
Wst¦p do informatyki
Elements of computational complexity theory

Piotr Fulma«ski

Wydziaª Matematyki i Informatyki,
Uniwersytet �ódzki, Polska

January 17, 2019

Table of contents

1 Theory of computation

2 Computational complexity

3 Computational complexity classes

4 Most o�ten used computational complexity classes

5 General complexity classes

Theory of computation

The theory of computation is the branch of theoretical computer science

that deals with how e�ciently problems can be solved on a model of
computation, using an algorithm. The �eld is divided into three major
branches:

automata theory and languages,

computability theory,

and computational complexity theory.

All of them allow us to search an answer for the following question

What are the fundamental capabilities and limitations of computers?

Theory of computation
Automata theory and languages

Automata theory is the study of abstract machines and automata, as well
as the computational problems that can be solved using them. The word
automata (the plural of automaton) comes from the Greek word which
means self-acting.

Theory of computation
Computability theory

The �eld of the theory of computation that deals with researching which
problems are solvable using computers.
One of the fundamental question of computer science is to determine the
power of computers by understanding the problems that can be solved
using them. Modern computers allow to compute so many things that it
is tempting to think that solving each problem by them is only a matter
of time. However, it turns out that we can �nd problems that computers
will never be able to solve, regardless of the resources available.

Theory of computation
Computability theory � the halting problem

In computability theory, the halting problem is the problem of
determining, from a description of an arbitrary computer program and an
input, whether the program will �nish running (i.e., halt) or continue to
run forever.
Alan Turing proved in 1936 that a general algorithm to solve the halting
problem for all possible program-input pairs cannot exist. A key part of
the proof was a mathematical de�nition of a computer and program,
which became known as a Turing machine; the halting problem is
undecidable over Turing machines.

Theory of computation
Computational complexity theory

The �eld of the theory of computation that deals with determining the
amount of resources needed to solve computational problems (which is
known to be computable).
The resources considered are such as time, memory or the number of
processors.

Computational complexity

Computational complexity determine the amount of resources needed to
solve a given computational problem. Computational complexity, in most
cases the amount of memory or time, is expressed as a function of input
data size. It is common for this function to expressed the worst-case
complexity, that is the maximum of the amount of resources that are
needed for all inputs of a given size.

Computational complexity
The space complexity

The space complexity of an algorithm or a computer program is the
amount of memory space, expressed in bytes or in number of basic
data types variables like int or float, required to solve an instance of
the computational problem as a function of the size of the input.

Computational complexity
The time complexity

The time complexity describes the amount of time it takes to run an
algorithm. We do not express time complexity in standard units of time.
Providing time complexity in units of time is inconvenient, because the
result depends on the speed of the computer on which the measurements
were made and it is di�cult to refer such results to other computers,
equipped with other/di�erent hardware resources, where the time of
performing similar operations may vary signi�cantly. Therefore, we
express the computational complexity in the number of elementary
(dominating) operations. The dominant operation is an operation
whose execution directly a�ects the overall execution time of the entire
algorithm. We treat the other operations as irrelevant � that is, their
execution time is negligibly small compared to the time of execution of all
dominant operations. Time complexity is commonly estimated by
counting the number of elementary operations performed by the
algorithm, supposing that each elementary operation takes a �xed
amount of time to perform. Thus, the amount of time taken and the
number of elementary operations performed by the algorithm are taken to
di�er by at most a constant factor.

Computational complexity
The time complexity. Example

sumOfNumbers(numbers[]) {

sum = 0;

for number in numbers {

sum += number

}

return sum

}

time complexity
f (n) = 1 + n + 1 = n + 2,

where n is a length of numbers array.

Computational complexity
The time complexity. Example

sumOfNumbers(numbers[]) {

sum = 0;

for number in numbers {

sum += number

}

return sum

}

time complexity
f (n) = 1 + n + 1 = n + 2,

where n is a length of numbers array.

Computational complexity
Computational complexity classes

In practice, �nding the exact form of the function f can be very di�cult
and at the same time completely pointless, because it can be enough to
estimate it.
These estimates form computational complexity classes that specify the f

function order. One way to write an order is to use universal notation: O,
Ω, Θ, o and ω.

Computational complexity classes
Big O notation

Let f be a real or complex valued function and g a real valued function,
both de�ned on some unbounded subset of the real positive numbers,
such that g(n) is strictly positive for all large enough values of n.
One writes

f (n) = O(g(n)) as n→∞

if and only if there exists a positive real number M and a real number n0
such that

|f (n)| ≤ Mg(n) for all n ≥ n0.

Other words

We use big O notation to determine upper asymptotic limits.

|f | is bounded above by g (up to constant factor) asymptotically.

It limits the increase in execution time for large input data.

Computational complexity classes
Big O notation

Let f be a real or complex valued function and g a real valued function,
both de�ned on some unbounded subset of the real positive numbers,
such that g(n) is strictly positive for all large enough values of n.
One writes

f (n) = O(g(n)) as n→∞

if and only if there exists a positive real number M and a real number n0
such that

|f (n)| ≤ Mg(n) for all n ≥ n0.

Other words

We use big O notation to determine upper asymptotic limits.

|f | is bounded above by g (up to constant factor) asymptotically.

It limits the increase in execution time for large input data.

Plot

plot

Computational complexity classes
Big Ω notation

f and g as for big O notation.
One writes

f (n) = Ω(g(n)) as n→∞

if and only if there exists a positive real number M and a real number n0
such that

f (n) ≥ Mg(n) for all n ≥ n0.

