
2D graphics
Double bu�ering and sprites

Piotr Fulma«ski

Wydziaª Matematyki i Informatyki,
Uniwersytet �ódzki, Polska

27 pa¹dziernika 2016

Table of contents

2D game?

Yes, this may seem strange in the contemporary world, but 2D graphics is
still on the top. Why? Because

Gamers are drawn toward 2D because of the purity and simplicity of
the games.

Developers are drawn to 2D because the typical budget and team
can be much smaller.

It should be noted that many of the game topics, whether physics, sound,
or UI programming, are equally applicable in both 2D and 3D games.

Not only 2D rendering foundations

To fully understand 2D rendering, it is important to understand the
limitations of display devices when these techniques were �rst developed.
Even though we now almost exclusively use LCD or plasma displays,
many of the rendering concepts that were originally developed with older
monitors in mind are still in use today.

Ancient CRT monitor basics

For many years, cathode ray tube (CRT) displays were the predominant
display technology. A CRT features an array of picture elements known
as pixels. For a color display, each pixel contains a red, green, and blue
sub-pixel, which can then be combined to create speci�c colors. The
resolution of the display determines the total number of pixels. For
instance, a 300x200 display would have 200 total rows, or scan lines, and
each scan line would have 300 pixels, for a grand total of 60,000 pixels.
The (0,0) pixel usually refers to the top-left corner, though not all
displays follow this format.
In a CRT, all of the drawing is done by an electron gun that �res a
narrow stream of electrons. This gun starts drawing in the top-left corner
of the screen and shifts its aim across horizontally to draw the �rst scan
line. It then repositions its aim so it can start all the way at the start of
the subsequent scan line, repeating this process until all scan lines have
been drawn.

Ancient CRT monitor basics

The vertical blank interval (VBLANK)

When the electron gun has �nished drawing one frame, should be
positioned at the bottom-right corner of the CRT. The amount of time it
takes for the electron gun to shift its aim from the bottom-right corner
all the way back to the top-left corner is known as the vertical blank
interval (VBLANK).

Screen tearing
First problem: no sync

Contemporary hardware featured more than enough memory to have a
color bu�er that could store the pixel data for the entire screen at once.
This did not mean that the game loop could ignore the CRT gun entirely.
Suppose the electron gun is half way through drawing the screen. At this
exact time, it just so happens that the game loop hits the �generate
outputs� phase. So it starts writing the pixel information into the
color bu�er for the next frame, while the CRT is still drawing the
previous (last) frame. The result of this is screen tearing, which is
when the screen shows part of two di�erent frames at once.

Screen tearing
Second problem: too much time consumed by frame generation

Screen tearing
Second problem: too much time consumed by frame generation

Screen tearing
Second problem: too much time consumed by frame generation

Screen tearing
Second problem: too much time consumed by frame generation

Screen tearing
Second problem: too much time consumed by frame generation

Screen tearing
Second problem: too much time consumed by frame generation

Screen tearing
Second problem: too much time consumed by frame generation

Screen tearing
Second problem: too much time consumed by frame generation

Screen tearing
Second problem: too much time consumed by frame generation

Screen tearing
Example

Screen tearing
Example

Double bu�ering
Solution for screen tearing

It is instead possible to solve screen tearing with a rendering technique
called double bu�ering. In double bu�ering, there are two color bu�ers.
The game alternates between drawing to these two bu�ers. On one
frame, the game loop might write to bu�er A while the CRT displays
bu�er B. Then on the next frame, the CRT will display bu�er A while the
game loop writes to bu�er B. As long as both the CRT and game loop
aren't accessing the same bu�er at the same time, there is no risk of the
CRT drawing an incomplete frame.

Double bu�ering

In order to fully prevent screen tearing, the bu�er swap must happen
during VBLANK. This is often listed as VSYNC in the graphics settings
for games. In any event, because the bu�er swap is a relatively fast
operation, the game has a much longer period of time to render the
entire frame (though ideally this should be less than the amount of time
it takes the CRT to draw a frame). So long as the bu�er swap occurs
during VBLANK, screen tearing will be entirely avoided.

Double bu�ering

Double bu�ering

Double bu�ering

Double bu�ering

Double bu�ering

Screen tearing for impatient players

Some games do allow bu�er swaps to occur as soon as rendering
�nishes, which means there may be some screen tearing. This is typically
allowed when a user wants to run the game at a frame rate much higher
than the screen refresh rate. If a particular monitor has a 60 Hz refresh
rate, synchronizing the bu�er swaps to VBLANK would keep the frame
rate at 60 FPS. But players who are very conscientious of reducing their
input lag may be able to achieve much higher frame rates if that
limitation is removed.

