
Basics of 2D and 3D graphics
Viewing transformations

Frustum

Piotr Fulmański

piotr@fulmanski.pl

December 10, 2016

mailto:piotr@fulmanski.pl

Spis treści

1 The idea

2 Mview — viewport transformation

3 Morth — ortographic projection transformation

4 Mcam — camera transformation

5 P — projective transformation

6 Finall step

Viewing transformations
The idea

We assume that we are drawing a model consisting only of 3D line
segments that are specified by the (x , y , z) coordinates of their two end
points. The viewing transformation we are going to show now has mapp
3D locations (3D lines), represented as (x , y , z) coordinates in some
arbitrary coordinate system, to coordinates in the image, expressed in
units of pixels. This process depends on

the camera position and orientation,

the type of projection,

the field of view,

and the resolution of the image.

Viewing transformations
The idea

We can break up this complicated process in to a product of several
simpler steps (transformations). Most graphics systems do this by using a
sequence of three transformations

A camera transformation (or eye transformation), which is a rigid
body transformation that places the camera at the origin in a
convenient orientation. It depends only on the position and
orientation of the camera.

A projection transformation, which projects points from camera
space so that all visible points fall in the range from -1 to 1 for both
x and y . It depends only on the type of projection desired.

A viewport transformation (or windowing transformation), which
maps this unit image rectangle to the desired rectangle in pixel
coordinates. It depends only on the size and position of the
output image.

Viewing transformations
The idea

The sequence of transformations that gets object from its original object
space into screen space.

Viewing transformations
The idea

So we are looking for transformation matrix M

M = MviewMorthPMcam

where

Mview is a viewport transformation,

Morth is an ortographic projection transformation which projects
points from any cube (view volume) to unified view volume where all
visible points fall in the range from -1 to 1,

P is a projection transformation, which projects points from camera
space to some cube,

Mcam is a camera transformation, which places the camera at the
cpecified point of the world and look at specified direction with
specified orientation.

Mview — viewport transformation

Viewport transformation
Unified view volume

Let’s introduce a concept of the unified (sometimes we say: canonical)
view volume: this could be any (but fixed) arbitrarily chosen volume. In
our case the unified view volume is the cube containing all 3D points
whose Cartesian coordinates x , y and z are between −1 and +1.
Now we assume that the geometry we want to view is described in this
unified volume, and we wish to view it with an orthographic1 camera
looking in the −z direction. Se we project

x = −1 to the left side of the screen,

x = +1 to the right side of the screen,

y = −1 to the bottom of the screen,

y = +1 to the top of the screen.

1Orthographic projection (or orthogonal projection) is a means of representing a
three-dimensional object in two dimensions. It is a form of parallel projection, where
all the projection lines are orthogonal to the projection plane.

Viewport transformation
Unified view volume

Viewport transformation
Convention

We use integer numbers as pixel coordinates. Physical pixel has some
dimensions and it’s shape is square (or rectangular), so we can ask which
pixel’s point has these integer coordinates?

Let’s assume, that pixel’s center point corresponds to integer coordinates.
Other words, for every pixel there is a corresponding unit square centered
at integer coordinates.

In consequence

the image boundaries have a half-unit overshoot from the pixel
centers;

the smallest pixel center coordinates are (0, 0);

we are drawing into an image (or window on the screen) that has nx
by ny pixels, we need to map the square [−1, 1]× [−1, 1] to the
rectangle [−0.5, nx − 0.5]× [−0.5, ny − 0.5].

Viewport transformation
Windowing transformation – general case

Imagine that we need to create a transform matrix that takes points in
the rectangle [xsmin, xsmax]× [ysmin, ysmax] to the rectangle
[xtmin, xtmax]× [ytmin, ytmax]. It’s not difficult to note that this can be
accomplished with two transformation in sequence: a scale and translate.
However, to find correct transformation it would be more convenient to
think about it as a sequence of three operations.

1 Move source rectangle so the point (xsmin, ysmin) is located in the
origin.

2 Scale the rectangle to be the same size as the target rectangle.

3 Move the origin to the point (xtmin, ytmin).

Viewport transformation
Windowing transformation – general case

Viewport transformation
Windowing transformation – general case: step 1

Step 1: move source rectangle

Move source rectangle so the point (xsmin, ysmin) is located in the origin.
We do this with move by a vector [−xsmin,−ysmin]. In matrix form, this
transformation (which is translation) takes form

Tsource→origin = Tso =

 1 0 −xsmin

0 1 −ysmin

0 0 1


To verify this, let’s take a point p = (x , y), correct Tso matrix for it and
check if the result of calculation (xr , yr) returns a point (0, 0) xr

yr
1

 =

 1 0 −x
0 1 −y
0 0 1

 x
y
1



Viewport transformation
Windowing transformations – general case: step 2

Step 2: scale the rectangle

Scale the rectangle to be the same size as the target rectangle.
Verify, that we do this with transformation (which is scaling) taking a
form

