
Basics of 2D and 3D graphics
Transformations

Piotr Fulmański

piotr@fulmanski.pl

December 8, 2016

mailto:piotr@fulmanski.pl

Spis treści

1 Atomic transformation matrices

2 Quaternions

Atomic transformation matrices
Translation

Let’s start with translations. It seems to be the simplest one, but we
faced with a problem: translation (destination of translation)
p′ = [p′x p′y p′z]T of a point p = [px py pz] can be described by addition

of two vectors: source p = [px py pz]T and translation (move)
t = [tx ty tz]T . p′xp′y

p′z

 =

pxpy
pz

+ t =

px + tx
py + ty
pz + tz


Because, as we will see, scaling and rotation are described by matrix and
vector multiplication, this is a form we also want to have for translation.

Atomic transformation matrices
Translation

The following matrix T translates a point p = [px py pz] by the vector
t = [tx ty tz] (p′ is the translated point)

T =


1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1


In consequence we have

p′ = p + t =


1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1



px
py
pz
1

 =


px + tx
py + ty
pz + tz

1


As we can see, to have matrix form for translation we have to use
concept of homogeneous coordinates.

Atomic transformation matrices
Scaling

The following matrix S scales the point p = [px py pz] by a factor sx
along the X -axis, sy along the Y -axis, and sz along the Z -axis

S =


sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1


In consequence we have

p′ =


sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1



px
py
pz
1

 =


sxpx
sypy
szpz

1



Atomic transformation matrices
Shearing

The following matrix H sheares the point p = [px py pz] by a factor sx1,
sx2 along the X -axis, sy1, sy2 along the Y -axis, and sz1, sz2 along the
Z -axis

H =


1 sx1 s2 0
sy1 1 sy2 0
sz1 sz2 1 0
0 0 0 1


In consequence we have

p′ =


1 sx1 s2 0
sy1 1 sy2 0
sz1 sz2 1 0
0 0 0 1



px
py
pz
1

 =


px + sx1py + sx2pz
sy1px + py + sy2pz
sz1px + sz2py + pz

1



Atomic transformation matrices
Reflection

The following matrix R reflects the point p = [px py pz] through the xy
plane

R =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1


In consequence we have

p′ =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1



px
py
pz
1

 =


px
py
−pz

1


Reflections through the xz and the yz planes are defined similarly.

Atomic transformation matrices
Rotations – 2D case

For 2D case rotations are simple because of their uniqueness – there is
only one axis to rotate about. Let’s assume that we want to rotate point
p by ϕ degrees to point p′.

Atomic transformation matrices
Rotations – 2D case

If we want to rotate point p by ϕ degrees to point p′, from Basics of 2D
and 3D graphics. Linear algebra lecture, Systems of coordinates. Polar
coordinates section, we know that

x = r cosϕ

y = r sinϕ

so we have simply that

px = |p| cos(θ)

py = |p| sin(θ)

and

p′x = |p′| cos(θ + ϕ) (1)

p′y = |p′| sin(θ + ϕ) (2)

Because we are dealing with rotations about the origin, thus we have

|p′| = |p|.

Atomic transformation matrices
Rotations – 2D case

Using the trigonometric identities for the sum of angles we have that

p′x = |p| cos(θ) cos(ϕ)− |p| sin(θ) sin(ϕ)

p′y = |p| sin(θ) cos(ϕ) + |p| cos(θ) sin(ϕ)

and (1)-(2) we have that

p′x = px cos(ϕ)− py sin(ϕ)
p′y = py cos(ϕ) + px sin(ϕ)

Pushing this into matrix form

Rxy =

[
cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

]
In consequence we have

p′ =

[
cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

] [
px
py

]
=

[
px cos(ϕ)− py sin(ϕ)
py cos(ϕ) + px sin(ϕ)

]

Atomic transformation matrices
Rotations – 3D case: simple generalization

In three dimensions the case is more complicated because the axis of
rotation can be freely selected. The best case is if it is one of the
Cartesian coordinates axis. In such a case the rotation matrices take the
simple forms, which are a simple generalization of the 2D case. The
easiest way to note this is whenthe rotation axis is the axis OZ . Then
change the coordinate values apply only to the plane OXY and rotation
matrix takes the form

ROZ =


cos(ϕ) − sin(ϕ) 0 0
sin(ϕ) cos(ϕ) 0 0

0 0 1 0
0 0 0 1



Atomic transformation matrices
Rotations – 3D case: two other simple cases

By analogy we obtain rotation matrices when rotation axis is axis OX

ROX =


1 0 0 0
0 cos(ϕ) − sin(ϕ) 0
0 sin(ϕ) cos(ϕ) 0
0 0 0 1


and OY

ROY =


cos(ϕ) 0 sin(ϕ) 0

0 1 0 0
− sin(ϕ) 0 cos(ϕ) 0

0 0 0 1



Atomic transformation matrices
Rotations – 3D case

The sequence of three rotations ROX , ROY and ROZ can perform
any rotation about an axis passing through the origin.