Sprites

In computer graphics, a sprite is a two-dimensional image or
animation that is integrated into a larger scene. Typically sprites are
used to represent characters and other dynamic objects. For simple
games, sprites might also be used for backgrounds, though there are
more e�cient approaches, especially for static backgrounds.
The term was derived from the fact that sprites, rather than being part of
the bitmap data in the framebu�er, instead "�oated" around on top
without a�ecting the data in the framebu�er below, much like a ghost or
"sprite". By this time, sprites had advanced to the point where complete
two-dimensional shapes could be moved around the screen horizontally
and vertically with minimal software overhead.

Sprites

Originally, sprites were a method of integrating unrelated bitmaps so that
they appeared to be part of the normal bitmap on a screen, such as
creating an animated character that can be moved on a screen without
altering the data de�ning the overall screen. Such sprites can be created
by either electronic circuitry or software. In circuitry, a hardware sprite is
a hardware construct that employs custom DMA channels to integrate
visual elements with the main screen in that it super-imposes two discrete
video sources. Software can simulate this through specialized rendering
methods.
The CPU would instruct the external chips to fetch source images and
integrate them into the main screen using direct memory access channels.
Calling up external hardware, instead of using the processor alone, greatly
improved graphics performance. Because the processor was not occupied
by the simple task of transferring data from one place to another,
software could run faster; and because the hardware provided certain
innate abilities, programs were also smaller.

Sprites � resources

http://www.spriters-resource.com/

http://spritedatabase.net/

https://github.com/nothings/stb � cross-platform library
written in C, which can load several �le formats; if not suitbale it
can be a good point to start writing own code.

https://www.codeandweb.com/texturepacker

http://www.spriters-resource.com/
http://spritedatabase.net/
https://github.com/nothings/stb
https://www.codeandweb.com/texturepacker

Drawing sprites

Suppose you have a basic 2D scene with a background image and a
character in the center. The simplest approach to drawing this scene
would be to �rst draw the background image and then draw the
character. This is much like how a painter would paint the scene on a
canvas, and because of this, the approach is known as the painter's
algorithm. In the painter's algorithm, all the sprites in a scene are sorted
from back to front. When it's time to render the scene, the presorted
scene can then be traversed in order so that it can be drawn appropriately.

Drawing sprites

Animating sprites � �ipbook

A �ip book or �ick book (pol. kineograf) is a book with a series of
pictures that vary gradually from one page to the next, so that when the
pages are turned rapidly, the pictures appear to animate by simulating
motion or some other change.

Animating sprites � �ipbook

Animating sprites � �ipbook

Animating sprites

For most 2D games, animation is based on the principles of traditional
�ipbook animation: a series of static 2D images are played in rapid
succession to create an illusion of motion.

Animating sprites

A typical approach is to have an array of images that represents all the
possible states of a particular character, regardless of the particular
animation. For example, a character that has both a walk and run cycle,
each ten frames in length, would have an array of 20 images in total. To
keep things simple, these images would be stored sequentially, which
would mean frames 0�9 would correspond to the walk cycle and frames
10�19 would correspond to the run cycle.

Animating sprites � basic data structure for
animation

struct AnimFrameData

// The index of the first frame of an animation

int startFrame

// The total number of frames for said animation

int numFrames

end

Animating sprites � data structure for all
animations

struct AnimData

// Array of images for all the animations

ImageFile images []

// The frame data for all the different animations

AnimFrameData frameInfo []

end

Animating sprites � basic sprite code

class Sprite

ImageFile image

int drawOrder

int x , y

// Draw the image at the correct (x,y)

function Draw()

end

Animating sprites

class AnimatedSprite inherits Sprite

// All of the animation data (includes ImageFiles and FrameData)

AnimData animData

// The particular animation that is active

int animNum

// The frame number of the active animation that's being displayed

int frameNum

// Amount of time the current frame has been displayed

float frameTime

// The FPS the animation is running at (24FPS by default).

float animFPS = 24.0f

function Initialize(AnimData myData, int startingAnimNum)

function UpdateAnim(float deltaTime)

function ChangeAnim(int num)

end

Animating sprites

function AnimatedSprite.Initialize(AnimData myData,

int startingAnimNum)

animData = myData

ChangeAnim(startingAnimNum)

end

Animating sprites

function AnimatedSprite.ChangeAnim(int num)

animNum = num

// The active animation is now at frame 0 and 0.0f time

frameNum = 0

animTime = 0.0f

// Set active image, which is just the starting frame.