Tscale = Ts =

 xtmax−xtmin

xsmax−xsmin
0 0

0 ytmax−ytmin

ysmax−ysmin
0

0 0 1



Viewport transformation
Windowing transformations – general case: step 3

Step 3: move the origin

Move the origin to the point (xtmin, ytmin).
We do this with move by a vector [xtmin, ytmin]. In matrix form, this
transformation (which is translation) takes form

Torigin→target = Tot =

 1 0 xtmin

0 1 ytmin

0 0 1



Viewport transformation
Windowing transformations – general case: finall window transformation for 2D case

Tw = TotTsTso =

 xtmax−xtmin

xsmax−xsmin
0 xtminxsmax−xtmaxxsmin

xsmax−xsmin

0 ytmax−ytmin

ysmax−ysmin

ytminysmax−ytmaxysmin

ysmax−ysmin

0 0 1



Viewport transformation
Windowing transformations – general case: finall window transformation for 3D case

An exactly analogous construction can be used to define a 3D windowing
transformation

Tw =


xtmax−xtmin

xsmax−xsmin
0 0 xtminxsmax−xtmaxxsmin

xsmax−xsmin

0 ytmax−ytmin

ysmax−ysmin
0 ytminysmax−ytmaxysmin

ysmax−ysmin

0 0 ztmax−ztmin

zsmax−zsmin

ztminzsmax−ztmaxzsmin

zsmax−zsmin

0 0 0 1



Viewport transformation
Solution for 2D case

Going back to our problem: we need to map the unified square
[−1, 1]× [−1, 1] to the screen rectangle [−0.5, nx − 0.5]× [−0.5, ny − 0.5]
what can be accomplished with windowing transformation xscreen

yscreen

1

 =

 nx
2 0 nx−1

2

0
ny
2

ny−1
2

0 0 1

 xunified

yunified

1



Viewport transformation
Solution for 3D case

Note that Mview matrix ignores the z-coordinate of the points in the
unified view volume, because a point’s distance along the projection
direction doesn’t affect where that point projects in the image.
In spite of this, it’s a good idea to keep information about z-coordinate
without changing it. We can use the zvalues to make closer surfaces hide
more distant surfaces.

Mview =


nx
2 0 0 nx−1

2

0
ny
2 0

ny−1
2

0 0 1 0
0 0 0 1



Morth — ortographic projection transformation to map points from any
cube (view volume) to unified view volume where all visible points fall in
the range from -1 to 1

The orthographic projection transformation

The orthographic projection transformation
Idea

Of course, we usually want to render geometry in some region of space
other than the unified (canonical) view volume. In other words, we have
to map points from some arbitrary cube (volume) to unified volume
[−1, 1]3.

The orthographic projection transformation
Matrix form

It’s not difficult to check that the following matrix does this
transformation

Morth =


2

r−l 0 0 − r+l
r−l

0 2
t−b 0 − t+b

t−b
0 0 2

n−f − n+f
n−f

0 0 0 1



The orthographic projection transformation
Example

Verify that the Morth matrix transforms point from [l , r]× [b, t]× [f , n] to
[−1, 1]3: for example point (r , t, f) shoud be transformed to (1, 1,−1)

Mcam — camera transformation

The camera transformation

The camera transformation

We’d like to to change the viewpoint in 3D and look in any direction.
There are a multitude of conventions for specifying viewer position and
orientation. We will use the following one

the eye position e,

the gaze direction g ,

the view-up vector t.

The camera transformation

The camera transformation

Our job would be done if all points we wished to transform were stored in
coordinates with origin e and some new basis vectors u, v , and w . As we
can see, the coordinates of the model are stored in terms of the canonical
(or world) origin o and the x-, y -, and z-axes. Therefore we need to
convert the coordinates of the line segment endpoints we wish to draw
from xyz-coordinates into uvw -coordinates.

The camera transformation
Coordinate system transformation

The problem of coordinate system transformation and constructing
coordinate system was discussed in Basics of 2D and 3D graphics.
Transformations lecture.

The camera transformation
Construct coordinate system from vectors g and t

Using the construction we have described in Basics of 2D and 3D
graphics. Transformations lecture, we have

w =− g

||g ||

u =
t × w

||t × w ||
v =w × u

The camera transformation

If we combine

general case for coordinate system transformation

with new coordinate system uvw based on vectors g and t
construction

we obtain

Mcam =

[
u v w e
0 0 0 1

]−1

=


xu yu zu 0
xv yv zv 0
xw yw zw 0
0 0 0 1




1 0 0 −xe
0 1 0 −ye
0 0 1 −ze
0 0 0 1



P — projective transformation

Projective transformations

Projective transformations
Homogeneous coordinates

To accomplish this transformation we have to use a concept of
homogeneous coordinates we have discussed in Basics of 2D and 3D
graphics. Linear algebra lecture.

Projective transformations
Homogeneous coordinates

Recall one of the homogeneous coordinates definition given in Basics of
2D and 3D graphics. Linear algebra lecture.