The order of rotations matters.

R(−ϕ) = R−1(ϕ) = RT (ϕ).

Atomic transformation matrices
Rotations – 3D case: Euler angles

The Euler angles are three angles used to describe the orientation of a
rigid body with respect to a fixed coordinate system. Any orientation can
be achieved by composing three elemental rotations, i.e. rotations about
the axes of a coordinate system. There exist twelve possible sequences of
rotation axes, divided in two groups:

proper Euler angles (z-x-z , x-y -x , y -z-y , z-y -z , x-z-x , y -x-y),

Tait–Bryan angles (x-y -z , y -z-x , z-x-y , x-z-y , z-y -x , y -x-z).

Tait–Bryan angles are also called Cardan angles or yaw-pitch-roll (see
next slides for explanation). Sometimes, both kinds of sequences are
called Euler angles. In that case, the sequences of the first group are
called proper or classic Euler angles.
Be aware that although Euler angles are typically denoted as α, β and γ,
or ϕ, θ and ψ, different authors may use different sets of rotation axes to
define Euler angles, or different names for the same angles.

Atomic transformation matrices
Rotations – 3D case: yaw-pitch-roll

Atomic transformation matrices
Rotations – 3D case: yaw-pitch-roll

Atomic transformation matrices
Rotations – 3D case: Euler angles an problems

There are few problems using Eulers angles.

There are many different Eulers angles resulting the same rotation.

It is difficult to find Eulers angles to rotate an object in desired
direction.

In consequence it’s difficult to compare two different rotatins or
make interpolation of rotation.

We can loss of one degree of freedom (so called gimbal lock).
Loosing degree of freedom in this case means that one of the
elemental rotation has no effect; we can make this rotation but it
doesn’t affect our object. For example, if an object is rotated 90◦

about the z-axis, the x-and y -axes will become one and the same.

Atomic transformation matrices
Rotations – 3D case: problem with Euler angles: gimbal lock

Technically, gimbal lock is the loss of one degree of freedom in a
three-dimensional, three-gimbal mechanism that occurs when the axes of
two of the three gimbals are driven into a parallel configuration, ”locking”
the system into rotation in a degenerate two-dimensional space.
The word lock is misleading: no gimbal is restrained. All three gimbals
can still rotate freely about their respective axes of suspension.
Nevertheless, because of the parallel orientation of two of the gimbals’
axes there is no gimbal available to accommodate rotation along one axis.
For example, if an object is rotated 90◦ about the z-axis, the x-and
y -axes will become one and the same.

Atomic transformation matrices
Rotations – 3D case: problem with Euler angles: gimbal lock

Atomic transformation matrices
Rotations – 3D case: rotation about an arbitrary axis

Assumption: axis of rotation can be located at any point p0. Thus we
have six degree of freedom.
The idea is simple: move the point to the origin, make the axis coincident
with one of the coordinate axes, rotate, and then transform back.

Atomic transformation matrices
Rotations – 3D case: rotation about an arbitrary axis: initialization

Assume that the axis passes through the point p0.

Atomic transformation matrices
Rotations – 3D case: rotation about an arbitrary axis: step 1

Translate p0 to the origin.

Atomic transformation matrices
Rotations – 3D case: rotation about an arbitrary axis: step 2

Rotate about the x-axis into the xz plane.

Atomic transformation matrices
Rotations – 3D case: rotation about an arbitrary axis: step 3

Rotate about the y -axis onto the z-axis.

Atomic transformation matrices
Rotations – 3D case: rotation about an arbitrary axis: step 4

Rotate as needed about the z-axis.

Atomic transformation matrices
Rotations – 3D case: rotation about an arbitrary axis: step 5

Apply inverse rotations about y .

Atomic transformation matrices
Rotations – 3D case: rotation about an arbitrary axis: step 6

Apply inverse rotations about x .

Atomic transformation matrices
Rotations – 3D case: rotation about an arbitrary axis: step 7

Apply inverse translation.

