Artificial intelligence in games
Pathfinding

Piotr Fulmanski

piotr@fulmanski.pl

3 listopada 2016

mailto:piotr@fulmanski.pl

© Introduction

© The algorithm
@ The search space
o Calculating path cost
@ Initialization
@ Main loop
e A* summary

© A* example
e Why A* not A?

© Precalculated pathfinding
o Idea
@ Lookup table
@ Dynamic state space

Table of contents

Description of the problem

Pathfinding is the finding a shortest route between two given points S
(starting) and F (final). An initial data set consist of

state space — a data structure which ,describes” the area where we will
search for the solution;

starting point - initial position (point) in our state space;
final point — destination position (point) in our state space; the
location we want to reach.
As a result we want to get path (sequence of intermediate points) from a
starting to a final point.
Please notice that in this presentation terms: position, point and location
will be used interchangeably.

A* or not A*?

The most common name of the algorithm I'm going to describe in this
presentation is A*. Despite this you should know that it can be classified
to certain more general classes of pathfinding algorithms and in
consequence can have different names.

For example the A* algorithm is an example of best-first search algorithm
which explores a graph by selecting and expanding the most promising
node chosen according to a specified rules. Some rules and conditions
imposed on selecting the node we call the most promising node turns
best-first search into A*.

On the other hand a well known Dijkstra’s algorithm can be treated as an
uninformed, less powerful, special case of the A* search algorithm.

The search space

Generally speaking, the search state space is a graph where different
nodes are different locations and edges are possible path (transitions)
from one location to the other.

The search space

For tile games, where locations are squares, rhombus or hexagons, we can
think about search state space as an array.

Calculating path cost

In this algorithm the location cost (evaluation function) f(n) related to
location n is calculated based on two factors.

@ g(n) cost-to-come which is the movement cost to move from the
starting point S to a point n. This value is precise and well known
because in this algorithm we know the path from starting point to a
location n being evaluated (we evaluate points only from a special
set — more about this in the next part of this material).

@ h(n) cost-to-go which is the estimated movement cost to move from
a point n to the final point F. This is often referred to as the
heuristic (ancient greek: find or discover). The reason it is so called
that is because it is a guess. We really don't know the actual
distance. Yes, after all we are just searching the path, co we don't
know the final or any partial cost.

More about h function

Value of the h function can be estimated in a variety of ways. One of the
simplest we can use is the Manhattan method where we calculate the
sum of horizontal and vertical difference in coordinates between two
points. In a square world (tail games with square locations) this is equal
the total number of squares moved horizontally and vertically to reach
the final square from the starting square, ignoring all diagonal movement,
and obstacles that may be in the way.

More about h function

Other option is Euclidean distance calculated simply as we do when we
want to find a distance bewten points on a plain with a ruler.

More about h function

Inadmissible heuristic

We can think about the heuristic as a rough estimate of the distance
between two points. Of course we are trying to estimate the distance
along the path as precise as we can. The closer our estimate is to the
actual remaining distance, the faster the algorithm will be. If we
overestimate this distance, however, it is not guaranteed to give us the
shortest path. In such cases, we have what is called an inadmissible
heuristic.

The Manhattan method is inadmissible because it slightly overestimates
the remaining distance. Despite this it is used because of simplicity (it is
easy to calculate and explain it), and because it is only a slight
overestimation. On the rare occasion when the resulting path is not the
shortest possible, it will be nearly as short. Please note also that
pathfinding is very local in a sense that we search a path for a certain
situation in a game. In most cases games are not static and the game
world changes constantly so the path we have found 1-2 seconds ago
could be now outdated — it doesn’t matter if it was optimal or not.

Initialization

To initialize the algorithm we have to

@ Initialize OPEN data structure as a priority queue; priority is a
number, the lower it is, the more importane queue’s element is;

@ Initialize CLOSED data structure as a set data structure (or any other
data structure such that we can verify if a given element belongs to
it or not);

@ Evaluate point S (calculate f(S) for it) and add it to the OPEN.

Main loop

@ As long as OPEN is not empty repeat
® Choose the best point (the one with the highest priority which means
the lowest evaluation value f) from all those that are in the OPEN
queue, remove it from OPEN, call it n and add it to CLOSED.
@ If nis the final point, backtrace path to n (through recorded parents)
and return path.
© For each child from n’s children
@ If child is not in CLOSED, and it is not in OPEN then evaluate it, add
it to OPEN, and save information about its parent.
@ Else if child is in OPEN then evaluate it, adjust its priority in OPEN
using this new evaluation and change its recorded parent.
© Else child is in CLOSED then do nothing with it.