Other words

We use big O notation to determine lower asymptotic limits.

f is bounded below by g asymptotically.

The algorithm takes at least some time without giving the upper
limit.

Computational complexity classes
Big Ω notation

f and g as for big O notation.
One writes

f (n) = Ω(g(n)) as n→∞

if and only if there exists a positive real number M and a real number n0
such that

f (n) ≥ Mg(n) for all n ≥ n0.

Other words

We use big O notation to determine lower asymptotic limits.

f is bounded below by g asymptotically.

The algorithm takes at least some time without giving the upper
limit.

Plot

plot

Computational complexity classes
Big Θ notation

f and g as for big O notation.
One writes

f (n) = Θ(g(n)) as n→∞

if and only if there exist a positive real number M and N and a real
number n0 such that

Mg(n) ≤ f (n) ≤ Ng(n) for all n ≥ n0.

Other words

We use big Θ notation to determine lower and upper asymptotic
limits.

f is bounded both above and below by g asymptotically.

The algorithm takes at least but no more than some time.

Computational complexity classes
Big Θ notation

f and g as for big O notation.
One writes

f (n) = Θ(g(n)) as n→∞

if and only if there exist a positive real number M and N and a real
number n0 such that

Mg(n) ≤ f (n) ≤ Ng(n) for all n ≥ n0.

Other words

We use big Θ notation to determine lower and upper asymptotic
limits.

f is bounded both above and below by g asymptotically.

The algorithm takes at least but no more than some time.

Plot

plot

Computational complexity classes
Little o notation

f and g as for big O notation.
One writes

f (n) = o(g(n)) as n→∞

if for every positive constant ε there exists a constant N such that

|f (n)| ≤ εg(n) for all n ≥ N.

Plot

plot

Computational complexity classes
Little ω notation

f and g as for big O notation.
One writes

f (n) = ω(g(n)) as n→∞

if for every positive constant ε there exists a constant N such that

|f (n)| ≥ ε|g(n)| for all n ≥ N.

Plot all at once

plot all at once

Most o�ten used computational complexity

classes
O(1)

O(1) � the complexity is constant, independent of the number of input
data.
An example of a problem for which there exists an algorithm of O(1)
complexity.
As the input there is an array of numbers with N elements. The numbers
are sorted in ascending order. The di�erence between every two
subsequent numbers is constant. Find the sum of the numbers in the
array.

Most o�ten used computational complexity

classes
O(n)

O(n) � linear complexity. This is a speci�c case of polynomial complexity.
The problem solving time is directly proportional to the size of the input
data.
An example of a problem for which there exists an algorithm of O(n)
complexity.
As the input there is an array of numbers with N elements. Find the sum
of all numbers in the input array.

Most o�ten used computational complexity

classes
O(log(n))

O(log(n)) � logarithmic complexity
An example of a problem for which there exists an algorithm of
O(log(n)) complexity.
As the input there is an array of numbers with N elements. The numbers
are sorted in ascending order. Check if the number x exists in the input
array.

Most o�ten used computational complexity

classes
O(n log(n))

O(n log(n)) � linear-logarithmic complexity.
An example of a problem for which there exists an algorithm of
O(n log(n)) complexity.
As the input there is an array of numbers with N elements. Sort the
input array.
We can use for example merge sort which complexity is of O(n log(n))
order.

Most o�ten used computational complexity

classes
O(n2)

O(n2) � square complexity. This is a speci�c case of polynomial
complexity.
An example of a problem for which there exists an algorithm of O(n2)
complexity.
As the input there is an array of numbers with N elements. Sort the
input array.
We can use for example selection sort which complexity is of O(n2) order.

Most o�ten used computational complexity

classes
O(n3)

O(n3) � cubic complexity. This is a speci�c case of polynomial
complexity.
An example of a problem for which there exists an algorithm of O(n3)
complexity.
Multiplication of square matrix of size n.

Most o�ten used computational complexity

classes
O(nx)

O(nx) � polynomial complexity.

Most o�ten used computational complexity

classes
O(2n)

O(2n) � exponential complexity
An example of a problem for which there exists an algorithm of O(2n)
complexity.
As the input there is an array of numbers with N elements. All elements
are di�erent. Return an array that will contain all possible subsets of the
elements of the input array.

Most o�ten used computational complexity

classes
O(n!)

O(n!) � factorial complexity
An example of a problem for which there exists an algorithm of O(n!)
complexity.
The travelling salesman problem (TSP) asks the following question:
"Given a list of cities and the distances between each pair of cities, what

is the shortest possible route that visits each city and returns to the

origin city?" It is an NP-hard

Plot of orders

plot of orders

General complexity classes

Complexity classes introduced so far can be grupped into more general
complexity classes.

P (polynomial time) complexity class � problem solving during
polynomial time.
It contains all decision problems that can be solved by a
deterministic Turing machine using a polynomial amount of
computation time, or polynomial time.

NP (nondeterministic polynomial time) complexity class � the
problem is not known at polynomial time, but the solution can be
checked in polynomial time.
It contains all decision problems solvable in polynomial time by a
non-deterministic Turing machine.

NP-hard � even solution to a problem, no matter how we get it,
cannot be veri�ed "quickly", in polynomial time.

	Theory of computation
	Computational complexity
	Computational complexity classes
	Most offten used computational complexity classes
	General complexity classes