Atomic transformation matrices
Rotations – 3D case: rotation about an arbitrary axis: matrix form

Given a unit vector u = (ux , uy , uz), the matrix for a rotation by an angle
of ϕ about an axis in the direction of u is defined as

R =

 c + u2x (1− c) uxuy (1− c)− uzs uxuz (1− c) + uy s
uyux (1− c) + uzs c + u2y (1− c) uyuz (1− c)− uxs
uzux (1− c)− uy s uzuy (1− c) + uxs c + u2z (1− c)


where s = sinϕ and c = cosϕ.

Quaternions
Problems with matrix representation of a rotation

The rotation representation we’ve been talking so far is known as matrix
representaion of a rotation. Problems with this representation are

We need to much floating-point values (nine while we just have
three degrees of freedom).

As a consequence of previous: expensive calculation.

It’s hard to find intermediate rotations between two known rotations.

Quaternions
Scalar and vector parts

We can think about quaternions like an extension to complex numbers. A
number of the form

a + 0i + 0j + 0k ,

where a is a real number, is called real, and a number of the form

0 + bi + cj + dk ,

where b, c , and d are real numbers, is called pure imaginary. If

a + bi + cj + dk

is any quaternion, then a is called its scalar part and bi + cj + dk is
called its vector part. The scalar part of a quaternion is always real, and
the vector part is always pure imaginary. Even though every quaternion is
a vector in a four-dimensional vector space, it is common to define a
vector to mean a pure imaginary quaternion. With this convention, a
vector is the same as an element of the vector space R3.
Hamilton called pure imaginary quaternions right quaternions and real
numbers (considered as quaternions with zero vector part) scalar
quaternions.

Quaternions
Tworzenie kwaterniona

1 s t r u c t QUATERNION
{

3 f l o a t x , y , z , w ;

5 QUATERNION() { }
QUATERNION(f l o a t x , f l o a t y , f l o a t z , f l o a t w) :

7 x (x) , y (y) , z (z) , w(w) { }
} ;

Quaternions
Tworzenie kwaterniona

Jednostkowy kwaternion można utożsamiać z obrotem w przestrzeni 3D.
Kwaternion tworzy sie podajac jednostkowy wektor, którego kierunek
wskazuje oś obrotu oraz kat, o jaki chcemy obracać wokó l tego wektora
(zwykle w radianach).
Informacji tych nie wpisujemy jednak do sk ladowych kwaterniona
bezpośrednio. Trzeba je zakodować wed lug algorytmu jak na poniższym
listingu, obliczajac najpierw sinus i cosinus po lowy podanego kata.

vo i d Ax i sToQuate rn ion (QUATERNION ∗Out ,
2 con s t VEC3 &Axis ,

f l o a t Angle)
4 {

Angle ∗= 0.5 f ;
6 f l o a t S in = s i n f (Angle) ;

Out−>x = Sin ∗ Ax i s . x ;
8 Out−>y = Sin ∗ Ax i s . y ;

Out−>z = Sin ∗ Ax i s . z ;
10 Out−>w = co s f (Angle) ;
}

Quaternions
Tworzenie kwaterniona – szczególne przypadki

Przypadkiem szczególnym jest obracanie wokó l osi X , Y lub Z . Algorytm
znacznie sie wówczas upraszcza i dla optymalizacji warto przygotować
osobne funkcje. Poniżej funkcja dla obrotu wokó l osi X ; dla pozosta lych
przypadków należy postapić analogicznie.

1 vo i d Quate rn ionRota t i onX (QUATERNION ∗Out , f l o a t a)
{

3 a ∗= 0.5 f ;
Out−>x = s i n f (a) ;

5 Out−>y = 0 .0 f ;
Out−>z = 0 .0 f ;

7 Out−>w = co s f (a) ;
}

Quaternions

As a set, the quaternions H are equal to R4, a four-dimensional vector
space over the real numbers. The quaternions looks a lot like a
four-dimensional vector, but it behaves quite differently.
H has three operations: addition, scalar multiplication, and quaternion
multiplication.

Quaternions
Operations: addition

Quaternions support some of the familiar operations from vector algebra,
such as vector addition. We have see a formula for addition – to
remember it, if

q = (r , v), q ∈ H, r ∈ R, v ∈ R3

then
(r1, v1) + (r2, v2) = (r1 + r2, v1 + v2).

However, we must remember that the sum of two unit quaternions
does not represent a 3D rotation, because such a quaternion would
not be of unit length.

Quaternions
Operations: multiplication

One of the most important operations we will perform on quaternions is
that of multiplication. Given two quaternions p and q representing two
rotations P and Q, respectively, the product pq represents the composite
rotation (i.e., rotation Q followed by rotation P1). We will restrict to the
multiplication which is used in conjunction with 3D rotations, namely the
Grassman product. If

q = (r , v), q ∈ H, r ∈ R, v ∈ R3

then
(r1, v1)(r2, v2) = (r1r2 − v1 · v2, r1v2 + r2v1 + v1 × v2).