@ There is no path from S to F; return an empty path.

A* summary

Now we are going to formulate A* algorithm as a pseudocode. We will
use the following calls

@ open.add(name, priority, parent)
to add point name whose parent is parent to the priority queue with
priority priority.

@ open.update(name, priority, parent)
to update point name: set its parent as parent and priority as
priority.

@ n.getChildren()
to get all points connected directly with point n.

A* summary

Algorithm 1 Pseudocode for the A* algorithm (part 1/2)
1: function findPathWithAStar
2: open := new PriorityQueue
3: closed := new Set
4 open.add(S, eval(S), null)

A* summary

Algorithm 2 Pseudocode for the A* algorithm (part 2/2)
5: while (lopen.isEmpty()) do

6: n := open.get() > Step 4.1
7: closed.add(n)

8: if n = F then

9: return backtracked path

10: end if

11: for all child in n.getChildren() do

12: if |(closed.has(child)||open.has(child)) then

13: open.add(child, eval(child), n)

14: else if open.has(child) then

15: open.update(child, eval(child), n)

16: end if

17: end for

18: end while

19: return null > There is no path from S to F

20: end function

A* example
Definition of g and h

A* example

Definition of state space

We do steps 1-3 from the algorithm
(2-4 from pseudocode). Point A is
our starting point S, point L — final
F. Euclidean distance from S to F is
5

open = [(A,(5=0+5), null)]
closed = []

A* example

Initialization

Remove the best (most promising)
point — A point — from open queue
and add it to closed. Find all
children of point A and add them
(B1, B2, B3, B4) to open queue.

open = [(B4,(5=1+4), A),
(B1,(6.09=1+5.09), A),
(B3, (6.09=1+5.09), A),
(B2, (7=1+6), A)
]

closed = [(A, (5=045), null)]

A* example

Loop iteration: 1

A* example

Loop iteration: 2

Remove the best point (B4) from
open queue and add it to closed.
Find all children of point B4 and
add them (C) to open queue.

open = [(C,(5=2+3), B4),
(B1,(6.09=1+5.09), A),
(B3, (6.09=1+5.09), A),
(B2, (7=1+6), A)
]
closed = [A, B4]

A* example

Loop iteration: 3

Remove the best point (C) from
open queue and add it to closed.
Find all children of point C and add
them (D) to open queue.

open = [(D,(5=3+2), C),
(B1,(6.09=1+5.09), A),
(B3, (6.09=1+5.09), A4),
(B2, (7=1+6), A)
]
closed = [A, B4, C]

A* example

Loop iteration: 4

Remove the best point (D) from
open queue and add it to closed.
Find all children of point D and add
them (E1, E2) to open queue.

open = [(B1,(6.09=1+5.09), A),
(B3, (6.09=1+5.09), A),
(E1,(6.23=4+2.23), D),
(E2,(6.23=4+2.23), D),
(B2, (7=1+6), A)

]
closed = [A, B4, C, D]

A* example

Loop iteration: 5

Remove the best point (B1) from
open queue and add it to closed.
Find all children of point B1 and
add them (F) to open queue?.

open = [(B3,(6.09=1+5.09), A4),
(E1,(6.23=4+2.23), D),
(E2,(6.23=4+2.23), D),
(B2, (7=1+6), A),
(F,(7.38=2+5.38), B1),
]
closed = [A, B4, C, D, Bi]

?Please do not confuse F wich is a child of B1 with our goal F.

