
constant rate. Imagine that update for some frame took

less than targetFrameTime. In this case inner while would be
executed few times to consume free time. Thanks to this, next
iteration of main while should start (more or less) exactly when
targetFrameTime elapse. So we would update game world with
time step equal to targetFrameTime

more than targetFrameTime. Then realDetlaTime would be
greater than targetFrameTime and we would update game world
with time step di�erent (greater) than targetFrameTime



Problems with this solution

realDeltaTime = 0.0

lastUpdateTime = GetCurrentTime()

gameTimeFactor = 1.0

targetFrameTime = 33.3 // 33.3ms for 30 FPS

while game is running

realDeltaTime = GetCurrentTime() - lastUpdateTime

lastUpdateTime += realDeltaTime

gameDeltaTime = realDeltaTime * gameTimeFactor

GrabInput()

UpdateGame(gameDeltaTime) !!! NOT CONSTANT !!!

RenderGame()

while (time spent this frame) < targetFrameTime

// Do something to take up a small amount of time

...

loop

loop



Problems with this solution

The main problem is that given solution focus on correct �frame rate� for
graphics but not physics. We can say that �frame rate� for physics is the
same as for graphics. Yes, it's true but the length of delta time used by
UpdateGame method � physic method � varies form frame to frame.



Solution (correct)

realDeltaTime = 0.0

lastUpdateTime = GetCurrentTime()

gameTimeFactor = 1.0

targetFrameTime = 33.3 // 33.3ms for 30 FPS; this is our TIME STEP

accumulator = 0.0

while game is running

realDeltaTime = GetCurrentTime() - lastUpdateTime

lastUpdateTime += realDeltaTime

accumulator += realDeltaTime

gameDeltaTime = realDeltaTime * gameTimeFactor

GrabInput()

while (accumulator > targetFrameTime)

UpdateGame(targetFrameTime) !!! NOW THIS IS CONSTANT !!!

accumulator -= targetFrameTime

loop

RenderGame()

loop