Definition

Given a point p = (x , y) on the Euclidean plane, for any non-zero real
number w , the triple (xw , yw ,w) is called a set of homogeneous
coordinates for the point p. By this definition, multiplying the three
homogeneous coordinates by a common, non-zero factor gives a
new set of homogeneous coordinates for the same point. In
particular, (x , y , 1) is such a system of homogeneous coordinates for the
point (x , y).

For example, the Cartesian point (1, 2) can be represented in
homogeneous coordinates as (1, 2, 1) or (2, 4, 2). The original Cartesian
coordinates are recovered by dividing the first two positions by the third.
Thus unlike Cartesian coordinates, a single point can be represented
by infinitely many homogeneous coordinates.

Projective transformations
Homogeneous coordinates

Second definition we will use soon was given in terms of equivalence
classes.

Definition

For non-zero element of R3, define (x1, y1, z1) ∼ (x2, y2, z2) to mean
there is a non-zero λ so that (x1, y1, z1) = (λx2, λy2, λz2). Then ∼ is an
equivalence relation and the projective plane can be defined as the
equivalence classes of R3 \ {0}. If (x , y , z) is one of the elements of the
equivalence class p then these are taken to be homogeneous coordinates
of p.

Perspective projection
Idea

Let’s see now why the homogeneous coordinates could be a right tool to
solve our perspective projection problem. Summarize the environment
assumption and what the perspective projection transformation needs to
do with points in camera space.

The viewpoint (the viewer’s eye) e is positioned at the origin.

The camera is looking along the z-axis. The gaze direction g direct
into negative part of z-axis.

The view plane is a distance d from viewpoint (the eye).

A point p is projected toward e and where it intersects the view
plane is where it is drawn. This is how we get p′ point.

Perspective projection
Idea

Recall homogeneous coordinates example image and compare it with the
following image

Perspective projection
Idea

Note that with the above assumptions, the size of an object on the view
plane (the screen) is proportional to 1/z for an eye at the origin looking
up the negative z-axis. This can be expressed more precisely in an
equation for the geometry

y ′ =
d

z
y

So, the division by z is required to implement perspective.

Perspective projection
Idea

Now it should be clear why the mechanism of projective transformations
and homogeneous coordinates makes it simple to implement the division
by z required to implement perspective. This type of transformation, in
which one of the coordinates of the input vector appears in the
denominator, can’t be achieved using affine transformations like
translations, scaling or rotation.

Perspective projection
Idea

In the 2D example, we can implement the perspective projection with a
matrix transformation as follows[

dy
z
1

]
=

[
y ′

1

]
∼
[

dy
z

]
=

[
d 0 0
0 1 0

] y
z
1



Perspective projection
Matrix form

Following the above idea, the general perspective projection matrix in 3D
can be as follow (we use n which means near to denote d ; f means far)

P =


n 0 0 0
0 n 0 0
0 0 n + f −fn
0 0 1 0



P


x
y
z
1

 =


nx
ny

z(n + f)− fn
z

 ∼


nx
z
ny
z

n + f − fn
z

1



Perspective projection

The first, second, and fourth rows simply implement the perspective
equation. A little bit odd is the third row. This row is designed to save
somehow the z-coordinate so that we can use it later for hidden surface
removal. In the perspective projection, though, the addition of a
non-constant denominator (z) prevents us from actually preserving the
value of z — it’s actually impossible to keep z from changing while
getting x and y to do what we need them to do. Instead we’ve opted to
keep z unchanged for points on the near or far planes.
There are many matrices that could function as perspective matrices, and
all of them non-linearly distort the z-coordinate. The matrix P has the
nice properties: it leaves points on the near plane entirely alone, and it
leaves points on the far plane while ,,squishing” them in x and y by the
appropriate amount (see next slide). The transformation also preserves
the relative order of z values between near and far plane, allowing us to
do depth ordering after this matrix is applied. This will be important
when we do hidden surface elimination.

Perspective projection
Properties

The perspective projection leaves points on the near plane
unchanged and maps the large far rectangle at the back of the
perspective volume to the small far rectangle at the back of the
orthographic volume.

Perspective projection
Properties

The perspective projection maps any line through the origin (eye) to
a line parallel to the z-axis and without moving the point on the line
at near plane.

Viewing transformations
Finall step

Now we know all the components of the finall prespective viewing matrix
from the beginning of this lecture

M = MvMorthPMcam

The values l , r , b and t are determined by the window throught which
we look. Notice that sometimes matrices Morth and P are combined into
one matrix Mper,

Mper =


2n
r−l 0 l+r

l−r 0

0 2n
t−b

b+t
b−t 0

0 0 f +n
n−f

2fn
f−n

0 0 1 0


so the final matrix M takes the form

M = MvMperMcam

Viewing transformations
Finall step

In consequence we can express the finall algorithm as follow

compute matrix M

for each line segment (a_i, b_i) do

p = Ma_i

q = Mb_i

draw line from (x_p/w_p, y_p/w_p) to (x_q/w_q, y_q/w_q)

	The idea
	Mview — viewport transformation
	Morth — ortographic projection transformation
	Mcam — camera transformation
	P — projective transformation
	Finall step