A* example

Loop iteration: 6

Remove the best point (B3) from
open queue and add it to closed.
Find all children of point B3 and
add them (G) to open queue.

open = [(E1,(6.23=4+2.23), D),
(E2,(6.23=4+2.23), D),
(B2, (7=1+6), A),
(F,(7.38=2+5.38), Bl),
(G,(7.38=2+5.38), B3),
]
closed = [A, B4, C, D, Bi, B3]

A* example

Loop iteration: 7

Remove the best point (E1) from
open queue and add it to closed.
Find all children of point E1 and
add them (H) to open queue.

open = [(E2,(6.23=4+2.23), D),
(B2, (7=1+6), A),
(F,(7.38=2+5.38), B1),
(G, (7.38=2+5.38), B3),
(H, (7.82=5+2.82), E1),

]
closed = [A, B4, C, D, Bl, B3,
E1l]

A* example

Loop iteration: 8

Remove the best point (E2) from
open queue and add it to closed.
Find all children of point E2 and
add them (/) to open queue

open = [(I,(6.41=5+1.41), E2),
(B2, (7=1+6), A),
(F,(7.38=2+5.38), B1),
(G, (7.38=2+5.38), B3),
(H,(7.82=5+2.82), E1),

]
closed = [A, B4, C, D, B1, B3,
E1, E2]

A* example

Loop iteration: 9

Remove the best point (/) from
open queue and add it to closed.
Find all children of point / and add
them (J) to open queue.

open = [(B2,(7=1+6), A),
(J,(7=6+1), I),
(F,(7.38=2+5.38), B1),
(G, (7.38=2+5.38), B3),
(H,(7.82=5+2.82), E1),

]
closed = [A, B4, C, D, Bi, B3,
E1l, E2, I]

A* example

Loop iteration: 10

Remove the best point (B2) from
open queue and add it to closed.
Find all children of point B2 and
add them (K) to open queue.

open = [(J,(7=6+1), I),
(F,(7.38=2+5.38), B1l),
(G,(7.38=2+5.38), B3),
(H,(7.82=5+2.82), E1),
(K, (9=2+7, B2)

]
closed = [A, B4, C, D, B1, B3,
E1, E2, I, B2]

A* example

Loop iteration: 11

Remove the best point (J) from
open queue and add it to closed.
Find all children of point J and add
them (L1, L2) to open queue.

open = [(L1,(7=7+0), J),
(F,(7.38=2+5.38), B1),
(G, (7.38=2+5.38), B3),
(H, (7.82=5+2.82), E1),
(L2,(8.41=7+1.41, J),
(K, (9=2+7, B2)

]
closed = [A, B4, C, D, B1, B3,
E1l, E2, I, B2, J]

Remove the best point (L1) from
open queue and add it to closed.
Because point L1 is our final point
F we can return backtracked path
(A B4, C, D, E2, I, J, L1)

open = [(L1,(7=7+0), J),
(F,(7.38=2+5.38), B1),
(G, (7.38=245.38), B3),
(H,(7.82=5+2.82), E1),
(L2,(8.41=7+1.41, J),
(K, (9=2+7, B2)
]

closed = [A, B4, C, D, B1, B3,

E1, E2, I, B2, J, L1i]

A* example

Loop iteration: 11

Why do we have a * in the name of the algorithm?

The star (*) symbol cames from optimization theory where is used to
denote optimal solution of something. Strictly speaking, the algorithm
described so far is an A algorithm. We can turn it into optimal A* if we
choose correct heuristic function h. From theoretical point of view, h
should be admisible heuristic, i.e., such that h(n) < h*(n). The A search
with an admissible heuristic is called A*, which is guaranteed to be
optimal.

How to find an admissible heuristic? A hint is that such heuristic function
shoud never overestimates the actual cost-to-go. A good examples of
admissible heuristics are

e h(n) = 0 this always works, but it's not hard to guess that it is not
very useful because reduced A* algorithm to so called Uniform Cost
Search algorithm which is complete and optimal but not to fast.

e h(v) = distance(n, F), when the vertices of the graphs are physical
locations.

e h(v) =||n— F||,. when the vertices of the graph are points in a
normed vector space.

Precalculated pathfinding

It turns out that much of information needed for pathfinding is static,
and can be precalculated ahead of time. In most cases a game world is
static or semi-static in a sense that changes are prepare for game
designers so they know how it would evolve. In these circumstances some
pathfinding procedures, even time consuming, can be done before a game

will go on sale.

Precalculated pathfinding

Idea: optimal substructure

One thing worth to note is that pathfinding problem has optimal
substructure: we can take any subsegment B-C on a shortest path A-D
and that subsegment is guaranteed to be the shortest path between two
points B-C located on path A-D.