1Mind the order!

Quaternions
Operations: norm and normalization

If
q = (r , v), q ∈ H, r ∈ R, v ∈ R3

then norm |q| is defined as follows

|q| =
√
qq =

√
qq =

√
r2 + v2

x + v2
y + v2

z ,

where q denotes conjugation (to be explain). To normalize vector the
following formula have to be used

normalize(q) =
q

|q|
=

[
vx
|q|

vy
|q|

vz
|q|

r

|q|

]
.

Quaternions
Operations: conjugate

Conjugate of a quaternion q is defined as follows

q = (r ,−v)

where
q = (r , v), q ∈ H, r ∈ R, v ∈ R3.

Quaternions
Operations: inverse

The inverse of a quaternion q is denoted q−1 and is defined as a
quaternion which, when multiplied by the original, yields the scalar 1
(i.e., qq−1 = 0i + 0j + 0k + 1)

q−1 =
q

|q|2

where
q = (r , v), q ∈ H, r ∈ R, v ∈ R3.

Quaternions
Operations: conjugate and inverse

What is nice, because in computer games quaternions represent 3D
rotations, they are always of unit length. So, for our purposes, the inverse
and the conjugate are identical:

q−1 = q

where
q = (r , v), q ∈ H, r ∈ R, v ∈ R3.

Other properties
(pq) = qp,

(pq)−1 = q−1p−1.

Quaternions
Rotating vectors with quaternions

Rewrite vector v in quaternion form vq

vq = (0, v) = [vx vy vz 0].

The rotated vector v ′ by a quaternion q can be found as follows

v ′ = rotate(v ,q) = qvqq
−1.

Quaternions
Concatenation

Consider three distinct rotations, represented by the quaternions q1, q2
and q3. We want to apply rotation 1 first, followed by rotation 2 and
finally rotation3. The composite rotation quaternion qcomp can be found
and applied to vector v (in its quaternion form, vq) to get rotated vector
v ′ as follows

v ′ = q3q2q1vqq
−1
1 q−12 q−13 = qcompvqq

−1
comp.

Quaternions
Matrix equivalence

If we let
q = (r , v) = [vx vy vz r] = [x y z w]

then matrix representation of 3D rotation M we can find as follow

M =

 1− 2y2 − 2z2 2xy + 2zw 2xz − 2yw
2xy − 2zw 1− 2x2 − 2z2 2yz + 2xw
2xz + 2yw 2yz − 2xw 1− 2x2 − 2y2



Quaternions
LERP – rotational linear interpolation

Given two quaternions p and q representing rotations A and B, we can
find an intermediate rotation qLERP that is t percent of the way from A
to B as follows

qLERP = LERP(p,q,t) = (1−t)p+tq
|(1−t)p+tq|

= normalize




(1− t)px + tqx
(1− t)py + tqy
(1− t)pz + tqz
(1− t)pr + tqr


T .

Quaternions
SLERP – spherical linear interpolation

The problem with the LERP is that it effectively interpolates along a
chord of the hypersphere, rather than along the surface of the
hypersphere itself. This leads to rotational animations that do not have a
constant angular speed when the parameter t is changing at a constant
rate. The rotation will appear slower at the end points and faster in the
middle of the animation.
To solve this problem, we can use a variant of the LERP operation known
as spherical linear interpolation, or SLERP for short

SLERP(p, q, t) = tpp + tqq,

where
tp = sin((1−t)θ)

sin(θ) ,

tq = sin(tθ)
sin(θ) ,

and
θ = arccos(p · q).

Atomic transformation matrices
General form

From the preceding material we can conclude that all matrix
transformations can be described on generalized 4× 4 transformation
matrix of the form 

L L L T
L L L T
L L L T
P P P O


where

L – linear transformations (scaling, shearing, rotation, reflection),

T – translation,

O – overall scaling,

P – perspective transformation.

Coordinate system transformation
General definition of the problem

We have the following problem: given independent vectors u and v and
any two vectors x and y , find a linear transformation, in matrix form,
that sends u to x and v to y .

Coordinate system transformation
General case: finding the matrix for a transformation – solution of the problem; step 1

Let M be the matrix whose columns are u and v . Then

T : x → Mx

sends ex to u and ey to v .
Therefore

T−1 : x → M−1x

sends u to ex and v to ey .

Coordinate system transformation
General case: finding the matrix for a transformation – solution of the problem; step 2

Let K be the matrix whose columns are x and y . Then

R : x → Kx

sends ex to x and ey to y .