int imageNum = animData.frameInfo[animNum].startFrame

image = animData.images[imageNum]

end

Animating sprites

function AnimatedSprite.UpdateAnim(float deltaTime)

// Update how long the current frame has been displayed

frameTime += deltaTime

// This check determines if it's time to change to the next frame.

if frameTime > (1 / animFPS)

// The number of frames to increment is the integral result of

// frameTime / (1 / animFPS), which is frameTime * animFPS

frameNum += frameTime * animFPS

// Check if we've advanced past the last frame, and must wrap.

if frameNum >= animData.frameInfo [animNum]. numFrames

// The modulus (%) makes sure we wrap correctly.

// (Eg. If numFrames == 10 and frameNum == 11, frameNum would

// wrap to 11 % 10 = 1).

frameNum = frameNum % animData.frameInfo[animNum].numFrames

end

// Update the active image.

// (startFrame is relative to all the images, while frameNum is

// relative to the first frame of this particular animation).

int imageNum = animData.frameInfo [animNum]. startFrame + frameNum

image = animData.images [imageNum]

frameTime = fmod(frameTime , 1 / animFPS)

end

end

Scrolling
Single-axis scrolling

In single-axis scrolling, the game scrolls only in the x or y direction. For
example, the setup code for horizontal scrolling would be as follows (see
next slide).

Scrolling
Single-axis scrolling

const int screenWidth = 500

// All the screen-sized image backgrounds

string backgrounds [] = { "bg1.png" , "bg2.png" , /*...*/ }

// The total number of screen-sized images horizontally

int hCount = 0

foreach string s in backgrounds {

Sprite bgSprite

bgSprite.image .Load(s)

// 1st screen would be x=0, 2nd x=500, 3rd x=1000, ...

bgSprite.x = hCount * screenWidth

bgSprite.y = 0

bgSpriteList.Add(bgSprite)

screenCount++

}

Scrolling
Single-axis scrolling

// camera.x is player.x as long as its clamped within the valid range

// clamping is the process of limiting a position to an area

camera.x = clamp(player.x , screenWidth / 2,

hCount * screenWidth � screenWidth / 2)

Iterator i = bgSpriteList.begin()

while (i != bgSpriteList.end()) {

Sprite s = i .value()

// find the first bg image to draw

if ((camera.x � s.x) < screenWidth) then {

// Image 1: s.x = 0, camera.x = 250, screenWidth/2 = 250

// 0 � 250 + 250 = 0

draw s at (s.x � camera.x + screenWidth /2, 0)

// draw the bg image after this, since it might also be visible

i++

s = i.value()

draw s at (s.x � camera.x + screenWidth /2, 0)

break

end

i++

}

Scrolling
Parallax

Parallax is a displacement or di�erence in the apparent position of an
object viewed along two di�erent lines of sight. The term is derived from
the Greek word parallaxis, meaning "alteration". Nearby objects have a
larger parallax than more distant objects when observed from di�erent
positions, so parallax can be used to determine distances.

Scrolling
Parallax

Scrolling
Parallax scrolling

Parallax scrolling is a technique in computer graphics and web design,
where background images move by the camera slower than foreground
images, creating an illusion of depth in a 2D scene and adding to the
immersion.

Scrolling
Parallax scrolling

In parallax scrolling, the background is broken up into multiple layers at
di�erent depths. Each layer then scrolls at a di�erent speed, which gives
an illusion of depth. One example could be a game where there's a cloud
layer and a ground layer. If the cloud layer scrolls more slowly than the
ground layer, it gives the impression that the clouds are further away
than the ground.

Scrolling
Parallax scrolling

Scrolling
Parallax scrolling

Scrolling
Parallax scrolling

Scrolling
Parallax scrolling

Scrolling
Parallax scrolling

"Parallax scrolling example scene" by OhSqueezy - Own work. Licensed
under CC BY-SA 3.0 via Commons
https://commons.wikimedia.org/wiki/File:

Parallax_scrolling_example_scene.gif#/media/File:

Parallax_scrolling_example_scene.gif

https://commons.wikimedia.org/wiki/File:Parallax_scrolling_example_scene.gif#/media/File:Parallax_scrolling_example_scene.gif
https://commons.wikimedia.org/wiki/File:Parallax_scrolling_example_scene.gif#/media/File:Parallax_scrolling_example_scene.gif
https://commons.wikimedia.org/wiki/File:Parallax_scrolling_example_scene.gif#/media/File:Parallax_scrolling_example_scene.gif

