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Points

In geometry, topology and related branches of mathematics a (spatial)
point is a primitive notion upon which other concepts may be defined. In
geometry, points are zero-dimensional; i.e., they do not have volume,
area, length, or any other higher-dimensional analogue.
Although there are spaces where point can be defined. For example,
introducing Cartesian coordinates in Euclidean space a point can be
defined as an ordered pair, triplet etc. of real numbers.
On the other hand one way to think of the Euclidean plane is as a set of
points satisfying certain relationships, expressible in terms of distance and
angle. For example, there are three fundamental operations (referred to
as motions) on the plane. One is translation, which means a shifting of
the plane so that every point is shifted in the same direction and by the
same distance. The other is rotation about a fixed point in the plane, in
which every point in the plane turns about that fixed point through the
same angle. The last is reflection1.

1In http://en.wikipedia.org/wiki/Euclidean_space

http://en.wikipedia.org/wiki/Euclidean_space


Euclidean space and euclidean geometry

Euclidean space – a space described by euclidean geometry.
Euclidean geometry is an axiomatic system, in which all theorems (”true
statements”) are derived from a small number of axioms. In the
Elements Euclid gives five postulates (axioms) for plane geometry, stated
in terms of constructions.



Euclidean space and euclidean geometry

1 Any two points can be connected by a line segment.



Euclidean space and euclidean geometry

2 Any segment can be extended indefinitely (resulting in a straight
line).



Euclidean space and euclidean geometry

3 For a given line segment, you can describe a circle centered at one
of its end points and a radius equal to its length.



Euclidean space and euclidean geometry

4 All right angles are congruent.



Euclidean space and euclidean geometry

5 If two lines intersect a third in such a way that the sum of the inner
angles on one side is less than two right angles, then the two lines
inevitably must intersect each other on that side if extended far
enough.

The last axiom can be formlated also as: through a given point which
does not belong to a given straight line can be drawn one straight line
disjoint with that straight line.



Systems of coordinates

In geometry, a coordinate system is a system which uses one or more
numbers (known as coordinates), to uniquely determine the position of a
point or other geometric element in a space such as Euclidean space.
In this tutorial we will use the follwing coordinate systems

number line,

Cartesian coordinates,

polar coordinates,

homogeneous coordinate system.



Systems of coordinates
Number line

The number line is the simplest example of a coordinate system where
points are identified on a line with real numbers. In this system, an
arbitrary point O (the origin) is chosen on a given line. The coordinate of
a point P is defined as the signed distance from O to P, where the
signed distance is the distance taken as positive or negative depending on
which side of the line P lies. Each point is given a unique coordinate and
each real number is the coordinate of a unique point.



Systems of coordinates
Cartesian coordinates

A Cartesian coordinate system is a coordinate system that specifies each
point uniquely in a plane by a pair of numerical coordinates, which are
the signed distances to the point from two fixed perpendicular directed
lines, measured in the same unit of length. Each reference line is called a
coordinate axis or just axis of the system, and the point where they meet
is its origin, usually at ordered pair (0, 0). The coordinates can also be
defined as the positions of the perpendicular projections of the point onto
the two axes, expressed as signed distances from the origin.
One can use the same principle to specify the position of any point in
three-dimensional space by three Cartesian coordinates, its signed
distances to three mutually perpendicular planes (or, equivalently, by its
perpendicular projection onto three mutually perpendicular lines).
In general, the position of any point in n-dimensional space by n
Cartesian coordinates, is a signed distances to n mutually perpendicular
hyperplanes (or, equivalently, it is perpendicular projection onto n
mutually perpendicular hyperplanes).