Coordinate system transformation
General case: finding the matrix for a transformation – solution of the problem; step 3

Applying first T−1 and then R to vector u we send it to x (via e1).
Smilarly for v .

R(T−1) : x → KM−1x

Thus, the matrix for the transformation sending the vectors u to the x
and v to the y is just KM−1.

Coordinate system transformation
Transform from parent space to child space

In the special case when we want to go from the usual coordinates
(parent space) on a vector to its coordinates in some coordinate system
(child space) with basis vectors u, v , which are

unit vectors

and mutually perpendicular,

vectors u and v are expressed in parent space

the transformation matrix is one whose rows are the transposes of u and
v

Coordinate system transformation
Transform from parent space to child space

For example, if

u =

[
3
5
4
5

]
and

v =

[
− 4

5
3
5

]
,

then the point pP from the xy parent space

pP =

[
2
5
11
5

]
,

expressed in uv child coordinates, is

pC =

[
3
5

4
5

− 4
5

3
5

] [
2
5
11
5

]
=

[
6
25 + 44

25
− 8

25 + 33
25

]
=

[
2
1

]
.

Coordinate system transformation
Transform from parent space to child space

Coordinate system transformation
Transform from child space to parent space

Conversely, when we want to go from some coordinate system (child
space) on a vector to its coordinates in the usual coordinates (parent
space) with basis vectors u, v , the transformation matrix is one whose
columns are u and v

Coordinate system transformation
Transform from child space to parent space

For example, if

u =

[
3
5
4
5

]
and

v =

[
− 4

5
3
5

]
,

then the point pC from the uv child space

pC =

[
2
1

]
,

expressed in xy prent coordinates, is

pP =

[
3
5 − 4

5
4
5

3
5

] [
2
1

]
=

[
6
5 −

4
5

8
5 + 3

5

]
=

[
2
5
11
5

]
.

Change of basis
From child space to parent space case

From geometric point of view a coordinate system (or coordinate frame)
consists of an origin and a basis which is a set of vectors. A basis in most
cases is orthonormal (which means that vectors are orthonormal, that is,
they are all unit vectors and orthogonal to each other).
In 2D case with origin e and basis {u, v}, the coordinates (pu, pv)
describe the point

p = e + puu + pvv.

Similarly, we can express point p in terms of another coordinate system

p = o + pxx + pyy

(see next slide).

Change of basis
From child space to parent space case

Change of basis
From child space to parent space case

We can express this relationship using matrix transformation px
py
1

 =

 ux vx ex
uy vy ey
0 0 1

 pu
pv
1


Note that this assumes we have the point e and vectors u and v stored in
some canonical coordinates which is in this case from the
(x , y)-coordinate system.

Change of basis
From child space to parent space case

In most cases we write this matrix like this

pxy =

[
u v e
0 0 1

]
puv

It takes points expressed in the (u, v) coordinate system and converts
them to the same points expressed in the (x , y) coordinate system (but
(u, v) coordinate system – a child system – has to be described in the
(x , y) coordinate system – parent system – terms).

Change of basis
From child space to parent space case

Consider a following example:

e = (2, 2)

u = (1, 0)

v = (0,−1)

puv = (−1,−1)

so

pxy =

 0 1 2
−1 0 2
0 0 1

 puv

and finally
pxy = (1, 3, 1)

Change of basis
From child space to parent space case

Change of basis
From child space to parent space case

In 3D case we have

pxyz =

[
u v w e
0 0 0 1

]
puvw

Change of basis: summary
From child space to parent space case

Any child-space position vector pC can be transformed into a
parent-space position vector pP as follows

pP = MC→PpC

where transformation matrix

MC→P =
[

uC vC wC tC
]

and

uC is the unit basis vector along the child space X -axis, expressed in
parent space coordinates;

vC is the unit basis vector along the child space Y -axis, in parent
space;

wC is the unit basis vector along the child space Z -axis, in parent
space;

tC is the translation of the child coordinates system relative to
parent space.

Coordinate system
General case for constructing coordinate system

We can calculate orthonormal basis that is aligned with a given vector.
That is, given a vector a, we want an orthonormal u, v, and w such that
w points in the same direction as a.
This can be done using cross products as follows.
First make w a unit vector in the direction of a:

w =
a

||a||

Then choose any vector t not collinear with w, and use the cross product
to build a unit vector u perpendicular to w:

u =
t×w

||t×w||
.

Once w and u are in hand, completing the basis is simple:

v = w × u.

	Atomic transformation matrices
	Quaternions