Given that the route A-B-C-D is the shortest route from A to D, the
shortest route from B to D is B-D even if there are other alternative
paths. In some sense it has recursiv nature: any given shortest route is
made up of smaller shortest routes. If there exist a shortest route from B
to D, then the shortest route from A to D would have to be

route(A, D) := findRoute(A, B) + route(B, D)

Precalculated pathfinding

Idea: one step ahead

Second key obervation very important to note is that while we're at A, it
doesn’t actually matter to us what the shortest route from B to D is. We
don't need to calculate route(B, D). We don't need any part of it until
we are actually at B, and even then on the same way, we only need to
know the first step of the route. So we don't need the whole path but
only information about next step. Calculating the whole path could be a
waste of time if, for example, we would change our target in a next step.

Precalculated pathfinding

Lookup table (example: state space)

Consider the sample state space depicted as a graph

Al B E A-B-C
Bl AC,E \
c| B, D E |
DI C E \ |
E || A B, D D

Precalculated pathfinding

Lookup table (example: generation)

Having a state space we can use any pathfinding algorithm to generate a
lookup table. This table is built by finding the path from each given node
to each given node, and storing the first (non-starting) node in the path.

m(Q| O T >

From this table we know that E is a first non-starting node on the best
path from D to B.

Precalculated pathfinding

Lookup table (example: usage)

To use the lookup table, all we need to know is our current location
(starting point), and our destination (finall point). Current location

determines a row in lookup table, while destination a column. At the
intersection of row and column we can find a node we should go to.

Precalculated pathfinding

Dynamic state space

When the state space is dynamic, i.e. new nodes or edges can
(dis)appear, lookup table also should be dynamic. This means that we
should recalculate it. It might be a problem. The question is: How to
update lookup table to make as little changes as it is possible?

In the next part we will explain a simple algorithm we can use to solve
this problem.

Precalculated pathfinding

Dynamic state space (example: initialization)

As for A* algorith, we need two lists:

an open and closed. The open list open =
represents nodes that we need to closed
check for updates, and the closed

list represents nodes we have already

checked.

Now let’s say that connection from

A to E was removed. In consequence

both nodes should be added to open

list, while closed should be empty.

[A, E]

(1

Select and remove first node from
open (A), add it to closed and
rebuild its row in the lookup table.
Because the row has changed, we
have to add all node's neighbors
which are not yet opened or closed
to the open list.

Precalculated pathfinding

Dynamic state space (example: iteration 1)

open = [E, B]
closed = [A]

The oryginal row

Select and remove first node from
open (E), add it to closed and
rebuild its row in the lookup table.
Because the row has changed, we
have to add all node's neighbors
which are not yet opened or closed
to the open list.

Precalculated pathfinding

Dynamic state space (example: iteration 2)

open =
closed

(B, D]
= [A, E]

The oryginal row

[A|B|C|D]|E
E[A[B[B[D]

The rebuilded row
|A[B|C|D]|E
EB|B[B[D]

Select and remove first node from
open (B), add it to closed and
rebuild its row in the lookup table.
Because the row has changed, we
have to add all node's neighbors
which are not yet opened or closed
to the open list.

Precalculated pathfinding

Dynamic state space (example: iteration 3)

open =
closed

(D]
= [A, E, B]

The oryginal row

[AlB|C|D]|E
BA]l [C|EJE

The rebuilded row hasn’t changed

[AlB|C|D]|E
BlAl [ClEJE

Select and remove first node from
open (D), add it to closed and
rebuild its row in the lookup table.
Because the row has changed, we
have to add all node's neighbors
which are not yet opened or closed
to the open list.

Precalculated pathfinding

Dynamic state space (example: iteration 4)

open =
closed

(]
= [A, E, B, D]

The oryginal row

|A[B|C|D]|E
DIEJE[C] [E

The rebuilded row hasn’t changed

|A[B|C|D]|E
DIEJE[C] |E

Precalculated pathfinding

Dynamic state space (example: summary)

Notice that we didn't have to check node C. To summarize: two rows
was recalculated (red ones in the table below), two other was examined
but hasn't changed (yellow) and one left untouched (white).

[A[B|C|D|E

A || BB BBl
B A ClE|E
cCl[B|B DB
DIEJE]|C E
EBB[B]|D

	Introduction
	The algorithm
	The search space
	Calculating path cost
	Initialization
	Main loop
	A* summary

	A* example
	Why A* not A?

	Precalculated pathfinding
	Idea
	Lookup table
	Dynamic state space