Systems of coordinates
Cartesian coordinates



Systems of coordinates
Polar coordinates

The polar coordinate system in two-dimension is a system in which each
point on a plane is determined by a distance from a reference point and
an angle from a reference direction. A point is chosen as the pole and a
ray from this point is taken as the polar axis. For a given angle ϕ, there
is a single line through the pole whose angle with the polar axis is ϕ
(measured counterclockwise from the axis to the line). Then there is a
unique point on this line whose signed distance from the origin is r for
given number r . For a given pair of coordinates (r , ϕ) there is a single
point, but any point is represented by infinite number of different polar
coordinates. For example, (r , ϕ), (r , ϕ+ 2π) and (−r , ϕ+ π) are all
polar coordinates for the same point. The pole is represented by (0, ϕ)
for any value of ϕ.



Systems of coordinates
Polar coordinates



Systems of coordinates
Polar coordinates (from / to Cartesian)

The polar coordinates r and φ can be converted to the Cartesian
coordinates x and y by using the trigonometric functions

x = r cosϕ

y = r sinϕ

The Cartesian coordinates x and y can be converted to polar coordinates
r and ϕ with r ≥ 0 and ϕ in the interval (−π, π] by

r =
√

x2 + y2

ϕ = atan2(y , x)



Systems of coordinates
atan2 function: tan

To define the trigonometric functions for the angle ϕ, we need any right
triangle that contains the angle ϕ. The three sides of the triangle are
named as follows:

The hypotenuse is the side opposite the right angle. The hypotenuse
is always the longest side of a right-angled triangle.

The opposite side is the side opposite to the angle we are interested
in (angle ϕ).

The adjacent side is the side having both the angles of interest
(angle ϕ and right-angle).

Tangent (tan or tg) is defined as

tan(ϕ) =
y

x



Systems of coordinates
atan2 function: tan

So having an angle we can find the ratio of the length of the two triangle
side: opposite and adjacent to the angle.
This ratio does not depend on the size of the particular right triangle
chosen, as long as it contains the angle ϕ, since all such triangles are
similar.

tan(ϕ) =
y

x
=

y ′

x ′



Systems of coordinates
atan2 function: arctan



Systems of coordinates
atan2 function: arctan

The inverse of the tangent function named arctan or atan can be defined
as

arctan
(y

x

)
= ϕ



Systems of coordinates
arctan2 function

The function arctan2 is the arctangent function with two arguments. The
purpose of using two arguments instead of one is to gather information on
the signs of the inputs in order to return the appropriate quadrant of the
computed angle, which is not possible for the single-argument arctangent
function. For example, both y

x ratio and −y−x ratio for fixed x and y are
equal so arctangent for them returns the same value but both belongs to
diferent quadrants. It also avoids the problems of division by zero.



Systems of coordinates
arctan2 function

arctan2(y , x) is the angle in radians between the positive x-axis of a
plane and the point given by the coordinates (x , y) on it. The angle is
positive for counter-clockwise angles (upper half-plane, y > 0), and
negative for clockwise angles (lower half-plane, y < 0).
In terms of the standard arctan function, that is with range of (−π2 ,

π
2 ),

it can be expressed as follows:

arctan2(y , x) =



arctan( y
x ) x > 0

arctan( y
x ) + π y ≥ 0 , x < 0

arctan( y
x )− π y < 0 , x < 0

π
2 y > 0 , x = 0

−π2 y < 0 , x = 0

undefined y = 0 , x = 0



Systems of coordinates
Homogeneous coordinate system

In mathematics, homogeneous coordinates or projective coordinates, are
a system of coordinates used in projective geometry, as Cartesian
coordinates are used in Euclidean geometry. With this type of coordinates
we can easyly represent also points at infinity, using finite coordinates.



Systems of coordinates
Homogeneous coordinate system

Definition

Given a point p = (x , y) on the Euclidean plane, for any non-zero real
number w , the triple (xw , yw ,w) is called a set of homogeneous
coordinates for the point p. By this definition, multiplying the three
homogeneous coordinates by a common, non-zero factor gives a
new set of homogeneous coordinates for the same point. In
particular, (x , y , 1) is such a system of homogeneous coordinates for the
point (x , y).

For example, the Cartesian point (1, 2) can be represented in
homogeneous coordinates as (1, 2, 1) or (2, 4, 2). The original Cartesian
coordinates are recovered by dividing the first two positions by the third.
Thus unlike Cartesian coordinates, a single point can be represented
by infinitely many homogeneous coordinates.



Perspective projection
Projective transformations: homogeneous coordinates

Another definition of the real projective plane can be given in terms of
equivalence classes.

Definition

For non-zero element of R3, define (x1, y1, z1) ∼ (x2, y2, z2) to mean
there is a non-zero λ so that (x1, y1, z1) = (λx2, λy2, λz2). Then ∼ is an
equivalence relation and the projective plane can be defined as the
equivalence classes of R3 \ {0}. If (x , y , z) is one of the elements of the
equivalence class p then these are taken to be homogeneous coordinates
of p.



Perspective projection
Projective transformations: homogeneous coordinates

Of course both previous definition are equivalent, but focus on different
aspects of homogeneous coordinates. Let’s consider a following example.



Perspective projection
Projective transformations: homogeneous coordinates

The point pCart = (x) = (2) is represented by any point pHom = (x ,w)
on the line w = 1

2x . However, before we interpret phom as a conventional
Cartesian coordinate, we have to ,,divide” it first (divide all its
coordinates) by w to get the form when last coordinate is equal to 1

phom = (x ,w) =
( x

w
,

w

w

)
=
( x

w
, 1
)

Because w = 1
2x then x = 2w and finaly

phom =
(
x
w , 1

)
=
(
2w
w , 1

)
= (2, 1)



Systems of coordinates
Homogeneous coordinate system: properties

1 Any point in the (2D) projective plane is represented by a triple
(x , y , z), called the homogeneous coordinates or projective
coordinates of the point, where x , y and z are not all 0.

2 The point represented by a given set of homogeneous coordinates is
unchanged if the coordinates are multiplied by a common factor.

3 Two sets of homogeneous coordinates represent the same point if
and only if one is obtained from the other by multiplying all the
coordinates by the same non-zero constant.

4 When z is not 0 the point represented is the point (x/z , y/z) in the
Euclidean plane.

5 When z is 0 the point represented is a point at infinity.



Systems of coordinates
Homogeneous coordinate system: properties

Note that

1 For a given point (x , y) on the Euclidean plane, and for any
non-zero real number z , the triple (xz , yz , z) is called a set of
homogeneous coordinates for the point.

2 Generaly speaking, any point with n coordinates in Cartesian
coordinate system, has n + 1 coordinates in homogeneous coordinate
system.

3 The triple (0, 0, 0) is omitted and does not represent any point. The
origin is represented by (0, 0, 1).



Systems of coordinates
Homogeneous coordinate system

We will be back to this concept when viewing frustum will be discussed.



Left- and right-handed Cartesian coordinate systems

In three dimensions the three axes of 3-dimensional space have two
possible orientations. Once the x- and y -axes are specified, they
determine a plane and the perpendicular line to it along which the z-axis
should lie. The only problem is that there are two possible directions on
this line. The two possible coordinate systems which result are called
left-handed and right-handed. The name derives from the left- or
right-hand rule we use to distinguish them.
A common mnemonic for understanding orientation conventions for
vectors in three dimensions are the left- and right-hand rule. If the thumb
of the left (right) hand is pointed along positive x axis, the index finger
at a right angle to it is pointed along positive y axis, and the middle
finger bent inward at a right angle to both, the three fingers indicate the
relative directions of the x-, y -, and z-axes in a left (right)-handed
system. The thumb indicates the positive x-axis, the index finger the
positive y -axis and the middle finger the positive z-axis.



Left- and right-handed Cartesian coordinate systems



Left- and right-handed Cartesian coordinate systems

For left (right) handed coordinates when the left (right) thumb points
along the z axis in a positive z-direction, the curled fingers of the left
(right) hand represent a motion from x axis to y axis. When viewed from
z axis the system is clockwise (counter-clockwise).

Because, as we can see, there is no one way to express a 3D system,
whenever we are working with a new framework or a set of frameworks it
is important to check which coordinate system is used by which
framework. It ultimately doesn’t matter which coordinate system our
game uses, as long as it’s consistent across the code and frameworks.



Vector
Definition

Vector is an object that has magnitude (or length) and direction. A
vector is what is needed to ”carry” (move) the point A to the point B as
the Latin word vector means carrier.
In n-dimensional Euclidean space, vectors are identified with n-tuple of
scalar (number) components:

a = [a1, a2, . . . , an].



Vector

A 3D vector can be represented by a triple of scalars (x , y , z), just as a
point can be. The distinction between points and vectors is actually quite
subtle. Technically, a vector is just an offset relative to some known
point. A vector can be moved anywhere in 3D space – as long as its
magnitude and direction don’t change, it is the same vector.
As a cosequence we can say that a vector has no concept of position.
This means that two vectors are identical as long as they have the same
magnitude (or length) and point in the same direction.
A vector can be used to represent a point, provided that we fix the tail of
the vector to the origin of the chosen coordinate system. In such
conditions, its head pokrywa sie with this point. Such a vector is
sometimes called a position vector or radius vector. We can interpret any
triple of scalars as either a point or a vector. One might say that points
are absolute, while vectors are relative.



Vector
Length

Let a = [a1, a2, . . . , an] be a vector in n-dimensional Euclidean space.
Then

The length (or magnitude or norm) of the vector a is denoted by
||a|| and can be computed with the Euclidean norm

||a|| =
√

a21 + a22 + · · ·+ a2n.

We can think about this formula as a distance from the origin (tail)
to the position at which the vector is pointing (head).



Vector
Unit vectors, and normalization

Let a = [a1, a2, . . . , an] be a vector in n-dimensional Euclidean space.
Then

A unit vector is any vector with a length of one. A unit vector is
often indicated with a ”hat” above the vector’s symbol, as in â. Any
vector of arbitrary length greater than 0 can be divided by its length
to create a unit vector. This is known as normalization.

â =

[
a1
||a||

,
a2
||a||

, . . . ,
an
||a||

]
.

Because, when a vector is normalized, it will lose any magnitude
information, we have to take care if we can do this or not, not to
normalize the wrong vectors. A good rule of thumb to follow is if we
only care about the direction of the vector, we should normalize it.



Vector
Operations – scalar multiplication

This is the simples vector opration. To multiply a vector, or re-scaled it,
by a real number s (often called scalar from scale), we simply multiply
each component by this number

s · a = [s · a1, s · a2, . . . , s · an]

Intuitively, multiplying by a scalar s stretches a vector out by a factor of
s. If s is negative, then the vector changes direction: it flips around by an
angle of 180 degree.



Vector
Operations – addition and subtraction

Let a = [a1, a2, . . . , an] and b = [b1, b2, . . . , bn] are any vectors, maybe
with different magnitudes and directions.
The sum of a and b is

a + b = [a1 + b1, a2 + b2, . . . , an + bn].

The difference of a and b is

a− b = [a1 − b1, a2 − b2, . . . , an − bn].

More than definition we should take care about graphical interpretation
of addition and subtraction.



Vector
Operations – addition

Notice that with addition order of vectors doesn’t matter.



Vector
Operations – subtraction

Subtraction is important, because it enables us to construct a vector
between two points.



Vector
Operations – dot product

The scalar product – since its result is a scalar (number) – (or dot
product or inner product or sometimes projection product for
emphasizing the geometric significance), is an algebraic operation that
takes two equal-length sequences of numbers (usually coordinate vectors)
and returns a single number.

a · b = ‖a‖ ‖b‖ cosϕ

where ϕ is the measure of the angle between a and b.
We can use dot product to find the angle betwen two unit vectors

ϕ = arccos
(

â · b̂
)
.



Vector
Operations – dot product

If the dot product between two vectors results in 0, it means they
are perpendicular to each other (because cos(90) = 0).

If the dot product of two unit wectors results in 1, it means the
vectors are parallel and facing in the same direction.

If the dot product of two unit wectors results in -1 means they are
parallel and face in the opposite direction.

If û is a unit vector, then the dot product v · û represents the length
of the projection of a vector v onto the infinie line defined by the
direction of u.

See http://www.falstad.com/dotproduct/

http://www.falstad.com/dotproduct/


Vector
Operations – cross product

The cross product between two 3D vectors u and v results in a third
vector. Given two vectors, there is only a single plane that contains both
vectors. The cross product finds a vector that is perpendicular to this
plane, which is known as a normal to the plane.

w = u× v = [(uyvz − uzvy ), (uzvx − uxvz), (uxvy − uyvx)]



Vector
Operations – cross product

w = u× v = [(uyvz − uzvy ), (uzvx − uxvz), (uxvy − uyvx)]

To help memmorize this formula it’s good to notice that

Each component of w is of the form us1vs2 − us2vs1 , with subscripts
s1, s2.

Subscripts s1, s2 for the first component takes values from string yz.

Subscripts for the next component takes values with letter
substituded in the following manner

yz → zx → xy



Vector
Operations – cross product

The magnitude of the cross product u× v is equal to the area of the
parallelogram whose sides are u and v and is equal to

|u× v| = |u||v| sin(ϕ).

An important thing to note is that there is a second vector that is
perpendicular to the plane: the vector that points in the opposite
direction of w.



Vector
Operations – cross product

To find which one is correct we have to use the aftermentioned concept
of handedness of the coordinate system. If we have a left-handed
(right-handed) coordinate system then take left (right) hand and

1 Line up a thumb with the first vector (u).

2 Line up an index finger with a second vector (v).

3 The direction a middle finger points in is the direction the cross
product will face.

Note that to get a second vector it’s enough to flip fingers so thumb lines
up with v and index finger with u.



Vector
Operations – cross product

v ×w 6= w × v

v ×w = −w × v

v × (w + y) = (v ×w) + (v × y)

the Cartesian basis vectors e1 = [1, 0, 0], e2 = [0, 1, 0], e3 = [0, 0, 1]
are related by cross products as follows

e1 × e2 = −(e2 × e1) = e3

e2 × e3 = −(e3 × e2) = e1

e3 × e1 = −(e1 × e3) = e2



Vector
Operations – cross product

Remarks

If the cross product returns a vector where all three components are
0, this means that the two input vectors are collinear (they lie on the
same line).



Vector
4D vectors i 3D world

Very often 3D games use 4D vectors. As we know from the previous part,
when 4D coordinates are used for a 3D space, we have homogenous
coordinates. Let’s denote the fourth component as the w -component.
In most instances, the w -component will be either 0 or 1.

If w = 0, this means that the homogenous coordinate represents a
3D vector.

If w = 1, this means that the homogenous coordinate represents a
3D point.



Vector
Problem 1: reflection problem

There are two known values: the vector v, which is the velocity of an
object (for example a ball) prior to reflection, and the normal n̂, which is
a unit vector that is perpendicular to the surface of reflection. We need
to solve for the vector v′, which represents the velocity after reflection.



Vector
Problem 1: reflection problem



Vector
Problem 1: reflection problem



Matrix

In mathematics, a matrix (plural matrices) is a rectangular array of
objects (for example numbers, symbols, or expressions), arranged in rows
and columns.



Matrix
Basic operations

There are a number of basic operations that can be applied to modify
matrices, but we will focus on

matrix addition,

scalar multiplication,

transposition,

matrix multiplication.



Matrix
Basic operations: matrix addition

The sum C of two m-by-n matrices A and B is calculated entrywise

(c)i,j = ai,j + bi,j ,

where 1 ≤ i ≤ m and 1 ≤ j ≤ n and ci,j is an element from matrix C at
position (i , j); similarly for matrix A and B.
Example[

1 2 3
4 5 6

]
+

[
7 8 9
0 −1 −2

]
=

[
1 + 7 2 + 8 3 + 9
4 + 0 5 + (−1) 6 + (−2)

]
=

[
8 10 12
4 4 4

]



Matrix
Basic operations: scalar multiplication

The product c of a scalar t (number) and a m-by-n matrix A is
computed by multiplying every entry of A by c :

(c)i,j = c · ai,j ,

where 1 ≤ i ≤ m and 1 ≤ j ≤ n.
Example

3 ·
[

1 2 3
4 5 6

]
=

[
3 · 1 3 · 2 3 · 3
3 · 4 3 · 5 3 · 6

]
=

[
3 6 9

12 15 18

]
Please note that although this operation is called scalar multiplication, its
result is not named scalar product to avoid confusion, since scalar
product is sometimes used as a synonym for inner product what we have
mentioned earlier.



Matrix
Basic operations: transposition

The transpose C of an m-by-n matrix A (denoted as AT ) is the n-by-m
matrix B formed by turning rows into columns and vice versa

ci,j = aj,i ,

where 1 ≤ i ≤ m and 1 ≤ j ≤ n.
Example [

1 2 3
4 5 6

]T
=

1 4
2 5
3 6





Matrix
Basic operations: matrix multiplicaton

Multiplication of two matrices is defined if and only if the number of
columns of the left matrix is the same as the number of rows of the right
matrix.
If A is an m-by-n matrix and B is an n-by-p matrix, then their matrix
product C is the m-by-p matrix whose entries are given by dot product of
the corresponding row of A and the corresponding column of B

ci,j =
n∑

r=1

ai,rbr ,j = ai,1b1,j + ai,2b2,j + · · ·+ ai,mbm,j ,

where 1 ≤ i ≤ m and 1 ≤ j ≤ p.
Example[

1 2 3
4 5 6

]
·

 7 8
9 0
−1 −2

 =

[
(1 · 7 + 2 · 9 + 3 · −1) (1 · 8 + 2 · 0 + 3 · −2)
(4 · 7 + 5 · 9 + 6 · −1) (4 · 8 + 5 · 0 + 6 · −2)

]

=

[
(7 + 18 +−3) (8 + 0 +−6)

(28 + 45 +−6) (32 + 0 +−12)

]
=

[
22 2
67 20

]



Matrix
Basic operations: matrix multiplicaton

There are two methods to represent a vector as a matrix: it could be

a matrix with a single row (so called row-major, row vector or row
matrix) or

a matrix with a single column (so called column-major, column
vector or column matrix).

If A is a row vector and B is a column vector, then their matrix products
C is either

AB =
[
a b c

] x
y
z

 = ax + by + cz ,

or

BA =

x
y
z

 [a b c
]

=

xa xb xc
ya yb yc
za zb zc

 .
Note AB and BA are two different matrices. The first is a 1× 1 matrix
(number) while the second is a 3× 3 matrix.
The choice detemines the form of the matrix we will use in the future
and the order of vector and matrix during multiplication.



Matrix
Basic operations: matrix multiplicaton

[
x y z

]
m,n=1,3

a d g
b e h
c f i


n,p=3,3

=
[
xa + yb + zc xd + ye + zf xg + yh + zi

]
m,p=1,3



Matrix – multiplicaiton for column-major vector

a b c
d e f
g h i


m,n=3,3

x
y
z


n,p=3,1

=

ax + by + cz
dx + ey + fz
gx + hy + iz


m,p=3,1



Matrix – multiplicaiton for row- or column-major
vector

In some sense, both results are the same: we have a vector. The problem
is that matrix for the first case is different from the second. In
consequence, when we have diferent sources of information we have to
check what vectors are used: row or column. Be aware of mixing
matrices for row-major with matrices for column-major vectors if you
don’t want to get strange results.



Matrix – remarks

If matrices A and B are transformation matrices, then the product
P = AB is another transformation matrix that perform both of the
original transformations. For example, if A is a scale matrix and B is
a rotation, the matrix P would both scale and rotate the points or
vectors to which it is applied.

Matrix multiplication is often called concatenation.

AB 6= BA

A(B + C) = AB + AC

A(BC) = (AB)C

(AB)T = BTAT

(AB)−1 = B−1A−1
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